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Abstract

Position and dynamics of cells are essential pieces of information for the
study of embryonic development. Unfortunately, this information is lost
in many cell gene expression analysis processes, such as single cell RNA
sequencing. Being able to predict the physical positions and the temporal
dynamics of cells from gene expression data is therefore a major challenge.
After motivating our study with data from C. elegans development, we first
review current methods based on optimal transport that aim at either pre-
dicting the spatial position of cells from transcriptomic data or interpolating
differentiation trajectories from time series of transcriptomic data. However,
they are not designed to capture simple temporal transformations of spatial
data such as a rotation, we propose an extension of the framework proposed
by Nitzan et al. [8] including a temporal regularization for the inference of
the optimal transport plan. This new framework is tested on artificial data
using a combination of the Sinkhorn algorithm and gradient descent. We
show that we can successfully learn simple dynamic transformations from
very high dimensional data.

1 Introduction

To understand how an embryo forms from a single cell or to predict the development of a
tumor, we need to understand the relationship between the dynamics of thousands of genes
and the dynamics of large assembly of cells such as tissues. High throughput single cell
RNA sequencing techniques provide a way to measure the quantity of individual transcripts
within each of the cells of a tissue, however, because the tissue needs to be dissociated during
the measurement process, this information is obtained at the cost of losing precise spatial
and temporal information [8]. On the other hand, live microscopy techniques give access to
precise temporal and spatial information about developing tissues, however they are limited
in the number of variables that can be measured at the same time [17]. Several studies have
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generated time series of single cell RNASeq such as in the model system C. elegans [9]. In
this particular system, the invariance of the cell lineage (i.e. the history of cell division) [15],
enables one to map the individual vectors obtained from RNASeq data for each of the cells
onto their spatial positions, obtained from live imaging [6] . Such constructed dataset would
provide a ground for the study of the link between temporal, spatial and transcriptomic
dimensions of a developing embryo at a large scale, therefore calling for a spatio-temporal
framework for the study of transcriptomic information.
Previous studies have explored the link between transcriptomic data and spatial positioning
of cells [8], as well as the link between transcriptomic and temporal information [12]. Both
of these studies[8, 12] rely on optimal transport (OT) [1, 10]. In Nitzan et al.[8], the authors
rely on the principle that the distances between individual cells are preserved between the
transcriptomic space and the physical space; stated otherwise, this means that the cells that
are nearby in space have similar gene expression, and vice versa. This principle is formalized
within a global optimization framework and framed as an optimal transport problem. In
Schiebinger et al.[12], the problem solved is in that case orthogonal to Nitzan et al.[8]; it
consists in inferring the coupling between probability distributions at different time points.
The problem is stated as an unbalanced optimal transport problem. The use of optimal
transport is promising when considering the relationships between multiple spaces in very
high dimensions, as obtained from single cell RNA sequencing technique. However, the joint
study of spatial and temporal problems with optimal transport hasn’t been addressed in
the community yet. In this paper, we propose an extension to the framework proposed by
Nitzan et al.[8] to capture temporal information.

2 Problem statement

Figure 1: Schematic modeling of the different spaces of our problem, Yt−1 and Yt correspond
to transcriptomic matrices at time t− 1 and t respectively, while Pt−1 and Pt correspond to
positions in the physical space. The matrix Tt is the transfer matrix between Y (t) and P (t),
and similarly for t− 1.

Figure 1 illustrates the problem we tackle. We consider the evolution of cells with time, both
their spatial positions P (t), their gene expression Y (t) and the links between these variables.
We are particularly interested in inferring the sequence of spatial positions of the cells P (t)
based on the knowledge of their gene expression in the transcriptomic space Y (t). We give
below more details on the considered quantities and variables and we introduce notations.
Note that we will use lowercase for vectors (e.g. u), uppercase for matrices (e.g. X) with
u[i] denoting the ith element of vector u, X[i, :] the ith row of matrix X, and X[:, j] the jth

column of X. Finally we will use superscript u(t) to index quantities on time.
The number of cells varies with time t because of cell division or cell apoptosis (cell death). We
note N(t) the number of cells at time t. The cells are characterized by the expression (a real
value) for each of the n genes. Y (t) ∈ RN(t)×n stands for the transcriptomic matrix at time t
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whose ith row represents expression profile of the ith cell at time t. The links between the set
of cells at two successive time steps are usually encoded in a matrix π(t−1,t) ∈ RN(t−1)×N(t).
The cells’ 3D positions are considered to belong to a set ofM predefined locations X ∈ RM×3

which is a regular grid covering the 3D space of interest. The 3D position of a cell is
characterized by a distribution over these M predefined position. We note T (t) ∈ RN(t)×M

the matrix whose ith row represents the probability distribution of cell i location in the M
positions in the grid. Hence the expected 3D positions of the cells at time t, P (t) ∈ RN(t)×3,
may be found according to P (t) = T (t) ×X(t). The link between Y (t) and P (t) is then fully
determined by T (t).

