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Abstract

This paper investigates the exponential stability problem for a class of singularly perturbed im-
pulsive systems in which the flow dynamics is unstable and is affected at discrete time instants
by impulses that have both destabilizing and stabilizing effects. More precisely the impulses
have stabilizing effects on the slow variables but destabilizing effects on the fast ones. Thus,
a first contribution of our work is related to stability analysis of singularly perturbed impulsive
systems in the case when neither the flow dynamics nor the impulsive one is stable. In order to
take full advantage of the jump matrix structure and its stabilizing effects on the slow dynamics,
we introduce a new impulse-dependent vector Lyapunov function. This function allows us to
better describe the behaviour between two consecutive impulses as well as the jumps at impulse
instants. Several numerically tractable criteria for stability of singularly perturbed impulsive sys-
tems are established based on vector comparison principle. Additionally, upper bounds on the
singular perturbation parameter are derived. Finally, the validity of our results is verified by two
numerical examples.

Keywords: Singularly perturbed system, Mixed impulse, Exponential stability, Vector
Lyapunov function

1. Introduction

Systems characterized by processes evolving on different time-scales appear in many fields
of science and engineering: electric circuit, steel production, flexible joint robots or neural net-
works [1, 2, 3, 4]. The mathematical formalism used to model these dynamics is provided by
the singular perturbation theory. Usually one considers singularly perturbed systems (SPSs) in-
volving two time-scales and though having two types of state variables: fast and slow. A small
positive parameter ε is used to describe the gap between the variation speed of the two types of
variables. In the past decades, many achievements have been made on the analysis and synthesis
of SPSs (see [5, 6, 7, 8, 9, 10, 11] and the references therein).
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When SPSs are affected by impulses occurring at some discrete time we end up with a special
class of dynamics called singularly perturbed impulsive systems (SPISs) [12, 13, 14]. Generally,
the analysis and control synthesis of SPISs are complicated due to particular phenomena aris-
ing from the coexistence of multiple time-scales and the impulses. Nevertheless, there already
exist in the literature few results on the analysis of SPISs. In [15, 16], Simeonov and Bainov
established an exponential stability criteria of SPISs based on a vector Lyapunov function. The
proposed method can efficiently use the different decay rates of the slow and fast variables to
compensate the effects of the impulsive perturbation. Following the same idea, Alwan and Liu
[17] extended these results to singularly perturbed switched systems with time delay and impuls-
es. Chen et al [18] extended the results in [15, 16] to a class of singularly perturbed stochastic
time delay systems with impulse effects. Recently, Ben Rejeb et al [19] proposed minimum
dwell-time based stability conditions for a class of singularly perturbed hybrid systems exhibit-
ing switches, impulses and changes of the slow/fast nature of the state variables. It’s worth
noting that in all these works both the reduced-order subsystem and boundary layer subsystem
are assumed to be stable.

In the literature, from the impulsive magnitude point of view, the impulses are divided into
three types: negative, positive and inactive [20, 21, 22, 23, 24, 25, 26]. More specifically, an
impulse is said to be negative if it potentially destabilizes the dynamics, and to be positive if it
has a stabilizing effect on the dynamics, otherwise it is called inactive. For example, in [27],
Chen et al. considered the robust stability problem for SPISs with nonlinear perturbation. The
obtained results in [27] show that the stability of the original systems can still be guaranteed
provided that the impulses are stabilizing even if the flow dynamics is unstable. This result
is further extended to a class of nonlinear singularly perturbed systems with delayed impulses
in [28]. Note that the above-mentioned literature are devoted to investigating the positive or
negative features of impulses separately. To study the positive and negative features of impulses
within a unified framework, Lu et al. [20] introduced the so-called average impulsive interval
and derived a unified synchronization criterion for directed impulsive dynamical networks. The
proposed criterion is simultaneously effective for positive and negative impulses. Some recent
results on synchronization of nonlinear dynamical networks with both synchronizing and de-
synchronizing impulses can be found in [29, 30, 31]. Precisely, the jump matrix is time varying
and at some instants the impulses may be positive while at some other instants they are negative.

While the literature focuses mainly on the impact of stabilizing or destabilizing impulses on
the overall system dynamics, in [32, 33] the authors introduced and analyzed a class of systems
with impulses having stabilizing (positive) effect on a part of the states and a destabilizing (neg-
ative) effect on the remaining states of the system. In the sequel these impulses will be called
mixed impulses. To the best of our knowledge, the stability problem of SPSs with mixed im-
pulses is still an open yet challenging issue, which motivates the research of this paper. We point
out here that some achievements for synchronization of complex systems with mixed impulses
in a single time scale are reported [32, 33]. However, the proposed analysis methods cannot be
directly used in our setting due to numerical ill-conditioning [10]. Besides, in our work, both
the flow and jump dynamics of the considered systems are unstable, this renders challenges for
estimating the bound of the divergent state, these technical difficulties make the classical results
in [32, 33] inappropriate here. A supplementary challenge considered in this work is related to
the computation of an upper bound on the singular perturbation parameter ε guaranteeing the
results can be applied.

