
HAL Id: hal-03155036
https://hal.science/hal-03155036

Submitted on 23 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Design to Implementation: An Automated
Credible Autocoding Chain for Control Systems

Timothy Wang, Romain Jobredeaux, Heber Henrencia, Pierre-Loïc Garoche,
Eric Feron, Marc Pantel

To cite this version:
Timothy Wang, Romain Jobredeaux, Heber Henrencia, Pierre-Loïc Garoche, Eric Feron, et al.. From
Design to Implementation: An Automated Credible Autocoding Chain for Control Systems. Féron,
Eric. Advances in Control System Technology for Aerospace Applications, Springer-Verlag, pp.137–
180, 2015, 978-3-662-47693-2. �10.1007/978-3-662-47694-9_5�. �hal-03155036�

https://hal.science/hal-03155036
https://hal.archives-ouvertes.fr

From Design to Implementation:
an Automated, Credible Autocoding Chain for

Control Systems

Timothy Wang1, Romain Jobredeaux1, Heber Herencia2, Pierre-Löıc Garoche3,
Arnaud Dieumegard4, Éric Féron1, and Marc Pantel4

1 Georgia Institute of Technology, Atlanta, Georgia, USA
2 National Institute of Aerospace, Virginia, USA

3 ONERA – The French Aerospace Lab, Toulouse, FRANCE
4 ENSEEIHT, Toulouse, France

Abstract. This article describes a fully automated, credible autocod-
ing chain for control systems. The framework generates code, along with
guarantees of high level functional properties which can be independently
verified. It relies on domain specific knowledge and fomal analysis to ad-
dress a context of heightened safety requirements for critical embedded
systems and ever-increasing costs of verification and validation. The plat-
form strives to bridge the semantic gap between domain expert and code
verification expert. First, a graphical dataflow language is extended with
annotation symbols enabling the control engineer to express high level
properties of its control law within the framework of a familiar language.
An existing autocoder is enhanced to both generate the code implement-
ing the initial design, but also to carry high level properties down to an-
notations at the level of the code. Finally, using customized code analysis
tools, certificates are generated which guarantee the correctness of the
annotations with respect to the code, and can be verified using existing
static analysis tools. While only a subset of properties and controllers
are handled at this point, the approach appears readily extendable to a
broader array of both.

Keywords: Control Engineering, Autocoding, Lyapunov proofs, Formal
Verification, Control Software

A wide range of today’s real-time embedded systems, especially their most criti-
cal parts, relies on a control-command computation core. The control-command
of an aircraft, a satellite, a car engine, is processed into a global loop repeated
forever, or at least during the activity of the controlled device. This loop models
the acquisition of new input values via sensors: either from environment mesures
(wind speed, acceleration, engine RPM, . . .) or from the human feedback via the
brakes, the accelerator, the stick or wheel control.

The cost of failure of such systems is tremendous, and examples of such fail-
ures abound, in spite of increasingly high certification requirements. Current

ar
X

iv
:1

30
7.

26
41

v2
 [

cs
.S

Y
]

 2
5

A
ug

 2
01

3

2

analysis tools focus mainly on simulations. One obvious shortcoming is the im-
possiblity to simulate all the possible scenarios the system will be subject to.
More advanced tools include static analysis modules, which derive properties of
the system by formally analyzing its semantics. However, in the specific case of
control systems, analyzing the computational core can prove arduous for these
tools, whereas the engineers who designed the controller have a variety of mathe-
matical results which can greatly facilitate said analysis, and evince more subtle
properties of the implemented controller.

This article, following previous efforts aimed at demonstrating how control-
system domain knowledge can be leveraged for code analysis [5] [7], attempts
to describe a practical implementation of a fully automated framework, which
enables a control theorist to use familiar tools to generate credible code, that
is, code delivered with a certificate ensuring certain properties will hold on all
executions.

This article focuses on a specific class of controllers and properties in order
to achieve full automation, but also explores various possible extensions.

The structure of the article is as follows: We first present a high level view
of the general framework in Section 1. We then proceed to describe how control
semantics can be expressed at different levels of design, in Section 2. Section 3
describes the translation process by which graphical synchronous languages fa-
miliar to the control theorist can be turned into credible code. Section 4 demon-
strates how a proof of correctness can be automatically extracted from the gen-
erated code.

1 Framework and the Running example

The framework of credible autocoding of control software using control seman-
tics, which led to the development of our prototype, is summarized in Figure 1.
This novel framework represents a possible conduit that will allow the domain
expert e.g. the control engineer to more efficiently produce code with automat-
ically certifiable safety and high-level functional properties. Compared to the
typical model-based development paradigm, the only additional requirement on
the control engineer that our framework stipulates is the need for the proofs of
high-level control system properties such as Lyapunov stability, vector margins,
and other performance measures to be provided in the high-level specifications
of the control system.

The process of generating the proofs can be automated using techniques from
the robust control literature. See works such as [13], [14], [5], or [10].

The are two major branches in the framework. In the first branch, the input
model along with its control semantics, is directly translated to the annotated
source code. On the source code level, the annotations are further translated
into proof obligations, which are then discharged by a software theorem prover.
To demonstrate an automation of the first branch, we built a set of specialized
prototype tools, which include an autocoder that generates the control seman-
tics, and an annotation checker that is tailored for verifying the ellipsoid-based

Automated, Credible Autocoding Chain for Control Systems 3

Model&
Simulation
Language

Binary

Popular
Implementation

Language

Formal
Synchronous
Language

V&V
Formalisms

Control
Semantics

Code
Annotations

Annotations

Manual

Both

Automatic

AutocodingwithControl Semantics

CertifiedCompiler

Fig. 1. Automated Credible Autocoding/Compilation Chain for Control Systems

annotations on the code. In the second branch of the framework, the input model
is first translated into a formal synchronous dataflow language such as Lustre.
At the Lustre level, the control semantics now expressed in a new Lustre spec-
ification language, can be analyzed and verified by adapting existing tools such
as Kind or the one described in [12],

The first branch is described in more details in Figure 2. It is consists of
a series of autocoding steps that translate the control semantics, inserted at
the model-level into a set of Hoare logic annotations for the output code. The
language used for the input to the framework should be a convenient graphi-
cal dataflow modeling language such as Simulink for example. The exact choice
for the input language is up to the domain experts’ preference and does not
affect the utility of the framework as it can be adapted to other modeling lan-
guages. Likewise, for the output language, the choice is likely to depend on the
preferences of the industry and the certification authority rather than technical
reasons arising from the framework. For the prototype described in this paper,
the output language was chosen to be C because of its industrial popularity and
the wide availability of static analyzers tailored for C code.

The set of annotations in the output source code contains both the functional
properties inserted by the domain expert and the proofs that can be used to
automatically prove these properties. For the analysis of the annotated output,
we built a prototype annotation checker that is based on the static analyzer
frama-C and the theorem prover PVS. For automating the proof-checking of the
annotated output, a set of linear algebra definitions and theories were integrated
into the standard NASA PVS library.

4

Simulink

Binary

C Code

PVS Theories +
PVS Proofs

Control Semantics:
Stability proofs, bounded-

ness, transient
performances,

stability margins, etc.