3 State of the art

Before presenting our method, we report here two recent approaches, which, using optimal
transport, aim at inferring some of the variables introduced on figure 1, without, however,
tackling the full problem.

3.1 Predicting T (t) from Y (t) at a single time step

Novosparc[8] aims at predicting cell spatial locations from their transcriptional profiles with
no or a little number of reporter genes (i.e. genes for which we know the spatial distribution).
Since the method is designed for a single time step we drop the time index t everywhere
in this section and consider the problem of inferring positions at time t, noted here P (or
equivalently T ), from transcriptomic vectors at time t, Y ∈ RN×n where n is the number of
genes.
The main idea is that, even if the space of hypotheses for cell spatial allocations is very
large, a lot of potential allocations do not follow some basic organization which exists
in every biological tissues. Consequently, with simple hypotheses, the space of potential
solutions can be reduced. The main assumption is that the distance between two cells in
the transcriptomic space and the distance in the spatial space are related, even proportional.
Indeed, the observation on which this approach relies is that cells with similar gene expression
profiles tend to be physically close in a developing embryo.
The problem is then the following: one assumes that measurements in each space (transcrip-
tomic and physical) correspond to probabilistic distributions. With this assumption, one
can find a transport plan between the two distributions which minimizes the discrepancy
between distances in the two spaces.
More formally, one wants to solve:

T ∗ = argmin
T

(1− α)D1(T ) + αD2(T )− εH(T ) (1)

where D1 is a measure of agreement between pairwise distances in the transcriptomic space
and pairwise spatial distances, D2 encodes prior information about gene expression in space,
and H an entropic constraint on T , α and ε are positive coefficients that scale the various
terms for an optimal trade-off. Actually D1 reads:

D1(T ) =
∑

i,j,i′,j′

L(Dtrans
i,i′ , Dspace

j,j′ )Ti,jTi′,j′ (2)

where L is a mean square loss function and Dtrans ∈ RN×N are geodesic distances in the
transcriptomic space and Dspace ∈ RM×M are geodesic distances in the grid. This term
represents the Gromov-Wasserstein discrepancy as introduced in Peyre et al. [11] . It
allows to generalize the optimal transport problem in cases where the two spaces cannot
be compared directly [11, 10]. When prior information is available it can be added to the
model with the second term. If the expression of some genes (usually very few amongst
the n genes) is known for the M positions, a term representing the distance (restricted to
the marker genes) between the transcriptomic vectors and the known expression on each
location may be added. We note G the set of the indices of the marker genes (it is a subset
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of [1...n]) and Y [i, G] the ith row of of matrix Y restricted to the columns whose index are
in G. Then, the prior term D2 reads:

D2(T ) =
∑
i,j

Dexp,space
i,j Ti,j (3)

with Dexp,space ∈ Rn×M a matrix of disagreement. Each term in the sum stands for the
distance between the transcriptomic vector (restricted to genes in G) of the ith cell and
the predicted transcriptomic vector (restricted to genes in G) at the considered location j
(Dexp,space[i, j]), weighted by the probability of the ith cell being at location j (Ti,j). Using
such a term stabilizes the prediction with known gene positions acting as anchors for the
overall prediction.
The final term is an entropic regularization:

H(T ) = −
∑
i,j

Ti,j log(Ti,j). (4)

This is the Shannon Boltzmann entropy. Its use in optimal transport was introduced in
Wilson et al. [19]. As the function is concave, its maximisation forces the solution to tend
towards a uniform distribution and makes the whole problem convex.
Once T is inferred with this strategy, one can use it to predict the spatial distribution of
the expression of each of the genes by computing Y TT . The accuracy of the prediction on
actual biological datasets is described in details in [8].