The main objective of this paper is to provide exponential stability criteria for SPSs affected
by mixed impulses. We emphasize that we are not focusing on the design of impulses or of the
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sequence of impulse instants, i.e., once the system is given we provide criteria to decide whether
it is stable or not. It is worth noting that, unlike existing studies, our development considers the
reduced order system is unstable. Our exponential stability criteria are established in term of
linear matrix inequalities (LMIs) and they are based on the design of impulse-dependent vector
Lyapunov function and the use of vector comparison principle. Moreover, the upper bound of
the singular perturbation parameter is computed. Summing up, the contribution of this paper is
twofold:

(1) We provide a stability analysis for a class of SPISs with mixed impulses in which the flow
dynamics is unstable and the jump dynamics is stabilizing only the slow states.

(2) We develop a new tool for stability analysis of SPISs based on impulse-dependent vector
Lyapunov function. This will allow us to better characterize the state evolution between
two successive impulsive instants as well as the jump dynamics. Furthermore, using the
vector comparison principle we derive some stability criteria, which are represented by
a set of well-conditioned LMIs and can be checked easily. On top of that, we derive the
upper bound of the singular perturbation parameter guaranteeing the results can be applied.

The rest of the paper is organized as follows. Section 2 gives the problem formulation and
some preliminaries. Section 3 presents the exponential stability results for SPISs. Section 4
provides a numerical example. Section 5 draws some conclusions and proposes future works.

Notations: R,R+,Rn and Rn
+ denote the set of real numbers, the set of nonnegative real num-

bers, the set of the real n-dimensional vectors, and the set of the nonnegative real n-dimensional
vectors, respectively. N and N+ are the sets of nonnegative integer and positive integer, respec-
tively. For a matrix P, the expression P < 0 means that P is real symmetric negative definite.
We write P ≼ 0 if all the components of the matrix P are non-positive and we write P ≼ Q
if P − Q ≼ 0. We denote λmax(A) and λmin(A) the maximum and minimum eigenvalues of the
matrix A, respectively. He{A} stands for A + AT . The symbol ∗ within the matrix means the
symmetric item in block matrices. The function g(t, u) : R+ × Rn 7→ Rn is quasi-monotone non-
decreasing if u ≼ v, ui = vi for some i implies gi(t, u) < gi(t, v). Finally,V0 is the set of functions
V : R+ × Rn 7→ R+ satisfying the following properties (1) ∃ a sequence (tk)k∈N such that V(t, x)
is continuous on [tk, tk+1) × Rn,∀k ∈ N; (2) for each x ∈ Rn, lim(t,y)→(t+k ,x) V(t, y) = V(t+k , x); (3)
V(t, x) is locally Lipschitz in x.

2. Problem Description

Beside the problem description, this section presents some preliminaries including a numer-
ical example illustrating the behavior of unstable SPS in presence of different types of impulses.
This will further motivate the stability analysis in the next section.

Consider the following singularly perturbed impulsive systems:[
ẋ(t)
εż(t)

]
=

[
A11 A12
A21 A22

] [
x(t)
z(t)

]
, t ∈ [tk, tk+1), (1)[

x(tk)
z(tk)

]
=

[
D11 D12
D21 D22

] [
x(t−k )
z(t−k )

]
, k ∈ N, (2)

where x(t) ∈ Rnx is the slow state vector, z(t) ∈ Rnz is the fast state vector, ε is a small parameter
that indicates the degree of the fast and slow dynamics separation. Ai j,Di j, i = 1, 2, j = 1, 2 are
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constant real matrices with appropriate dimensions. As a standard hypothesis [10], assume that
matrix A22 is Hurwitz.

In this work we don’t design the impulses time sequence but we assume the following prop-
erties hold true: (1) 0 = t0 < t1 < · · · < tk . . . is the monotonically increasing and unbounded
sequence of impulse instants; (2) Denote τk = tk − tk−1, k ∈ N+, then 0 < τ̄1 ≤ τk ≤ τ̄2 < ∞,
where τ̄1 and τ̄2 are positive constants.

In what follows, let N(τ̄1, τ̄2) := {{t j} j∈N; 0 < τ̄1 ≤ τ j ≤ τ̄2 < ∞, j ∈ N+} be the set of
admissible impulsive time sequence.

Let L = A−1
22 A21 and introduce the following change of variable:[

x
z

]
=

[
Inx 0
−L Inz

] [
x
y

]
, (3)

Using (3), system (1)-(2) in the variables (x, z) becomes:[
ẋ(t)
εẏ(t)

]
=

[
Ā11 Ā12
Ā21 Ā22

] [
x(t)
y(t)

]
, t ∈ [tk, tk+1), (4)[

x(tk)
y(tk)

]
=

[
D̄11 D̄12
D̄21 D̄22

] [
x(t−k )
y(t−k )

]
, k ∈ N, (5)

where Ā11 = A11 − A12L, Ā12 = A12, Ā21 = εLĀ11, Ā22 = A22 + εLA12, D̄11 = D11 − D12L, D̄12 =

D12, D̄21 = LD11 + D21 − (LD12 + D22)L, D̄22 = LD12 + D22.
Although the system (4)-(5) looks similar to the original system (1)-(2), we highlight that the

change of variables in (3) partially decouples the slow and fast states. Therefore, by using the
change of variables in (3), we will be able to analyze the fast and slow state separately.