ACSL Annotations
(Hoare triples)

Manual

Both

Automatic

Extended Gene-Auto

Certified Compiler

frama-C

Fig. 2. Autocoding with Control Semantics from Simulink to C

In this paper, the fully automated process from the input model to the verified
output is showcased for the property of open loop stability, but the expression of
other functional properties on the model are also discussed in this paper. At this
point, we restrict the input to only linear controllers with possible saturations in
the loop. The running example that we will refer to repeatedly in this paper is the
system described by the state-space difference equation in (1). This example has
enough complexity to be representative of most controllers used in the industry,
and is simple enough such that we can show in this paper, the output annotated
code. The system has the states x ∈ R2, the input y ∈ R, output u ∈ R and the
state-transition function parameterized by the 4 matrices in (1).

Example 1.

x+ =

[
0.4990 −0.05
0.01 1

]
x+

[
0

0.01

]
y

u =
[

564.48 0
]
x+

[
1280

]
y.

(1)

However note that the framework has been applied to larger systems, which
include the Quanser 3-degree-of-freedom Helicopter and an industrial F/A-18
UAV controller system.

2 Control Semantics

The set of control semantics that we can express on the model include but is
not limited to stability and boundedness. Note that in this paper, the only con-
trol semantics of example 1 that we are going to demonstrate through the entire

Automated, Credible Autocoding Chain for Control Systems 5

autocoding and proof-checking process is the proof of open-loop stability. Never-
theless, we will also describe some other control semantics that can be expressed
on the input Simulink model and then translated into C code annotations.

The types of systems in which we can express open-loop stability properties
for are not just limited to simple linear systems such as example 1. They also
include certain nonlinear systems that can be modeled as linear systems with
bounded nonlinearities in the feedback loops.

2.1 Control System Stability and Boundedness

A linear control system such as the running example is formally a sextuple
consisted of an input alphabet y ∈ Rm, an output alphabet u ∈ Rk, a set of
states x ∈ Rn, an initial state x(0) = x0, a linear state-transition function
δ : (x, y) → x+ defined by the pair of matrices

(
A ∈ Rn×n, B ∈ Rn×m), and

a linear output function ω : (x, y) → u defined by another pair of matrices(
C ∈ Rk×n, D ∈ Rk×m). In control, we simply express these sextuples using the

following state-space formalism

x+ = Ax+By, x(0) = x0
u = Cx+Dy.

(2)

There are many inherent nonlinearities in a realistic control system such as time-
delays, noise or unmodelled plant dynamics. Additionally, controller components
such as safety limiters and anti-windup mechanisms also produce nonlinearities.
One tractable way to handle all of these nonlinearities is to abstract them as
bounded nonlinear operators. For a more accurate representation of the control
systems that are in operation, we also consider a class of nonlinear system that
is consisted of a linear system modelled by (2) in feedback interconnections with
a set of bounded nonlinear operators. Let the input alphabet w ∈ Rl be such
that w = σ (u, k). Let Bw ∈ Rn×l, we have the following nonlinear state-space
system

x+ = Ax+By +Bww, x(0) = x0
u = Cx+Dy.

(3)

For systems described by (3), which is inclusive of systems described by (2), it
is possible to compute in polynomial time the answer to the quadratic stabiliz-
ability problem.

Problem 1. 1. Assume that the input y is bounded i.e. without loss of generality
let ‖y‖ ≤ 1, and w is a bounded nonlinear operator, does there exist a
matrix P ∈ §n×n, P � 0, such that the quadratic function q :→ xTPx is
non-increasing along the system trajectories as k → +∞?

Problem 1 can be reformulated into a linear matrix inequality (LMI) problem.
The details of such reformulations are skipped here in this paper as one can refer
to, in the system and control literature, a large collection of works on the subject
including [14], [13], and [3].

Without proof, here we will state that for bounded y and w = 0, the following
result on an invariant for the system in (2) holds.

6

Proposition 2.1 Assume yTy ≤ 1. If there exist a P � 0, α > 0, such that[
A′TPA− (1− αP) ATPB

BTPA BTPB − αIm×m

]
≺ 0 (4)

then
{
x|xTPx ≤ 1

}
is an invariant for (2).

The linear matrix inequailty in (4) can be solved for P � 0 using existing semi-
definite programming solvers such as SeDuMi, SDPT3, CSDP, etc.

For w 6= 0, we need to first characterize the nonlinearity w = σ(u, t). For
example, a saturation operator on the output u can be captured in a sector
inequality defined by m1,m2 > 0 and (w −m1u)

T
(w −m2u).

Proposition 2.2

It is not possible to construct a single algorithm to automate this step in the
analysis.

2.2 Control Semantics in Simulink

Both boundedness and stability can be expressed using a synchronous observer
with inputs xi, i = 1, . . . , n, and the boolean-valued function

x→
∑

i,j=1,...,n

xiPijxj ≤ 1. (5)

This synchronous observer is parameterized by a symmetric matrix P and a
multiplier µ. We make an important distinction between two types of ellipsoid
observers. One is inductive and the other one is assertive. This distinction orig-
inates from the method used to obtain the parameter P and is determined by
the memory characteristics of the block’s inputs. The former type must have in-
put signals with memories i.e. if the input signals are connected with unit delay
blocks. The inductive type expresses an invariant property of the control system
loop. Its parameter P is obtained by solving the quadratic stability problem in
1. The assertive type accepts only input signals with no memory i.e. not con-
nected with any unit delay block. Its parameter P is obtained from assertions
i.e. assumptions about the sizes of its input signals.

The inductive ellipsoid observer provides both the boundedness of the con-
troller states and the proof of the boundedness itself. The bound on the states can

be extracted from the parameter P by computing the interval

[
− 1√

σi (P)
,

1√
σi (P)

]
,

where σi (P) is the i-th singular value of P . The proof comes from the fact that
the parameter P is the answer to the quadratic stability problem hence the
following holds true.

Fact 2.3 ∀x ∈ Rn, if y is bounded and P is the solution to the quadratic
stability problem in 1, then (Ax+By)

T
P (Ax+By) ≤ xTPx.

Automated, Credible Autocoding Chain for Control Systems 7

Fact 2.3 is true by the construction of P .

For expressing the ellipsoid observers on the Simulink model, we constructed
a custom S block denoted as Ellipsoid to represent the ellipsoid observer. Addi-
tionally, for expressing the operational semantics of the plant, we constructed a
custom S block denoted as Plant. Its semantics is similar to Simulink’s discrete-
time state-space block with two key differences. One is that the input to the
Plant block contains both the input and output of the plant. The other is that
the output from the Plant block are the internal states of the plant. Note that
the outputs from the Plant block represent variables with memories so they can
also be inputs to an inductive ellipsoid observer. Other properties can also be
expressed such as non-expansivity from the dissipativity framework. The Non-
Expansivity block, when connected with the appropriate inputs and outputs, can
be used to express a variety of performance measures such as the H∞ charac-
teristic of the system or the closed-loop vector margin of the control system. An
example of such usage is shown in figure 3 where the closed-loop vector margin
of a constant gain controller is expressed using a combination of the Plant block
and the Non-Expansivity block.

Fig. 3. Expressing Vector Margin of the Closed-Loop System

In this paper, we focus on the current fully-automated treatment of the open-
loop stability properties, hence we will not consider the semantics displayed in
figure (3) beyond the description here.