3.2 Modeling the dynamics in transcriptomic time series
(
Y (t))

t

If we now consider the dynamical part of the problem presented on figure 1, a recent
work has been successfully using optimal tranport to infer trajectories over time series of
transcriptional profiles [12]. Optimal transport is used here to infer the couplings between
probability distributions at different time points.
The transcriptional profiles are seen as samples of a time-varying distribution Y (t) on the
space of genes. The method looks for a joint distribution between t − 1 and t, it infers a
coupling πt−1,t between Yt−1 and Yt, such as :

πt−1,tYt−1 = Yt (5)

Because of cell proliferation or cell apoptosis, the couplings are found using an unbalanced
optimal transport problem.
Another possibility is to consider the whole time sequence as a dynamic optimal transport
problem [16]. By adding a time interpolation variable the problem is related to fluids dynamic
and facilitate the interpolation task [10, 16]. Using a neural network [16] is computationally
efficient in the case of single cells sequences. In brief, the main difference between the two
articles lies in the fact that, by considering a succession of static optimal transport rather
than a dynamic optimal transport scheme, Schiebinger et al. [12] results in a trajectory
which is not as smooth as in Tong et al. [16].

4 Infering spatio-temporal trajectories from transcriptomic data

We are now interested in using dynamics when inferring the mapping that relates transcrip-
tomic profiles to spatial positions. We assume that we have a time series of transcriptomic
profiles and aim at predicting the spatial position of cells. We are showing how we can take
advantage of the dynamic undergone by cells to learn small spatial transformations of the
cell positions.

4.1 Problem considered

While only subproblems of the full original problem, described in section 2, have been
addressed up to now, we are concerned here with a more global approach to solve the full
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Figure 2: Lineage allows to link cells between time steps. In the classical convention used
for describing C. elegans development, at every division, a letter is added to the name of
a cell, depending on the orientation of the division the letter is either a for anterior, p for
posterior, r for right, l for left, d for dorsal and v for ventral. For example the cells ABpa is
two divisions away from the cell AB and has ABpp for sister cell.

problem of predicting the sequence of positions
(
T (t))

t
of the cells from the sequence of their

transcriptomic representations
(
Y (t))

t
.

Yet, we consider a specific case where the transfer matrices π are known and do not have
to be inferred. Indeed in the case of a developing embryo, such as C. elegans, where the
whole cell lineage is known, i.e. where the history of cell division is known, π(t−1,t) can
be identified deterministically as presented in figure 2. Daughter cells tend to have gene
expression close to their mother cell [9]. This information can be used as a constraint in our
model. We show an example of cell lineage representation on figure 2.

4.2 Mathematical framework

When considering the generalization of the problem of inferring the transport map T in
a dynamical context as presented on figure 1, one could wonder why not just solve the
optimization problem in equation (1) for each time step. As of now, there is no theoretical
results that establish in general the stability of the transport plan of optimal transport
when varying the probability distributions to be matched [7]. In addition, in its current
formulation, when no a priori information is given, the solution of equation (1) at a given
time step is invariant under rotation or translation, therefore, any simple transformation of
the data over time wouldn’t be captured by successive application of this inference method.
Building on previous considerations we generalize equation 1 by including constraints that
penalize high rate changes in T . The notations are the same as the one defined in equation 1.
We are looking for T = (T (1), T (2), ..., T (L)) which minimizes the OT-like problem presented
in equation (6) where the length of the sequence (the number of time steps) is L and times
steps range from 1 to L.

T ∗ = argmin
T

(1− α− β)
L∑

t=1
D1(T (t)) + α

L∑
t=1

D2(T (t)) + β

L∑
t=1

Ω(T (t), π(t−1,t), T (t−1))− ε
L∑

t=1
H(T (t))

(6)

where α, β and ε are positive coefficients that scale the various terms. The definition of D1
and D2 have been detailed above. The term Ω(T (t), π(t−1,t), T (t−1)) is stated in general and
denotes constraints on the smoothness of the spatial trajectories of the cells.
In our settings, and in the following sections we will consider the simpler case when there is
no death or division of cells so that π(t−1,t) = I, and ∀t,N(t) = N .
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4.3 Constraining spatial dynamics

As already stated, we assume closeness between spatial distributions at two close time steps
and introduce corresponding constraints that rely on implicit assumptions on the spatial
dynamics. In our particular setting constraints terms can be rewritten as:

Ω(T (t), π(t−1,t), T (t−1)) =
i=N∑
i=1

l
(
T (t)[i, :], T (t−1)[i, :]