Assumption 1. Ā11 is not Hurwitz stable.

Remark 1. First we point out that we do not impose any restrictions on the matrix A11 which
can be either stable or unstable. Second, we notice that in [15, 16, 17, 18, 19] both the reduced-
order subsystem and boundary layer subsystem are assumed to be stable i.e., Ā11 is assumed to
be Hurwitz stable. This means that the flow dynamic is stable based on the Tikhonov theorem
[10] in absence of hybrid features, such as impulse. Notice that Assumption 1 places this study
in a complementary case in which the flow dynamics of the reduced-order subsystem is unstable.

Remark 2. The impulses in [15, 16, 17, 18, 19, 27, 28], are ether stabilizing or destabilizing.
Motivated by the results in [32, 33], we analyze the behavior of (1)-(2) or (4)-(5) when the matrix
D defines mixed impulses. It is notable that the jump matrix D generating the impulses does not
have to be Schur (stable) in order to get an overall SPIS which is stable.

Let us finish this section with the definition of the stability notion that we are trying to ensure.

Definition 1 ([27, 28]). For a given impulsive time sequence {tk}k∈N ∈ N(τ̄1, τ̄2) and a given
positive scalar ε∗, system (1)-(2) or (4)-(5) is said to be globally uniformly exponentially stable
(GUES) for ε ∈ (0, ε∗), if there exist positive constants ϖ and λ such that

∥x(t)∥ + ∥y(t)∥ ≤ ϖ (∥x0∥ + ∥y0∥) e−λ(t−t0), (6)

for any t ≥ t0, any initial condition (x0, y0) and any ε ∈ (0, ε∗). Moreover, λ is called the
exponential convergence rate.
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3. Stability Analysis

In this section, the GUES conditions will be deduced for system (1)-(2) or (4)-(5). First, the
GUES problem of system (1)-(2) or (4)-(5) is transformed into the stability of a two-dimensional
vector comparison systems by employing an impulse-dependent vector Lyapunov function whose
components are

V(t) = xT (t)P(t)x(t) := xT (t)[(1 − ρ(t))P1 + ρ(t)P2]x(t), (7)

W(t) =yT (t)Q(t)y(t) := yT (t)[(1 − ρ(t))Q1 + ρ(t)Q2]y(t), (8)

where Pi,Qi(i = 1, 2) are positive definite matrices to be designed, and the function ρ(t) is given
as:

ρ(t) =
tk+1 − t
tk+1 − tk

, t ∈ [tk, tk+1), k ∈ N.

Then, by analyzing the properties of the considered two-dimensional vector comparison sys-
tems, we give the stability conditions for system (1)-(2) or (4)-(5). Moreover, the upper bound
of the singular perturbation parameter is estimated by solving a one-dimensional optimization
problem.

Remark 3. Lyapunov function (7)-(8) allows us to better capture the hybrid behaviour of the
slow and fast states. Therefore, we can simultaneously compensate the divergence of the slow
states during the flow and of the fast states during the jumps by the convergence of the slow state
during jumps and of the fast state during the flow, respectively. It is also important to highlight
that, for given impulsive time sequence (tk)k≥0, the proposed Lyapunov function (7)-(8) can be
easily computed provided that Pi,Qi(i = 1, 2) are determined.

Now, we present an instrumental result allowing to transform the GUES problem of system
(4)-(5) into the stability of a two-dimensional vector comparison systems by using (7)-(8).

Lemma 1. Consider the continuous-time impulsive system (1)-(2) or (4)-(5) and suppose that As-
sumption 1 holds. Let us also assume that the jump instant sequence (tk)k≥0 belongs toN(τ̄1, τ̄2)
where τ̄1 ≤ τ̄2 are given positive scalars. If there exist positive definite matrices Pi(i = 1, 2) and
Qi(i = 1, 2), and some positive constants αi(i = 1, 2), β j( j = 1, 2, 3), γk(k = 1, 2), µ ∈ (0, 1) and
ν > 1 such that the following matrix inequalities hold

Φ1(t) ,
[
Ω1(t) P(t)A12
∗ −α2Q(t)

]
< 0, (9)

Φ2(t) , He {Q(t)A22} + β1Q(t) < 0, (10)

Φ3(t) ,
[
−β3P(t) (LĀ11)T Q(t)
∗ Ω2(t)

]
< 0,∀t ∈ [tk, tk+1), k ∈ N, (11)

Ψ1 =

[
D̄T

11P2D̄11 − µP1 D̄T
11P2D̄12

∗ D̄T
12P2D̄12 − γ1Q1

]
≤ 0, (12)

Ψ2 =

[
D̄T

21Q2D̄21 − γ2P1 D̄T
21Q2D̄22

∗ D̄T
22Q2D̄22 − νQ1

]
≤ 0, (13)
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where Ω1(t) = He
{
P(t)Ā11

}
− α1P(t) + P1−P2

τk+1
,Ω2(t) = He {Q(t)LA12} − β2Q(t) + Q1−Q2

τk+1
. Then the

following inequalities hold [
V̇(t)
Ẇ(t)

]
≼ C(ε)

[
V(t)
W(t)

]
, t ∈ [tk, tk+1), (14)[

V(t)
W(t)

]
≼ J
[
V(t−)
W(t−)

]
, t = tk, k ∈ N. (15)

where C(ε) =
[
α1 α2
β3 β2 − β1/ε

]
and J =

[
µ γ1
γ2 ν

]
.