8

For the running example, we have a Simulink model connected with with two
synchronous observers. The observers are displayed in red for clarity’s purpose.
In the Simulink model, we introduce an error into the control system by flipping
the sign of gain block A11 in figure 4. This error will be referred to again in
the next section of paper. We made the following assumption for the quantity

Fig. 4. Running Example with Synchronous Observers

y − yd:
‖y − yd‖ ≤ 0.5, (6)

which is expressed in figure 4 by the Ellipsoid block BoundedInput with the
parameters P = 0.5 and multiplier µ = 0.0009. The stability proof is ex-
pressed in figure 4 by the Ellipsoid block Stability with the parameters P =[

6.742× 10−4 4.28× 10−5

4.28× 10−5 2.4651× 10−3

]
and µ = 0.9991. The observer blocks in figure 4

are connected to the model using the VaMux block. The role of the VaMux block
is to concatenate a set of scalar signal inputs into a single vector output. This
special block was constructed because the Ellipsoid observer block can accept
only a single vector input.

2.3 Control semantics at the level of the C code

For the specific problem of open loop stability, the expressiveness needed at the
C code level is twofold. On the one hand, a means of expressing that a vector
composed of program variables is a member of an ellipsoid is required. This

Automated, Credible Autocoding Chain for Control Systems 9

entails a number of underlying linear algebra concepts. On the other hand, a
eans of providing the static analysis tools with indications on how to proceed
with the proof of correctness.

ACSL, the ANSI/ISO C Specification Language, is an annotation language
for C [2].It is expressive enough, and its associated verification tool, Frama-
C, offers a wide variety of backend provers which can be used to establish the
correctness of the annotated code.

Linear Algebra in ACSL A library of ACSL symbols has been developed
to express concepts and properties pertaining to linear algebra. In particular,
types have been defined for matrices and vectors, and predicates expressing
that a vector of variables is a member of the ellipsoid EP defined by {x ∈

Rn : xTPx ≤ 1}, or the ellipsoid GX defined by

{
x ∈ Rn :

[
1 xT

x X

]
≥ 0

}
. For

example, expressing that the vector composed of program variables v1 and v2

is in the set EP where P =

(
1.53 10.0
10.0 507

)
, can be done with the following ACSL

code:

/*@ logic matrix P = mat_of_2x2_scalar(1.53,10.0,10.0,507);

@ assert in_ellipsoid(P,vect_of_2_scalar(v_1,v_2)); */

ACSL

The stability of ellipsoid EP throughout any program execution can be expressed
by the following loop invariant :

//@ loop invariant in_ellipsoid(P,vect_of_2_scalar(v_1,v_2));

while (true){
//loop body

}

ACSL+C

In terms of expressiveness, this latter annotation is all that is required to express
open loop stability of a linear controller. However, in order to facilitate the proof,
intermediate annotations are added within the loop to propagate the ellipsoid
through the different variable assignments, as suggested in [5] and expanded on
in section 3. For this reason, a loop body instruction can be annotated with a
local contract, like so:

/*@ requires in_ellipsoid(P,vect_of_2_scalar(v_1,v_2));

@ ensures in_ellipsoid(Q,vect_of_3_scalar(v_1,v_2,v_3));*/

{
// assignment of v_3

}

ACSL+C

Including proof elements An extension to ACSL, as well as a plugin to
Frama-C have been developed. They make it possible to indicate the proof steps
needed to show the correctness of a contract, by adding extra annotations. For
example, the following syntax:

10

/*@ requires in_ellipsoid(P,vect_of_2_scalar(v_1,v_2));

@ ensures in_ellipsoid(Q,vect_of_3_scalar(v_1,v_2,v_3));*/

@ PROOF_TACTIC (use_strategy (Intuition));

{
// assignment of v_3

}

ACSL+C

signals Frama-C to use the strategy ’Intuition’ to prove the correctness of the
local contract considered. Section 4 expands on this topic.

2.4 Control semantics in PVS

Through a process described in section 4, verifying the correctness of the an-
notated C code is done with the help of the interactive theorem prover PVS.
This type of prover normally rely on a human in the loop to provide the basic
steps required to prove a theorem. In order to reason about control systems,
linear algebra theories have been developed. General properties of vectors and
matrices, as well as theorems specific to this endeavor have been written and
proven manually within the PVS environment.

Basic types and theories Introduced in [7] and available at [URL] as part
of the larger NASA PVS library, the PVS linear algebra library enables one to
reason about matrix and vector quantities, by defining relevant types, operators
and predicates, and proving major properties. To name a few:

– A vector type.
– A matrix type, along with all operations relative to the algebra of matrices.
– Various matrix subtypes such as square, symmetric and positive definite

matrices.
– Block matrices
– Determinants
– High level results such as the link between Schur’s complement and positive

definiteness

Theorems specific to control theory In [7], a theorem was introduced,
named the ellipsoid theorem. A stronger version of this theorem, along with a
couple other useful results in proving open loop stability of a controller, have
been added to the library. The following theorem

ellipsoid_general: LEMMA

∀ (n:posnat,m:posnat, Q:SquareMat(n),

M: Mat(m,n), x:Vector[n], y:Vector[m]):

in_ellipsoid_Q?(n,Q,x)

AND y = M*x

IMPLIES

in_ellipsoid_Q?(m,M*Q*transpose(M),y)

PVS

Automated, Credible Autocoding Chain for Control Systems 11

expresses in the PVS syntax how a generic ellipsoid GQ is transformed into
GMQMT by the linear mapping x 7→Mx. This next theorem:

ellipsoid_combination: LEMMA

∀ (n,m:posnat, lambda_1, lambda_2: posreal, Q_1: Mat(n,n),

Q_2: Mat(m,m), x:Vector[n], y:Vector[m], z:Vector[m+n]):

in_ellipsoid_Q?(n,Q_1,x)

AND in_ellipsoid_Q?(m,Q_2,y)

AND lambda_1+ lambda_2 = 1

AND z = Block2V(V2Block(n,m)(x,y))

IMPLIES

in_ellipsoid_Q?(n+m,Block2M(M2Block(n,m,n,m)(1/lambda_1*Q_1,

Zero_mat(m,n),Zero_mat(n,m),1/lambda_2*Q_2)),z)

PVS

expresses how, given 2 vectors x and y in 2 ellipsoids GQ1
and GQ2

, and a mul-

tiplier µ, it can always be said that

(
x
y

)
∈ GQ, where Q =


Q1

µ
0

0
Q2

1− µ


These 2 theorems are used heavily in section 4 to prove the correctness of a

block.

3 Autocoding with Control Semantics

We have so far defined the annotations blocks to express control semantics at the
model level. In this Section, we describe in more details, the prototype autocoder
that we built to transform the set of control semantics, defined in Section (2),
into analyzable ACSL annotations on the code. The prototype is based on Gene-
Auto, which is an existing industrial-capable automatic code generator for real-
time embedded systems[9].