)
(7)

where l
(
T (t)[i, :], T (t−1)[i, :]

)
stands for the constraint on the position of the ith cell. Note

that we actually put the constraints on the T (t) matrices rather than on the P (t) matrices
but this is actually equivalent since P (t) = T (t)×X where X is the fixed matrix of the grid
positions.
The simplest constraint which we call static constraint states that the successive positions of
a cell should be similar which translates in ‖P (t)−P (t− 1)‖2 (or ‖T (t)−T (t− 1)‖2) should
be small. A finer constraint states that the spatial trajectory of a cell should be smooth.
Noting ∆(t) = P (t)− P (t− 1) the approximate speed vector of ˙P (t), we implemented this
idea by constraining ‖∆(t)−∆(t− 1)‖2 to be small, we call such a constraint a dynamic
constraint.

4.4 Alternate optimization scheme

To solve the optimisation problem stated by Eq. (6), we use an alternating optimization
scheme whose sketch is illustrated in algorithm 1. The algorithm starts by computing
solutions (inferring T (t) from Y (t)) at time step 1 and time step 2 independently using the
Sinkhorn-Knopp algorithm [13, 14, 8], which we note T (t) = sinkhorn (Dtrans,Dspace,Y (t))
in the Algorithm, where Dtrans ∈ RN×N and Dspace ∈ RM×M are the distance matrices
defined in section 3.1.
Then one successively considers the problems for time step t from 3 to L; when solving
the problem at time t (inferring T (t) from Y (t)), the solutions obtained for previous time
steps (e.g. T (t−2), T (t−1)) are used to constrain the solution at time t. More formally, at
time step t, we first solve the problem with Sinkhorn without smoothing constraint as in
Nitzan et al. [8] (equation 1). Then we use the solution obtained as the initialization of
the following optimization problem where we introduce an additional smoothing constraint.
This constrained objective that we want to minimize for T (t) reads:

(1− β)D1(T (t)) + β(Ω(T (t), π(t−1,t), T (t−1))) (8)

This type of alternative resolution on OT problem has already been used on close problems,
for example by Xu et al. [20] . We present a gradient descent based optimization but
note that our attempts to instantiate this optimization scheme with the Sinkhorn-Knopp
algorithm[13, 14] instead, while adding smoothing constraints through appropriately designed
D2 term as in Eq. 1 did not allow to reach interesting results and are not presented here.
Finally, the smoothing constraint introduced here involves a norm, whose convexity should
help the minimization task, as the entropy does.
We used the Sinkhorn algorithm as implemented in the POT library [2] on Python and taken
up by [8], creating the Novosparc package. The theory formalized in Nitzan et al. [8] is
directly generalizable to make prediction in 3D, however the code was only made to predict
2D data, we thus edited it to handle 3D data.

4.5 Experiments

The problem we are tackling is motivated by a real dataset, constructed by combining
transcriptomic data from published C. elegans single cell RNASeq [9] and the corresponding
time series of cell spatial positions obtained from live microscopy [6]. However, the dataset
was not robust enough to provide a ground truth to compare various algorithms as there
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Algorithme 1 : Alternated optimization scheme
Result : T = [T (1), ..., T (L)]
Input :

(
Y (t))

t
, X,K;

Initialization ;
Dtrans = geodesic_distance(Y (1));
Dspace = geodesic_distance(X);
T (1) = sinkhorn (Dtrans,Dspace,Y (1));
Dtrans = geodesic_distance(Y (2));
T (2) = sinkhorn (Dtrans,Dspace,Y (2));
for i in 1...K do

for t in 3...L do
Dtrans = geodesic_distance(Y (t));
T̂

(t)
i = sinkhorn (Dtrans,Dspace,Y (t));
T

(t)
i = Minimizer of Loss from Eq. (8) (optimized with gradient descent starting
from initial solution T̂ (t)

i );
end

end

are many missing data points. In order to make a proof of concept of our method we thus
generated an artificial dataset that mimic a real single cell RNAseq dataset with a temporal
transformation and a corresponding realistic embedding in physical space. For simplicity, we
used an actual time point obtained from Li et al. [6] providing a spatial position for each of
333 cells. The random matrix is the same for the various time points, the only change in the
time series comes from the rotation applied to the spatial data, which should be projected
in the high dimensional space. At every time step we apply a small rotation of 0.3 radians
as shown on figure 3 (left panel). Afterwards, each position matrix is projected in a space
of 19000 dimensions in order to simulate single cell transcriptomic data. We choose to use
random projection [18]. This projection preserves euclidean distances with high probability
according to the Jonhson-Lindenstrauss lemma when reducing dimensions [3]. We supposed
that the inverse was true and checked if the k-neighbors graphs were approximately the
same in the two spaces. This hypothesis was true in 95.6% of the cases, which is consistent
with the state of the art. We conclude that the inverse lemma was true enough for our
experiments.