Proof. For t ∈ [tk, tk+1), k ∈ N, the time derivatives of V(t) and W(t) along the trajectories of
system (4)-(5) are given by

V̇(t) = 2xT (t)P(t)ẋ(t) + xT (t)Ṗ(t)x(t) = 2xT (t)P(t)[Ā11x(t) + A12y(t)] +
1
τk+1

xT (t)(P1 − P2)x(t)

= xT (t)
[
He
{
P(t)Ā11

}
+

P1 − P2

τk+1
− α1P(t)

]
x(t) + 2xT (t)P(t)A12y(t) − α2yT (t)Q(t)y(t)

+ α1xT (t)P(t)x(t) + α2yT (t)Q(t)y(t) = ζT (t)Φ1(t)ζ(t) + α1V(t) + α2W(t), (16)

and

Ẇ(t) =
2
ε

yT (t)Q(t)εẏ(t) + yT (t)Q̇(t)y(t)

=
2
ε

yT (t)Q(t)[Ā21x(t) + Ā22y(t)] +
1
τk+1

yT (t)(Q1 − Q2)y(t)

=
1
ε

yT (t)[He {Q(t)A22} + β1Q(t)]y(t) − 1
ε

yT (t)β1Q(t)y(t) − β3xT (t)P(t)x(t)

+ 2yT (t)Q(t)LĀ11x(t) + yT (t)[He {Q(t)LA12} +
Q1 − Q2

τk+1
− β2Q(t)]y(t)

+ β2yT (t)Q(t)y(t) + β3xT (t)P(t)x(t)

= ζT (t)Φ3(t)ζ(t) + β3V(t) + β2W(t) +
1
ε

yT (t)Φ2(t)y(t) − β1

ε
W(t), (17)

where ζT (t) =
[
xT (t) yT (t)

]
.

Then, it can be deduced from conditions (9)-(11) that the inequality (14) holds.
For the impulsive instants, it follows from conditions (12) and (13) that

V(tk) = xT (tk)P(tk)x(tk) = [D̄11x(t−k ) + D̄12y(t−k )]T P2[D̄11x(t−k ) + D̄12y(t−k )]

≤ ζT (t−k )Ψ1ζ(t−k ) + µxT (t−k )P1x(t−k ) + γ1yT (t−k )Q1y(t−k ) ≤ µV(t−k ) + γ1W(t−k ), k ∈ N, (18)

and

W(tk) = yT (tk)Q(tk)y(tk) = [D̄21x(t−k ) + D̄22y(t−k )]T Q2[D̄21x(t−k ) + D̄22y(t−k )]

≤ ζT (t−k )Ψ2ζ(t−k ) + γ2xT (t−k )P1x(t−k ) + νyT (t−k )Q1y(t−k ) ≤ γ2V(t−k ) + νW(t−k ), k ∈ N, (19)

which implies that the inequality (15) holds. �
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Remark 4. By employing the impulse-dependent vector Lyapunov function (7)-(8), the state
evolution between two successive impulsive instants is depicted by matrix C(ε), while the state
jumps at the impulse instants are characterized by matrix J. It is worth to highlight that matrix
C(ε) is not Hurwitz stable since α1 > 0 and matrix J is not Schur stable since ν > 1.

We note that the matrices P(t) and Q(t) are both explicitly used in the proof of Lemma 1 and
in the conditions (9)-(11). Although Lemma 1 provides some sufficient stability conditions they
are non-trivial to check due to the time-varying nature of the matrices P(t) and Q(t) that depend
on the sequence (tk)k≥0. Thus, in the sequel, we focus on the formulation of a practical method
to verify (9)-(11). This will be done by checking a set of LMIs, which do not need a priori
knowledge of the sequence (tk)k≥0.

Proposition 1. If there exist positive definite matrices Pi(i = 1, 2) and Qi(i = 1, 2), and some
positive constants αi(i = 1, 2) and β j( j = 1, 2, 3), such that the following matrix inequalities hold

Φ1
i j ,
[
Ω1

i j PiA12

∗ −α2Qi

]
< 0, (20)

Φ2
i , He {QiA22} + β1Qi < 0, (21)

Φ3
i j ,
[
−β3Pi (LĀ11)T Qi

∗ Ω2
i j

]
< 0, , (22)

where Ω1
i j = He

{
PiĀ11

}
− α1Pi +

P1−P2
τ̄ j

,Ω2
i j = He {QiLA12} − β2Qi +

Q1−Q2
τ̄ j

. Then the matrix
inequalities (9)-(11) hold.