3.1 Introduction to Gene-Auto

Gene-Auto’s translation architecture is consisted of a sequences of independent
model transformation stages. This classical, modular approach to code genera-
tor design has the advantage of allowing relatively easy insertion of additional
transformation and formal analysis stages such as the annotations generator in
our prototype. Figure 5 has an overview of Gene-Auto’s transformation pipeline.
The process goes through two layers of intermediate languages. The first one,
called the GASystemModel, is a dataflow language semantically similar to the
discrete subset of the Simulink formalism. The input Simulink model, after being
imported, is first transformed into the system model. The system model, which
is expressed in the GASystemModel language, is then transformed into the code
model. The code model is in the GACodeModel language representation, which
is semantically similar to imperative programming languages such as C or Ada.
The key translational stages from the input model to the output code are the
importer, the pre-proccessor, the block sequencer, the typer, the GACodeModel

12

generator, and finally the printer. For our prototype, we have recycled much of
the translational stages up to the GACodeModel generator. From this point on,
the prototype tool branch off from the original pipeline until the printer stage,
in which much of that was also recycled.

Importer

System Model
+

Annotative
Blocks

Simulink Model
+

Control
Semantics

Sequencer
GA Code
Model

Generator

Code Model Annotative
Blocks

C Code
Printer

Annotation
Generator

Build CFG
&

Basic Analysis

Invariants
Insertion

GAVAModel
Generation

Invariants
Propagation

Annotation
Model

ACSL
Annotated

C Code

Input or Output
Representations

Translation
Pipeline

Fig. 5. Gene-Auto Translation Pipeline/Modifications

3.2 Annotations Generation

The control semantics are also first transformed into a GASystemModel repre-
sentation. This transformation step is unaltered from the original Gene-Auto
as the formalisms to express the control semantics and the controller model on
the Simulink level are very similar. In the GACodeModel generation stage, the
system blocks that express the control semantics are not transformed into a
GACodeModel representation. Instead, they are imported into the annotations
generation module. The annotations generation module is initiated after the code
model has been constructed from the system model. The module is responsible
for the insertion of the control semantics blocks onto the code model and then
transforming them into a GACodeModel Specification Language representation
called the GAVAModel. The code model with the control semantics expressed in
GAVAModel becomes the output of the annotations generator. This new repre-
sentation of code and properties is dubbed as the annotation model.

The GAVAModel was added specifically for expressing the control properties
and proofs. However it is based the specification language on ACSL[2] so it

Automated, Credible Autocoding Chain for Control Systems 13

can be used to express other first-order properties about the generated code. A
summary of its elements can be seen in Figure 6.

Following Gene-Auto’s modular transformation architecture, the annotations
generator is added as an independent module within the GACodeModel gener-
ation module. The pipeline for the annotation generation module is also shown
in Figure 5. The major stages in converting the annotative system blocks in
Figure 4 to the annotation model representation are the following:

1. Importing. Convert the code model for into a control flow graph for analysis.

2. Analysis. Basic analysis of the code model like unrolling of finite loops, con-
stant propagation, and affine analysis. All informations obtained about the
code model during this step is stored in the control flow graph.

3. Plant block analysis and insertion. Process the Plant block, and inserted it
as an affine transformation object onto the control flow graph. If there is no
plant, this step is skipped altogether.

4. Observers analysis and insertion. The Ellipsoid observers are typed based on
their inputs and then inserted onto the control flow graph as either assertive
invariants or inductive ones.

5. Invariant propagation. Additional ellipsoids are generated from the inserted
observers using basic Hoare logic with the two additions: the AffineEllipsoid
and the SProcedure rules.

6. GAVAModel generation. Convert all the invariants to GAVAModel and insert
them as annotations onto the code model. This creates the annotation model.

Here we will skip the details about stages 1 to 2 as they were constructed
using standard existing algorithms. We will also skip any details of stage 3 as
in this paper, as there is no Plant block in the running example. While infor-
mation about the plant is critical to expressing closed-loop properties such as
performance margins, the scope of this paper is focused mostly on the open-loop
stability properties.

3.3 Observers analysis and Insertion

Here we will give a short description of the ellipsoid typing and insertion process.
The open-loop control semantics are structured in such way that there is one
inductive ellipsoid observer on the model with several other assertive ellipsoid
observers on the inputs.

Typing of the Ellipsoids The typing algorithm traces the input ports of the
block to their corresponding variables and then checks if all of the variables are
linked directly to any port from an Unit Delay blocks or an output port on
a Plant block. Since this algorithm operates on the GASystemModel level, the
typing is done right before the transformation of the Ellipsoid blocks to ellipsoid
invariants.

14

Fig. 6. Specification Language for the Gene-Auto CodeModel

Automated, Credible Autocoding Chain for Control Systems 15

After the conversion, the equivalent Q-form1 is computed for each ellipsoid
invariant. This conversion is necessary as all subsequent transformation of the
ellipsoid invariants are done in the Q-form due to the possibility of a degenerate
ellipsoid. A degenerate ellipsoid can be visualized in two dimensions as a line
segment.

Insertion For the assertive ellipsoids, the insertion location is computed using
algorithm 1. The function LHS returns the left hand side of an assignment state-
ment. The variable G is the control flow graph of the code model. Each node of
the control flow graph contains a statement. Simply put, the algorithm founds
the first assignment statement where the ellipsoid’s state variable is be assigned
to and inserts the ellipsoid invariant into the statement’s list of post-conditions.
For the running example, there is a single assertive ellipsoid invariant on the

Algorithm 1 Assertive Ellipsoid Insertion

1: procedure EllipsoidInsertion(G,E)
2: for i← 1, G.nNodes do
3: if currentNode == AssignStatement then
4: if LHS(currentNode) ∈ E.States then
5: add(E, currentNode.PostConditions)
6: end if
7: end if
8: end for
9: end procedure

state Sum4 = y−yd and that is inserted into the code as a post-condition of the
line of code that assigns the quantity y−yd to the variable Sum4. This is shown
in the autocoded output in Figure 7. The assertive ellipsoid is defined by the
matrix variable QMat 11 and is expressed using the function in ellipsoidQ2.
The assumes keyword in ACSL means the formula is an assertion rather than a
property to be checked.

The insertion of an inductive ellipsoid invariant is handled differently. The
inductive ellipsoid is inserted as pre and post-conditions respectively at the be-
ginning and end of a function body. It is also inserted as a pre and post-conditions
on the function itself. The function body is obtained by searching for the func-
tion that is linked with all the states of the ellipsoid invariant. If the ellipsoid
invariant is linked to more than one function then the search goes up the function
call hierarchy until it founds a function that is linked with all the states of the
ellipsoid invariant. Figure 8 shows a portion of the autocoded output of the run-
ning example. The first three ACSL annotations in Figure 8 defines the matrix

1 If matrix P−1 exists and let Q = P−1, then xTPx ≤ 1 is equivalent to

[
1 xT

x Q

]
≥ 0

which is the Q-form
2 The function in ellipsoidQ defines the ellipsoid in the Q-form

16

{
Sum4 = discrete_timeg_no_plant_08b_y - discrete_timeg_no_plant_08b_yd;

}
/*@

logic matrix QMat_11 = mat_of_1x1_scalar(0.5);

*/

/*@

behavior ellipsoid8_0:

assumes in_ellipsoidQ(QMat_11,vect_of_1_scalar(Sum4));

ensures in_ellipsoidQ(QMat_12,vect_of_2_scalar(Sum4,D11));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

*/

ACSL+C

Fig. 7. Assertive Ellipsoid Invariant → Assumption in ACSL

variables QMat 0, QMat 1 and QMat 2. All three matrix variables param-
eterize the same ellipsoid as the one obtained from the stability analysis and
inserted into the Simulink model as the Ellipsoid#Stability observer. Using the
ACSL keywords requires and ensures, we can express pre and post-conditions for
lines of code as well as functions. The fourth ACSL annotation in Figureprepost
expresses the inserted ellipsoid pre and post-conditions for the state-transition
function of the controller: discrete timeg no plant 08b compute. The last
ACSL annotation in Figureprepost contains a copy of the pre-condition from the
fourth annotation. This is the inserted ellipsoid pre-condition for the beginning
of the function body.