Metrics : The first way of studying results is to look at the general appearance of the point
clouds. It can be an uneasy task as the different clouds are in 3D, making them difficult to
apprehend. Nevertheless, it is still possible to detect some trends by eyes. After this visual
inspection step, we defined two metrics at the cellular scale. Firstly, as one of the aim of the
model is to smooth trajectories, we chose to measure the series of angles (θt)t(i) along the
trajectory of a cell i as the angle between ∆(t− 1)[i, :] and ∆(t)[i, :] following notations in
section 4.3, where ∆(t)[i, :] stands for the difference between the spatial position of cell i at t
and at t− 1. A similar method has been used to measure the smoothness of membrane cells
in Lavalou et al. [5]. Secondly, we aimed at capturing if the inferred trajectory would be
chaotic or not. For each cell, we computed the difference between two successive angles. If
the difference is low, it means that the trajectory tends to repeat the same patterns between
time steps, on the contrary, if the difference is high, the movement does not follow any
pattern. For these two measures, we compute the average over all the time points and all
the cells. We obtain:

Average angle = 1
N

1
L− 1

N∑
i=1

L∑
k=2

θt(i)
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Figure 3: Reconstruction of the spatial locations with a dynamic constraint by gradient
descent: ground truth trajectories of all cells (left) and reconstructed trajectories for 8 cells
with our method with β = 0.99 (right).

Table 1: Cell trajectories metrics - β = 0.99
Constraint Averaged angle (SD) Dsuccessive_angles(SD)
Ground truth 0.3 (1.85e-16) 3.91e-16 (1.47e-16)
Novosparc 1.65 (0.18) 0.91 (0.26)
Dynamic 0.52 (0.12) 0.36 (0.10)

Table 2: Smoothness with different value of β
β Averaged angle Dsuccessive_angles
0.5 0.98 1.03
0.8 0.61 0.58
0.93 0.46 0.35
0.95 0.51 0.40
0.99 0.52 0.36

Dsuccessive_angles = 1
N

1
L− 2

N∑
i=1

L∑
k=2
|θt(i)− θt−1(i)|

Results : We applied our method on 333 vectors for 10 time steps using the dynamic
constraint. The results are presented on figure 3 (right panel) which shows a subset of 8 cells
over time for β = 0.99, a rotation seems indeed to have been learned. The tables 1 and 2
show the results obtained and their comparison to Novosparc. We successfully decreased
the averaged angle between two time steps and made it close to the 0.3 radians of the
actual rotation. We show a significant improvement compared to Novosparc. Moreover,
the difference between successive angles suggests that the algorithm did learn a coherent
movement and not just random deviations.

5 Discussion

We showed in this article a new method to infer spatial positions from time series of cell
expression profiles. Our framework builds on gene expression cartography [8], a previous
method that infer a transport map between transcriptomic data and cell spatial positions a
given time step. We add a way to capture a major aspect of biological systems, which is their
dependency to time. We proposed to take advantage of the assumption that systems vary
continuously through time in order to establish a framework which, in addition to being able
to predict cell spatial positions at one step, is able to learn simple dynamical transformation
within the data. We showed its efficiency on a simple rotation of the data. This framework
is different from previous attempts that aim at inferring temporal relationships within
transcriptomic data only [4, 12], as we are concerned here with the mapping that connect
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transcriptomic data with spatial data. However, even if we stated the problem in general
terms in equation 6, we provided a solution in a particular case, which is when the number
of cells is constant. If the system studied was more complicated, with a changing number of
cells, or a non-deterministic, or even unknown, cell lineage, we would have to add an inference
step for π which can be estimated with optimal transport, e.g. in [12]. We propose here an
initial step towards a general framework for the study of spatio-temporal transcriptomics
which is a central problem of biology. The study of T as a function of time will likely be
very useful to understand extremely complex processes such as embryonic development.
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