Proof. To show condition (9) we proceed to a convex decomposition of Φ1(t) as follows

Φ1(t) =
[
He
{
P(t)Ā11

}
− α1P(t) + P1−P2

τk+1
P(t)A12

∗ −α2Q(t)

]
= (1 − ρ(t))

[
He
{
P1Ā11

}
− α1P1 +

P1−P2
τk+1

P1A12

∗ −α2Q1

]
+ ρ(t)

[
He
{
P2Ā11

}
− α1P2 +

P1−P2
τk+1

P2A12

∗ −α2Q2

]
= (1 − ρ(t))ϱ(t)Φ1

11 + (1 − ρ(t))(1 − ϱ(t))Φ1
12

+ ρ(t)ϱ(t)Φ1
21 + ρ(t)(1 − ϱ(t))Φ1

22,

where ϱ(t) =
{ 1/τk+1−1/τ̄2

1/τ̄1−1/τ̄2
if τ̄1 , τ̄2

0 otherwise
and use the fact that 1

τk+1
=

ϱ(t)
τ̄1
+

1−ϱ(t)
τ̄2

.

Consequently, condition (9) holds as far as condition (20) holds true. Similarly, it can be
deduced from conditions (21) and (22) that

Φi(t) < 0, i = 2, 3.

�
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Lemma 2 ([12]). Let V(t, x) =
[
V1(t, x) · · · Vn(t, x)

]T
: R+ ×Rn 7→ Rn

+ and Vi(t, x) ∈ V0, i =
1, 2, . . . , n. Assume that

V̇(t, x) ≼ g(t,V(t, x)), t ∈ [tk, tk+1), (23)
V(t, x + Ik(x)) ≼ ψk(V(t, x)), t = tk, k ∈ N, (24)

where g(t, u) =
[
g1(t, u) · · · gn(t, u)

]T
: R+ ×Rn 7→ Rn is quasimonotone nondecreasing in u,

Ik : Rn 7→ Rn and ψk : Rn 7→ Rn
+ is nondecreasing. Let r(t) = r(t, t0, u0) be the maximal solution

of impulsive differential system

u̇ = g(t, u), t ∈ [tk, tk+1), (25)
u(t+k ) = ψk(u(tk)), k ∈ N, u(t+0 ) = u0 ≥ 0. (26)

existing on [t0,∞). Then V(t0, x0) ≼ u0 implies that V(t, x(t)) ≼ r(t), t ≥ t0, where x(t) =
x(t, t0, x0) is any solution of

ẋ = f (t, x), t ∈ [tk, tk+1), (27)
x(t+k ) = x(tk) + Ik(x(tk)), k ∈ N, x(t+0 ) = x0 ≥ 0. (28)

existing on [t0,∞).

Lemma 3. Consider the following 2-dimensional vector impulsive comparison system:

U̇(t) = C(ε)U(t), t ∈ [tk, tk+1), (29)
U(tk) = JU(t−k ), k ∈ N, (30)

where C(ε) =
[
α1 α2
β3 β2 − β1/ε

]
and J =

[
µ γ1
γ2 ν

]
with the positive constants αi, γi, i = 1, 2, β j, j =

1, 2, 3, ε, µ ∈ (0, 1) and ν > 1. Then, the following facts hold.

(1) limε→0 λmax(C(ε)) = α1 and dλmax(C(ε))
dε > 0;

(2) eC(ε)t ≼ eλmax(C(ε))τ2C̄(ε), where C̄(ε) =
[

1 c̄12(ε)
c̄21(ε) c̄22(ε)

]
, c̄12(ε) = α2√

∆(ε)
, c̄21(ε) = β3√

∆(ε)
,

c̄22(ε) =
√
∆(ε)+κ1(ε)
2
√
∆(ε)

+
√
∆(ε)−κ1(ε)
2
√
∆(ε)

e−
√
∆(ε)τ1 , κ1(ε) = β2 −β1/ε−α1, and ∆(ε) = κ2

1(ε)+4α2β3;
(3) If β2 > α1 and there exists ε∗ > 0 such that the following condition holds,

θ(ε∗) , eλmax(C(ε∗))τ2ϱ(JC̄(ε∗)) < 1, (31)

where ϱ(·) denotes the spectral radius of matrix, then system (29)-(30) is GUES for any
ε ∈ (0, ε∗).

Proof. Straightforward computation gives that

λmax(C(ε)) =
1
2

[
κ2(ε) +

√
∆(ε)
]

λmin(C(ε)) =
1
2

[
κ2(ε) −

√
∆(ε)
]
⇒ λmax(C(ε)) − λmin(C(ε)) =

√
∆(ε),

where κ2(ε) = β2 − β1/ε + α1. Moreover, the eigenvectors associated with λmax(C(ε)) and
λmin(C(ε)) are

[ 2α2

κ1(ε)+
√
∆(ε)

1
]T

and
[ 2α2

κ1(ε)−
√
∆(ε)

1
]T

, respectively.
8



(1) It is easy to deduce that

lim
ε→0

λmax(C(ε)) =
1
2

lim
ε→0

(
√
∆(ε) + κ2(ε))(

√
∆(ε) − κ2(ε))

√
∆(ε) − κ2(ε)

=
1
2

lim
ε→0

∆(ε) − κ2
2(ε)

√
∆(ε) − κ2(ε)

=
1
2

lim
ε→0

κ2
1(ε) + 4α2β3 − κ2

2(ε)
√
∆(ε) − κ2(ε)

=
1
2

lim
ε→0

4α2β3 − 4α1(β2 − β1/ε)
√
∆(ε) − κ2(ε)