3.4 Invariant Propagation

The manual forward propagation of ellipsoid invariants was described in [5]. Here
we will describe the automatic version of the same process as it is implemented
in the prototype. First we give a brief introduction of Hoare logic followed by a
description of a targeted extension of Hoare logic to ellipsoid invariants in linear
systems. Finally we demonstrate this process on the running example.

Hoare Logic Hoare Logic is a formal proof system that is used to reason about
assertions and properties of a program. The key element in Hoare logic is the
Hoare triple, which is consisted of a boolean-valued formula, followed by a line
of code and then followed by another boolean-valued formula.

{a1} C1 {a2) (7)

The meaning of the Hoare triple in (7) is as follows: if formula a1 is true, then
after the execution of the line of code C1, the formula a2 is also true. In addition to
the Hoare triple, a set of axioms and inferences rules were constructed to reason
about the axiomatic semantics of the entire program. Two examples of such

Automated, Credible Autocoding Chain for Control Systems 17

/*@

logic matrix QMat_0 =

mat_of_2x2_scalar(1484.8760396857954,-25.780980284188082,

-25.780980284188082,406.11067541120576);

*/

/*@

logic matrix QMat_1 =

mat_of_2x2_scalar(1484.8760396857954,-25.780980284188082,

-25.780980284188082,406.11067541120576);

*/

/*@

logic matrix QMat_2 =

mat_of_2x2_scalar(1484.8760396857954,-25.780980284188082,

-25.780980284188082,406.11067541120576);

*/

/*@

requires in_ellipsoidQ(QMat_0,

vect_of_2_scalar(_state_->Integrator_1_memory,

state->Integrator_2_memory));

requires

valid(_io_) &&

valid(_state_);

ensures in_ellipsoidQ(QMat_1,

vect_of_2_scalar(_state_->Integrator_1_memory,

state->Integrator_2_memory));

*/

void discrete_timeg_no_plant_08b_compute(

t_discrete_timeg_no_plant_08b_io *_io_,

t_discrete_timeg_no_plant_08b_state *_state_){
.

.

.

.

.

/*@

behavior ellipsoid0_0:

requires in_ellipsoidQ(QMat_2,

vect_of_2_scalar(_state_->Integrator_1_memory,

state->Integrator_2_memory));

ensures in_ellipsoidQ(QMat_3,

vect_of_3_scalar(_state_->Integrator_1_memory,

state->Integrator_2_memory,x1));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

*/

{
x1 = _state_->Integrator_1_memory;

}

ACSL+C

Fig. 8. Inductive Ellipsoid Invariant→ Pre and Post-conditions of the State-Transition
Function

18

inference rules for a simple imperative language from [8] are listed in Table 1. In
order to annotate every lines of the generated code with ellipsoidal pre and post-
conditions, we also constructed two specialized inference rules for ellipsoids. The
first rule is derived from the property of ellipsoid transformation under linear
mapping. The second rule is derived from the well-known S-Procedure method in
control theory. These two inference rules are sound in the real number domain.

{E1}P1 {E2} {E2}P2 {E3}
{E1}P1; P2 {E3}

(Composition)

� (E0 ⇒ E1) {E1}P {E2} � (E2 ⇒ En)

{E0}P {En}
(Consequence)

Table 1. Rules in Hoare Logic

Affine Transformation For the linear propagation of ellipsoids, we define the
AffineEllipsoid rule. This rule is applied when the line of code is an assignment
statement and has a left-hand expression that is linear. Let the expression a be
such that JaK � Ly, where y ∈ Rm is vector of program states and L ∈ R1×m.

We define the schur form of an ellipsoid using the function S : (Q, x)→
[
Q xT

x 1

]
and Q1,x = {x|S(Q1, x) > 0}. For the Hoare triple,

{Q1(x)} z:=a {Q2(x ∪ z)} , (8)

where Qn(x) := {x|S(Qn, x) > 0}, we want to generate Q2 to satify the partial
correctness of (8), we use the following rule.

{Qn(x)} z := a {Qn+1(x ∪ z)} , Qn+1 = F (Qn, ψ(L, y, x), φ(z, x)) (9)

Fig. 9. AffineEllipsoid

Automated, Credible Autocoding Chain for Control Systems 19

The function F is defined as follows: given the functions ψ : (L, y, x)→ R1×n

and φ : (z, x)→ Z, we have

F : (Qn, ψ(L, y, x), φ(z, x))→ T (ψ(L, y, x), φ(z, x))
T
QnT (ψ(L, y, x), φ(z, x))

T (ψ(L, y, x), φ(z, x)i,j) :=

1, 0 ≤ i, j ≤ n ∧ i = j ∧ i 6= φ(z, x)
0, 0 ≤ i, j ≤ n ∧ i 6= j ∧ i 6= φ(z, x)
ψ(y, x)1,j , i = φ(z, x) ∧ 0 ≤ j ≤ n

ψ(L, y, x)1,j :=

{
L(1, k), 0 ≤ j, k ≤ n ∧ xj ∈ y ∧ yk = xj
0, 0 ≤ j ≤ n ∧ xj /∈ y

φ(z, x) :=

{
i, z ∈ x ∧ z = xi
n+ 1, z /∈ x

(10)

The ReduceEllipsoid rule is related to the AffineEllipsoid hence they are
grouped together. We have the following rule,

{Qn(x)}P {Qn+1({xi} \ {z})}
, Qn+1 = G (Qn, θ(z, x)) (11)

Fig. 10. ReduceEllipsoid

The function G is defined as the following: given the function θ : (z, x)→ Z,
we have

G : (Qn, θ(z, x))→ T (θ(z, x))
T
QnT (θ(z, x))

T (θ(z, x)i,j) :=

{
1, 0 ≤ i, j ≤ n− 1 ∧ ((i < θ(z, x) ∧ i = j) ∨ (i ≥ θ(z, x) ∧ j = i+ 1))
0, 0 ≤ i, j ≤ n− 1 ∧ ((i < θ(z, x) ∧ i 6= j) ∨ (i ≥ θ(z, x) ∧ j 6= i+ 1))

θ(z, x) :=
{
i, z = xi

(12)
Each line of code is analyzed to determine if it is an affine assignment. If it

is an affine assignment, the transformation matrix L is extracted and stored in
the control flow graph. For example, if we have x = y + 2 ∗ z, then the analyzer
returns the transformation matrix L = [1, 2]. Given the pre-condition ellipsoid
Qi(x), the AffineEllipsoid rule only applies when the line of code is y := a with
JaK = Lz ∧ z ⊆ x. In Figure 11, we have the annotated C output generated by
our prototype for example 1. In the example, The pre-condition is the ellipsoid
in the Q-form defined by the variable QMat 21, and the ensuing line of code
assigns the expression dt +x1 to the variable Sum2. The affine transformation
matrix is L = [1, 1] and by applying the AffineEllipsoid rule, we have the ellipsoid
transformation matrix T defined by

T =

{
Tij = 1.0, (i ≤ 4 ∧ i = j) ∨ (i = 6 ∧ (j = 6 ∨ i = 6)) ∨ (i = 5 ∧ j = 6)
Tij = 0.0, otherwise

(13)

20

/*@

logic matrix QMat_21 = mat_mult(mat_mult(

mat_of_6x7_scalar(1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,

1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,

0.0,0.0,0.0,0.0,0.0,0.01),QMat_20),

transpose(mat_of_6x7_scalar(1.0,0.0,0.0,0.0,0.0,0.0,

0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,

0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.01)));

*/

/*@

logic matrix QMat_22 = mat_mult(mat_mult(

mat_of_6x6_scalar(1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,

0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0),QMat_21),

transpose(

mat_of_6x6_scalar(1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,

0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,1.0, 0.0,0.0,1.0,0.0,0.0,1.0)));

*/

/*@

behavior ellipsoid17_0:

requires in_ellipsoidQ(QMat_21,

vect_of_6_scalar(_state_->Integrator_1_memory,

state->Integrator_2_memory,x1,Sum3,Sum1,dt_));

ensures in_ellipsoidQ(QMat_22,

vect_of_6_scalar(_state_->Integrator_1_memory,

state->Integrator_2_memory,x1,Sum3,dt_,Sum2));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

*/

{
Sum2 = dt_ + x1;

}

ACSL+C

Fig. 11. Application of AffineEllipsoid

Automated, Credible Autocoding Chain for Control Systems 21

S-Procedure The SProcedure rule is shown in the second ACSL annotation in
Figure 12. We will discuss the autocoded output more in detail later on but first
we give the definition of the SProcedure rule.

/*@

logic matrix QMat_14 = block_m(

mat_scalar_mult(1.0009008107296566,QMat_13),

zeros(6,2),

zeros(2,6),

mat_scalar_mult(1111.111111111111,QMat_12));

*/

/*@

behavior ellipsoid9_0:

requires in_ellipsoidQ(QMat_13,

vect_of_6_scalar(_state_->Integrator_1_memory,

state->Integrator_2_memory,x1,C11,Integrator_2,Sum3));

requires in_ellipsoidQ(QMat_12,vect_of_2_scalar(Sum4,D11));

ensures in_ellipsoidQ(QMat_14,

vect_of_8_scalar(_state_->Integrator_1_memory,

state->Integrator_2_memory,x1,C11,Integrator_2,Sum3,Sum4,D11));

@ PROOF_TACTIC (use_strategy (SProcedure));

*/

{

}

ACSL+C

Fig. 12. Application of the SProcedure Rule

The SProcedure rule is activated when two or more ellipsoids can be combined
correctly into a single ellipsoid. The definition for SProcedure is displayed in
Figure 12. First Let function H : Rni×ni → RNn×Nn be the following: given the

function dim : Rn×n → n, and the function ρ : n ∈ Z+ →
n∑

i=1

dim (Qi), we have

H(Qi)(n,m) =

{
Qi(n− ρ (i− 1) ,m− ρ (i− 1)), ρ (i− 1) ≤ n,m ≤ ρ (i)
0.0, otherwise

(14)
The SProcedure rule is:

Given the pre-conditions {Qi(xi)} and the code C such that JCK � (y := Lz),
the SProcedure rule is activated only when all the following conditions are sat-
isfied.

1. For each Qi (xi), the AffineEllipsoid rule does not apply.

2. For the set {Qi (xi)} , i = 1, . . . , N , z ⊆
N⋃
i=1

xi.

22

{Q1(x1) ∧Q2(x2) ∧ . . . ∧QN (xN)}SKIP {Qn+1(x0 ∪ x1 ∪ . . . ∪ xn)}

Qn+1 =

N∑
i=1

µiH (Qi) .
(15)

Fig. 13. SProcedure

3. For Qi (xi) , i = 1, . . . , N , z * xi ∧ z ∩ xi 6= {∅}.

The multipliers are computed beforehand using the S-Procedure to ensure the
soundness of the rule in the real number domain. For the running example, we
have one ellipsoid defined by the matrix variable QMat 12 as a pre-condition in
Figure 12. This ellipsoid is derived from the inserted assertive ellipsoid. The other
ellipsiod, also a pre-condition, is defined by the matrix variable QMat 13. This
ellipsoid is derived from the inserted inductive ellipsoid. These two ellipsoids
are combined to form a new ellipsoid using the SProcedure rule as shown in
Figure 12. The new ellipsoid’s matrix variable QMat 14, is formulated using
the block matrices function block m.

3.5 Verification of the Generated Post-condition

After the invariant propagation step, we obtain a new ellipsoid post-condition
defined by the matrix variable PMat 24. It is necessary to check if this new
post-condition implies the inserted ellipsoid post-condition defined by the matrix
variable QMat 2 in Figure 8. Currently, we can do a numerical verification
by using a cholesky decomposition based algorithm with intervals to guarantee
a bound on the floating-point computation error. For this particular example,
because of the error introduced into the model as mentioned in Section 2, we
can see that the new post-condition does not imply the inserted post-condition.

4 Automatic Verification of Control Semantics

Once the annotated C code has been generated, it remains to be proven that the
annotations are correct with respect to the code. This is achieved by checking
that each of the individual Hoare triple holds. Figure 15 presents an overview
of the checking process. First the WP plugin of Frama-C generates verification
conditions for each Hoare triple, and discharges the trivial ones with its internal
prover QeD. Then the remaining conditions are translated into PVS theorems for
further processing, as described in subsection 4.1. It is then necessary to match
the types and predicates introduced in ACSL to their equivalent representation
in PVS. This is done through theory interpretation [11] and explained in subsec-
tion 4.2. Once interpreted, the theorems can be generically proven thanks to PVS
strategies, as described in subsection 4.3. In order to automatize these various
tasks and integrate our framework within the Frama-C platform, which provides

Automated, Credible Autocoding Chain for Control Systems 23

/*@

logic matrix QMat_24 =

mat_of_2x2_scalar(3353.385756854045,-36.73496680142199,

-36.73496680142199,406.10904154688274);

*/

/*@

behavior ellipsoid19_1:

requires in_ellipsoidQ(QMat_23,

vect_of_4_scalar(_state_->Integrator_1_memory,

state->Integrator_2_memory,Sum3,Sum2));

ensures in_ellipsoidQ(QMat_24,

vect_of_2_scalar(_state_->Integrator_1_memory,

state->Integrator_2_memory));

@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

*/

{
state->Integrator_1_memory = Sum2;

}

}

ACSL+C

Fig. 14. Generated Post-condition

graphical support to display the status of a verification condition (proved/un-
proved), a Frama-C plugin named pvs-ellipsoid, described in subsection 4.4, was
written. Finally, it must be mentionned here that one last verification condition,
quite crucial, does not fall under either AffineEllipsoid of SProcedure strategies.
It is discussed in subsection 4.5