=
1
2

4α1β1/ε

β1/ε + β1/ε
= α1, (32)

and the derivative of λmax(C(ε)) with respect to ε is

dλmax(C(ε))
dε

=
1
2

[
dκ2(ε)

dε
+

d
√
∆(ε)

dε

]
=

1
2

[
β1

ε2 +
1
2

1
√
∆(ε)

d∆(ε)
dε

]
=

1
2

[
β1

ε2 +
1
2

1
√
∆(ε)

2κ1(ε)
β1

ε2

]
=

β1

2
√
∆(ε)ε2

[ √
∆(ε) + κ1(ε)

]
> 0, ∀ε > 0. (33)

(2) It is also straightforward that

eC(ε)t = M
[
eλmax(C(ε))t 0

0 eλmin(C(ε))t

]
M−1 = eλmax(C(ε))t M

[
1 0
0 e

√
∆(ε)t

]
M−1, (34)

where M =
[ 2α2

κ1(ε)+
√
∆(ε)

2α2

κ1(ε)−
√
∆(ε)

1 1

]
, M−1 =

 β3√
∆(ε)

√
∆(ε) + κ1(ε)

2
√
∆(ε)

− β3√
∆(ε)

√
∆(ε)−κ1(ε)
2
√
∆(ε)

 .
Therefore, it can be deduced that

eC(ε)t = eλmax(C(ε))t
[
c11(ε, t) c12(ε, t)
c21(ε, t) c22(ε, t)

]
(35)

with

c11(ε, t) =
2α2β3√
∆(ε)

 1
√
∆(ε) + κ1(ε)

+
e−
√
∆(ε)t

√
∆(ε) − κ1(ε)

 ,
c12(ε, t) =

α2√
∆(ε)

[
1 − e−

√
∆(ε)t
]
, c21(ε, t) =

β3√
∆(ε)

[
1 − e−

√
∆(ε)t
]
,

c22(ε, t) =
√
∆(ε) + κ1(ε)
2
√
∆(ε)

+

√
∆(ε) − κ1(ε)
2
√
∆(ε)

e−
√
∆(ε)t.

We notice that

c11(ε, t) ≤ 2α2β3√
∆(ε)

[
1

√
∆(ε) + κ1(ε)

+
1

√
∆(ε) − κ1(ε)

]
=

2α2β3√
∆(ε)

2
√
∆(ε)

∆(ε) − κ2
1(ε)
=

2α2β3√
∆(ε)

2
√
∆(ε)

4α2β3
= 1,

c12(ε, t) ≤ α2√
∆(ε)

= c̄12(ε),

c21(ε, t) ≤ β3√
∆(ε)

= c̄21(ε),

c22(ε, t) ≤
√
∆(ε) + κ1(ε)
2
√
∆(ε)

+

√
∆(ε) − κ1(ε)
2
√
∆(ε)

e−
√
∆(ε)τ1 = c̄22(ε).
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(3) Since β2 > α1, let ε1 =
β1

β2−α1
, then ε1 > 0. Moreover, it is easy to derive that

κ1(ε) = β2 − α1 − β1/ε < 0,∀ε < ε1,

and

d∆−1/2(ε)
dε

= − 1
2
∆−3/2(ε)

d∆(ε)
dε

= − 1
2∆3/2(ε)

× 2κ1(ε)
β1

ε2 = −
β1κ1(ε)
∆3/2(ε)ε2 > 0,∀ε < ε1.

Thus, for any ∀ε < ε1, the derivatives of c̄12(ε) and c̄21(ε) with respect to ε are

dc̄12(ε)
dε

= − α2β1

∆3/2(ε)ε2 κ1(ε) > 0,

dc̄21(ε)
dε

= − β3β1

∆(ε)
√
∆(ε)ε2

κ1(ε) > 0,

dc̄22(ε)
dε

=
1
2

d
{
κ1(ε)√
∆(ε)

}
dε

− 1
2

d
{
κ1(ε)√
∆(ε)

}
dε

e−
√
∆(ε)τ1 +

1
2

{
1 − κ1(ε)
√
∆(ε)

}
d{e−

√
∆(ε)τ1 }

dε

=
1
2

dκ1(ε)
dε

√
∆(ε) − κ1(ε) d

√
∆(ε)

dε

∆(ε)
− 1

2

dκ1(ε)
dε

√
∆(ε) − κ1(ε) d

√
∆(ε)

dε

∆(ε)
e−
√
∆(ε)τ1

− τ1

2

{
1 − κ1(ε)
√
∆(ε)

}
e−
√
∆(ε)τ1

d
√
∆(ε)

dε

=
1
2

β1
ε2

√
∆(ε) − κ2

1(ε)√
∆(ε)

β1
ε2

∆(ε)
[1 − e−

√
∆(ε)τ1 ] − τ1

2

√
∆(ε) − κ1(ε)
∆(ε)

e−
√
∆(ε)τ1

κ1(ε)β1

ε2

=
2α2β1β3

∆3/2ε2 [1 − e−
√
∆(ε)τ1 ] +

β1τ1

2∆(ε)ε2 [κ1(ε) −
√
∆(ε)]κ1(ε)e−

√
∆(ε)τ1 > 0.

Consequently, there exists 0 < ε∗ ≤ ε1 such that for any t ∈ [t0, t1) and any ε < ε∗

U(t) = eC(ε)tU(t0) ≼ eλmax(C(ε∗))τ2C̄(ε∗)U(t0) (36)

and

U(t1) = JU(t−1 ) ≼ eλmax(C(ε∗))τ2 JC̄(ε∗)U(t0). (37)

Moreover, based on the condition (31), it can be achieved recursively that

U(t) ≼ eλmax(C(ε∗))τ2C̄(ε∗)(eλmax(C(ε∗))τ2 JC̄(ε∗))kU(t0) ≼ eλmax(C(ε∗))τ2C̄(ε∗)θk(ε∗)U(t0)

≼ eλmax(C(ε∗))τ2C̄(ε∗)ek ln(θ(ε∗))U(t0) ≼ eλmax(C(ε∗))τ2C̄(ε∗)
θ(ε∗)

e
ln(θ(ε∗))

τ2
(t−t0)U(t0), ∀t ∈ [tk, tk+1),

(38)

which means that system (29)-(30) is GUES for any ε ∈ (0, ε∗). �

Remark 5. Assertions (1)-(2) of Lemma 3 show that the flow dynamic is unstable and the di-
vergence of system states is related to the parameters α1, the upper and the lower bound of
impulsive time interval and matrix C̄(ε). Assertion (3) of Lemma 3 shows that the stability of the
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2-dimensional vector impulsive comparison system (29)-(30) can be imposed by mixed impulses
satisfying appropriate properties. At this point it is interesting to emphasize that Lemma 3 can
be used to design the impulse dynamics that stabilizes the original system but this is out of our
scope in this paper. Finally, it is noteworthy that the upper bound of the singular perturbation
parameter has an important effect on the stability.

Based on Lemmas 1-3, we are in the position to present the GUES of system (1)-(2).

Theorem 1. Consider the continuous-time impulsive system (1)-(2) or (4)-(5) and suppose that
Assumption 1 holds. Let τ̄1 and τ̄2 be given positive scalars satisfying τ̄1 ≤ τ̄2. If, for all
i ∈ {1, 2} j ∈ {1, 2, 3} and k ∈ {1, 2}, there exist positive definite matrices Pi and Qi, some positive
constants αi, β j, γk, µ ∈ (0, 1) and ν > 1 with β2 > α1, and a positive constant ε∗ such that
the inequalities (20)-(22), (12)-(13) and (31) hold, then system (1)-(2) or equivqlently (4)-(5) is
GUES for any ε ∈ (0, ε∗).

Proof. Inequalities (20)-(22) and Proposition 1 yield that inequalities (9)-(11) of Lemma 1 hold.
Consequently, Lemma 1 shows that the GUES problem of system (1)-(2) or (4)-(5) can be re-
duced to stability analysis of the two-dimensional vector system (14)-(15). Moreover, stability
of the system (14)-(15) can be deduced from the stability of the 2-dimensional vector impulsive
comparison system (29)-(30) by employing Lemma 2.

Since β2 > α1 and there exists ε∗ > 0 such that the condition (31) holds, based on Lemma
3, it can be concluded that system (29)-(30) is GUES for any ε ∈ (0, ε∗), which also implies that
system (1)-(2) or (4)-(5) is GUES for any ε ∈ (0, ε∗). �

Remark 6. The most important feature of the proposed method is its ability to deal with a
more challenging case of unstable flow and unstable jump dynamics. On top of that, by using
impulse-dependent vector Lyapunov function and vector comparison principle, Theorem 1 gives
sufficient stability conditions for system (1)-(2) or (4)-(5), which are numerically tractable if the
parameters of matrices C(ε) and J are a priori given.

How to obtain the upper bound of the singular perturbation parameter is an interesting but
challenging problem. Here, we provide a procedure to clearly describe how to obtain numerically
the upper bound ε∗:

(1) For given SPISs (1)-(2) and parameter τ̄i(i = 1, 2), determine the parameters αi(i =
1, 2), β j( j = 1, 2, 3), γk(k = 1, 2), µ and ν by solving the inequalities (20)-(22) and (12)-
(13);

(2) By employing a simple one-dimensional search over ε∗ > 0, we can obtain the upper
bound ε∗ satisfying the inequality (31).

4. Simulation

In the section, the effectiveness of the obtained results is illustrated.

Example 1. Let us consider the system (1)-(2) with the state matrices described by the following
numerical values:

A11 = 1, A12 = −1, A21 = 2, A22 = −3,
D11 = 0.8,D12 = −2,D21 = 0,D22 = 1.5.
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It is easy to see that Ā11 = A11 − A12A−1
22 A21 = 1/3 > 0, that is, the flow dynamic of the

system in this example is unstable. We also note that the jump dynamics is described by the
mixed impulses with the impulsive magnitudes 0.8 and 1.5 for the slow and the fast dynamics,
respectively. Thus, the exiting results on the stability of SPISs cannot be applied here and our
methodology has to be employed.