4.1 From C code to PVS theorems

The autocoder described in the previous Section generates two C functions. One
of them is an initialization function, the other implements one execution of the
loop that acquires inputs and updates the state variables and the outputs. It is
left to the implementer to write the main function combining the two, putting the
latter into a loop, and interfacing with sensors and actuators to provide inputs
and deliver outputs. Nevertheless, the properties of open loop stability and state-
boundedness can be established by solely considering the update function, which
this Section will now focus on. The generated function essentially follows the
template shown in Figure 16.:

Frama-C is a collaborative platform designed to analyze the source code of
software written in C. The WP plugin enables deductive verification of C pro-
grams annotated with ACSL. For each Hoare tripe {prei}insti{posti}, it gener-

24

C Code

+ ACSL
+ Proof tactics

Frama-C

Verification Conditions

WP

PVS TheoremsPVS Theorems

Why3

Interpreted Theorems

+ Proof tactics

pvs-ellipsoid
PVS linear algebra library

ACSL linear algebra library

PVS strategies

PVS proof

proveit

Go / No Go

pvs-ellipsoid

QeD

Fig. 15. General view of the automated verification process. The contribution of this
Section of the article lies in the domain specific libraries that have been developed at
the different layers of description of the code, as well as in the generic proof strategies
and the custom Frama-C plugin pvs-ellipsoid

/*@ requires in_ellipsoidQ(Q,vect_of_n_scalar(_state_->s_1,

state->s_2,

...));

@ ensures in_ellipsoidQ(Q,vect_of_n_scalar(_state_->s_1,

state->s_2,

...));*/

void example_compute(t_example_io *_io_, t_example_state *_state_){
...

/*@ requires pre_i

@ ensures post_i

@ PROOF_TACTIC (use_strategy (strategy_i))*/

{
instruction i;

}
...

}

ACSL+C

Fig. 16. Template of the generated loop update function

Automated, Credible Autocoding Chain for Control Systems 25

ates a first order logic formula expressing prei =⇒ wp(insti, posti)
5. Through

the Why3 platform, these formulas can be expressed as theorems in PVS, so
that, for example, the ACSL/C triple shown in Figure 17, taken directly from
our running example, becomes the theorem shown in Figure 18.

/*@

requires in_ellipsoidQ(QMat_4,

vect_of_3_scalar(_state_->Integrator_1_memory,

state->Integrator_2_memory,

Integrator_1));

ensures in_ellipsoidQ(QMat_5,

vect_of_4_scalar(_state_->Integrator_1_memory,

state->Integrator_2_memory,

Integrator_1,

C11));

PROOF_TACTIC (use_strategy (AffineEllipsoid));

*/

{
C11 = 564.48 * Integrator_1;

}

ACSL+C

Fig. 17. Typical example of an ACSL Hoare Triple

Note that, for the sake of readability, part of the hypotheses of this theorem,
including hypotheses on the nature of variables, as well as hypotheses stemming
from Hoare triples present earlier in the code, are ommitted here. Note also that
in the translation process, functions like malloc 0 or mflt 1 have appeared.
They describe the memory state of the program at different execution points.

4.2 Theory interpretation

At the ACSL level, a minimal set of linear algebra symbols have been intro-
duced, along with axioms defining their semantics. Section 2 described a few of
them. Each generated PVS theorem is written within a theory that contains a
translation ’as is’ of these definitions and axioms, along with some constructs
specific to handling the semantics of C programs. For example, the ACSL axiom

/*@ axiom mat_of_2x2_scalar_row:

@ \forall matrix A, real x0101, x0102, x0201, x0202;

@ A == mat_of_2x2_scalar(x0101, x0102, x0201, x0202) ==>

@ mat_row(A) == 2; /*

ACSL+C

5 Given a program statement S and a postcondition Q, wp(S,Q) is the weakest pre-
condition on the initial state ensuring that execution of S terminates in a state
satisfying Q.

26

wp: THEOREM

FORALL (integrator_1_0: real):

FORALL (malloc_0: [int -> int]):

FORALL (mflt_2: [addr -> real], mflt_1: [addr -> real],

mflt_0: [addr -> real]):

FORALL (io_2: addr, io_1: addr, io_0: addr, state_2: addr,

state_1: addr, state_0: addr):

...

=> p_in_ellipsoidq(l_qmat_4,

l_vect_of_3_scalar(mflt_2(shift

(state_2, 0)),

mflt_2(shift

(state_2, 1)),

integrator_1_0))

=> p_in_ellipsoidq(l_qmat_5,

l_vect_of_4_scalar(mflt_2(shift

(state_2, 0)),

mflt_2(shift

(state_2, 1)),

integrator_1_0,

(14112/25 *

integrator_1_0)))

PVS

Fig. 18. Exerpt of the pvs translation of the triple shown in Figure 17

Automated, Credible Autocoding Chain for Control Systems 27

becomes after translation to PVS:

q_mat_of_2x2_scalar_row:

AXIOM FORALL (x0101_0:real, x0102_0:real,x0201_0:real, x0202_0:real):

FORALL (a_0:a_matrix):

(a_0 = l_mat_of_2x2_scalar(x0101_0, x0102_0, x0201_0, x0202_0)) =>

(2 = l_mat_row(a_0))

PVS

In order to leverage the existing results on matrices and ellipsoids in PVS,
theory interpretation is used. It is a logical technique used to relate one axiomatic
theory to another. It is used here to map types introduced in ACSL, such as
vectors and matrices, to the existing ones in PVS, as well as the operations and
predicates on these types. To ensure soundness, PVS requires that what was
written as axioms in the ACSL library be reproven in the interpreted formalism.

The interpreted symbols and soundness checks are the same for each proof
objective, facilitating the mechanization of the process. Syntactically, a new the-
ory is created in which the theory interpretation is carried out, and the theorem
to be proven is automatically rewritten by PVS in terms of its own linear algebra
symbols. These manipulations on the generated PVS are carried out by a frama-
C plugin called pvs-ellipsoid, which will be described further in the following
subsection.

4.3 Generically discharging the proofs in PVS

Once the theorem is in its interpreted form, all that remains to do is to apply
the proper lemma to the proper arguments. Section 3 described two different
types of Hoare Triple that can be generated in ACSL. Two pvs strategies were
written to handle these possible cases. A pvs proof strategy is a generic function
describing a set of basic steps to communicate to the interactive theorem prover
in order to facilitate or even fully discharge the proof of a lemma.

The AffineEllipsoid strategy handles any ellipsoid update stemming from
a linear assignment of the variables. Recall the following theorem:

ellipsoid_general: LEMMA

∀ (n:posnat,m:posnat, Q:SquareMat(n),

M: Mat(m,n), x:Vector[n], y:Vector[m]):

in_ellipsoid_Q?(n,Q,x)

AND y = M*x

IMPLIES

in_ellipsoid_Q?(m,M*Q*transpose(M),y)

PVS

In order to apply it properly, the first step of the strategy consists of parsing
through the objectives and hypotheses of the theorem to acquire the name and
the dimensions of the relevant variables, as well as isolate the necessary hypothe-
ses. The second step consists of a case splitting on the dimensions of the variable:
they are given to the prover in order to complete the main proof, and then es-
tablished separately using the relevant interpreted axioms. Next it is established
that y=Mx through a tedious case decomposition and numerous calls to relevant

28

interpreted axioms. All the hypotheses are then present for a direct application
of the theorem. The difficulties in proof strategy design lie in intercepting and
anticipating the typecheck constraints (tccs) that PVS introduces throughout
the proof. A third strategy was specifically written to handle them.

The S-Procedure strategy follows a very similar pattern, somewhat simpler
since the associated instruction in the Hoare triple is a skip, using the other
main theorem presented in Section 2, ellipsoid combination.

4.4 The pvs-ellipsoid plugin to Frama-C

The pvs-ellipsoid plugin to Frama-C automatizes the steps mentionned in the
previous subsections. It calls the WP plugin on the provided C file, then, when
QeD fails to prove a step, it creates the PVS theorem for the verification con-
dition through Why3 and modifies the generated code to allow for theory in-
terpretation. It extracts the proof tactic to be used on this specific verification
condition, and uses it to signify to the next tool in the chain, proveit, what strat-
egy to use to prove the theorem at hand. proveit is a command line tool that
can be called on a pvs file and attempts to prove all the theories in there, pos-
sibly using user guidance such as the one just discussed. When the execution of
proveit terminates, a report is produced, enabling the plugin to decide whether
the verification condition is discharged or not. If it is, a proof file is generated,
enabling a replay of proof.

4.5 The last verification condition

As mentionned at the beginning of this Section, there is one last verification
condition that falls under neither AffineEllipsoid nor S-Procedure category. It is
the final post-condition of the main loop function contract, expressing that the
state remains in the initial ellipsoid GP . Through a number of transformations,
we have a proven chain of assertions which tell us the state is in some ellipsoid
G′P . The conclusion of the proof lies in the final test P ′ − P ≥ 0. The current
state of the linear algebra library in PVS does not permit to make such a test,
however a number of very reliable external tools, like the INTLAB package of the
MATLAB software suite, can operate this check. In the case of our framework,
the pvs-ellipsoid uses custom code from [12] to ensure positive definiteness of
the matrix, with the added benefit of soundness with respect to floating point
numbers.

5 Related Works

The authors would like mention and give thanks to the following related works.
We would first like to mention Jerome Ferret and his work on the static analysis
of digital filters in [4]. It was this work that springed the connections made be-
tween the control-theoretic techniques and software analysis methods in [5]. Fur-
thermore, we would like to mention a parallel work done by Pierre-Loic Garoche

Automated, Credible Autocoding Chain for Control Systems 29

and Pierre Roux in [12] where policy interation is used to generate and refine
ellipsoid invariants. We would like to give thanks to Eric Goubault and Sylvie
Putot for the discussions, and mention their work on zonotopal domain for static
analyzers [6]. Finally we would like to point out Ursual Martin and her team’s
work on the Hoare logic for linear systems [1].

6 Conclusion

The prototype tools and various examples described in this paper can be found
on our svn server. We have demonstrated in this paper a set of prototype tools
that is capable of migrating high-level functional properties of control systems
down to the code level, and then verifying the correctness of those properties for
the code, all in an automatic manner. While the nature of controllers and prop-
erties supported is relatively restricted, this effort demonstrate the feasability
of a paradigm where domain specific knowledge is leveraged and automatically
assists code analysis. This opens the way for numerous directions of research. As
the mathematical breadth of theorem provers increase, more and more complex
code invariants can theoretically be handled, and thus more and more complex
controllers. One major area that should be explored is the integration of the
plant model at the level of the code, and the natural compromise that arises
between the precision the model and the finesse of the properties that can be
proven on the interconnection. This would pave the way for the verification of
a wide array of new properties, as most control theory results are expressed
on such interconnections between plant and controller. Soundness of the results
with respect to floating point computation is another issue that requires atten-
tion. We applied the toolchain to a mass-spring-damper system for its open-loop
stability property.

Acknowledgements

The authors would like to thank Pierre Roux for his contribution to the pvs-
ellipsoid plugin, Gilberto Perez and Pablo Ascariz for their invaluable help on
the PVS linear algebra library.

This article was prepared under support from the Army Research Office under
MURI Award W911NF-11-1-0046, NSF Grant CNS - 1135955 “CPS: Medium:
Collaborative Research: Credible Autocoding and Verification of Embedded Soft-
ware (CrAVES)”, FUI 2011 project P, the National Aeronautics and Space Ad-
ministration under NASA Cooperative Agreement NNL09AA00A, activity 2736,
ITEA2 OPES, FNRAE project CAVALE, ANR INS project CAFEIN and ANR
ASTRID project VORACE.

References

1. Rob Arthan, Ursula Martin, and Paulo Oliva. A hoare logic for linear systems.
Formal Aspects of Computing, 25(3):345–363, 2013.

https://cavale.enseeiht.fr/svn/autocoding/

30

2. Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yan-
nick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification Language, 2008.
http://frama-c.cea.fr/acsl.html.

3. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in
System and Control Theory, volume 15 of Studies in Applied Mathematics. SIAM,
Philadelphia, PA, June 1994.

4. Jérôme Feret. Static analysis of digital filters. In European Symposium on Pro-
gramming (ESOP’04), number 2986 in LNCS. Springer-Verlag, 2004.

5. E. Feron. From control systems to control software. Control Systems, IEEE,
30(6):50 –71, dec. 2010.

6. Eric Goubault and Sylvie Putot. A zonotopic framework for functional abstrac-
tions. CoRR, abs/0910.1763, 2009.

7. Heber Herencia-Zapana, Romain Jobredeaux, Sam Owre, Pierre-Löıc Garoche, Eric
Feron, Gilberto Perez, and Pablo Ascariz. Pvs linear algebra libraries for verifi-
cation of control software algorithms in c/acsl. In NASA Formal Methods, pages
147–161, 2012.

8. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12:576–580, October 1969.

9. Nassima Izerrouken, Marc Pantel, Xavier Thirioux, and Olivier Ssi Yan Kai. Inte-
grated formal approach for qualified critical embedded code generator. In Formal
Methods for Industrial Critical Systems, volume 5825 of Lecture Notes in Computer
Science, pages 199–201. Springer Berlin Heidelberg, 2009.

10. A. Megretski and A. Rantzer. System analysis via integral quadratic constraints.
Automatic Control, IEEE Transactions on, 42(6):819–830, 1997.

11. Sam Owre and N. Shankar. Theory interpretation in pvs. Technical report, SRI
International, 2001.

12. Pierre Roux, Romain Jobredeaux, Pierre-Löıc Garoche, and Eric Feron. A generic
ellipsoid abstract domain for linear time invariant systems. In HSCC, pages 105–
114, 2012.

13. V Ao Yakubovich. S-procedure in nonlinear control theory. Vestnik Leningrad
University, 1:62–77, 1971.

14. Vladimir A Yakubovich. The solution of certain matrix inequalities in automatic
control theory. In Soviet Math. Dokl, volume 3, pages 620–623, 1962.

http://frama-c.cea.fr/acsl.html

	From Design to Implementation: an Automated, Credible Autocoding Chain for Control Systems