Let us first illustrate the effect of the time interval between consecutive impulse instants on
the stability of SPSs with the mixed impulses. It can be seen in Figs. 1 and 2 that the stability of
SPSs with mixed impulses is not reached if the impulses occur too frequently or too rarely. We
recall here that our objective is not the design of the impulse instants sequence but stability is
not guaranteed as far as the interval between impulses does not verify the upper and lower bound
constraints.
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Figure 1: State response of system in Example 1 with τ1 = τ2 = 1.65.
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Figure 2: State response of system in Example 1 with τ1 = τ2 = 0.008.
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Let us illustrate now Theorem 1 when the impulse instants verify our assumptions. To do that
we fix τ̄1 = τ̄2 = 1, i.e., the impulsive time sequence belongs to N(1). We also fix µ = 0.23, ν =
33.066, β1 = 5.999, β2 = 15.982, β3 = 0.175, γ1 = 4.991, γ2 = 2.104, α1 = 1.405 and α2 = 1.52,
it can be found that all conditions of Theorem 1 hold with

P1 = 104.0496, P2 = 81.0744,Q1 = 1786.8,Q2 = 117.2405,

and ε∗ = 0.1342. Thus, according to Theorem 1, the system is GUES for any ε ∈ (0, 0.1342).
In the simulation, the initial condition is taken as

[
10 −10

]
and ε = 0.1341, the state evolu-

tion is given in Figs. 3-4, which shows that the trajectories of the system in Example 1 converge
to zero. Moreover, Fig. 4 shows that the fast state will converge to the slow manifold very quick-
ly, and slide on the slow manifold for a while until an impulse occurs. Due to the impulse, the
fast state deviates from the slow manifold abruptly. Then, the fast state quickly converges again
to the slow manifold, and this process continues until the system trajectory reaches zero.
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Figure 3: State response of system in Example 1 with ε = 0.1341.

Moreover, Theorem 1 shows that the impulsive time sequence can be aperiodic. Select τ̄1 =

1, τ̄2 = 1.04, i.e., the impulsive time sequence belongs to N(1, 1.04), and the others parameters
are defined in above analysis, it can be found that all conditions of Theorem 1 hold with ε∗ =
0.0537. Thus, according to Theorem 1, the system in this example can achieve GUES for any
ε ∈ (0, 0.0537).

Example 2. This example is to illustrate the proposed stability result for a higher-dimensional
SPSs with mixed impulses. Let us reconsider system (1)-(2) when the state matrices take the
following numerical values:

A11 =

[
0.3 0.1
0.05 −0.65

]
, A12 =

[
0 0

0.345 0

]
, A21 =

[
0.1 −0.524
0.7 0.23

]
, A22 =

[
−2.465 0.262

0.1 −2.1

]
,

D11 =

[
0.25 0

0 0.25

]
,D12 =

[
1 −1
−1 1

]
,D21 =

[
0 0
0 0

]
,D22 =

[
1.5 0
0 1.5

]
.
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Figure 4: State response of system in Example 1 with ε = 0.1341, where t−k and t+k are denoted by the black diamond and
the black triangle, respectively.

It can be deduced that Ā11 =

[
0.3000 0.1000
0.0764 −0.7197

]
, and the eigenvalues of Ā11 are 0.3074 and

−0.7271, which means that the flow dynamics of the system under consideration is unstable. Let
us consider in the following that mixed impulses are affecting the flow dynamics. Specifically, the
slow and the fast dynamics are affected by mixed impulses with the impulsive magnitudes 0.25
and 1.5, respectively. To fit the setup of Theorem 1, we fix the impulsive time interval τ̄1 = τ̄2 =

1, and let µ = 0.10, ν = 7.68, β1 = 4.00, β2 = 4.91, β3 = 0.10, γ1 = 4.00, γ2 = 2.00, α1 = 0.02
and α2 = 0.23. Computing the upper bound on the singular perturbation parameter we find
ε∗ = 0.4937 meaning that the system in this example is GUES for any ε ∈ (0, 0.4937).

In the following simulation we fix the singular perturbation parameter ε = 0.4936 and the
initial condition as

[
0 −10 5 −5

]
. The state evolution is given in Figs. 5-6, which illustrate

that the trajectory of the system in Example 2 converges to zero.
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Figure 5: Slow states response of system in Example 2 with ε = 0.4936.

Time (sec)
0 5 10 15

Fa
st

 S
ta

te
s

-5

-4

-3

-2

-1

0

1

2

3

4

5

z
1

z
2

Figure 6: Fast states response of system in Example 2 with ε = 0.4936.

5. Conclusion

This paper dealt with the situations where the flow dynamic is unstable and exhibits a two-
time-scale feature, while the jump dynamic contains both the destabilizing and stabilizing im-
pulses simultaneously. To explore the positive effect of the stabilizing impulse and describe the
relationship between two consecutive impulses, a new kind of impulse-dependent vector Lya-
punov function has been constructed. Based on vector comparison principle, some sufficient
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conditions have been derived to ensure the GUES of SPSs with mixed impulses. Moreover,
the upper bound of singular perturbation parameter has been obtained by using one-dimensional
search algorithm. Finally, two examples have been presented to illustrate the effectiveness of
the proposed results. Future research will focus on the stability of SPSs with time delay and
impulsive effects. Additional research will also target the case of stochastic impulses.
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