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Abstract

This paper focuses on the problem of designing a decentralized output feedback control strategy for synchronization of
homogeneous multi-agent systems with global performance guarantees. The agents under investigation are described as linear
singularly perturbed dynamics representing a wide class of physical systems characterized by processes evolving on two
time-scales. The collaborative decentralized control is achieved using only output information from neighboring agents and
considering that the only available graph information consists in its connectivity, that is, there is no centralized information
related to the interconnection network structure. As methodology, the synchronization problem is rewritten as a dynamic
output feedback robust stabilization of a singularly perturbed uncertain linear system with guaranteed cost. We show that
these problems can be solved by using convex conditions expressed by LMIs and by decoupling the slow and fast dynamics.
As an advantage, the fast dynamic matrix can be singular (nonstandard systems) and unstable. The proposed conditions
circumvent some drawbacks of the existing works on this topic by providing a dynamic controller that does not depend on
the singular parameter or by allowing the design of slow controllers when the fast system is stable. Numerical examples are
presented to demonstrate the effectiveness of the proposed protocol and design method.

Key words: Multi-agent systems; Synchronization; Output feedback; Guaranteed cost control; Uncertain singularly
perturbed systems.

1 Introduction

Decentralized coordination control of multi-agent sys-
tems has been an important engineering problem in the
last decades due to its capacity to deliver solutions in
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many emerging fields such as unmanned aerial vehicles,
distributed optimization, and formation of mobile robots
(Bullo et al. 2009). An important feature of this class
of large scale systems is the fact that local information
is used to coordinate a group of autonomous systems to
cooperatively accomplish a task or reach an agreement
(Olfati-Saber et al. 2007) without requiring important
amounts of communication and computation with a cen-
tral entity.

The problem of designing protocols for consensus of
multi-agent systems when the states are not available
for communication is a recent field of research. The
solution involves either dynamic output (Kim et al.
2011, Li et al. 2019) or observer-based (Li et al. 2018)
protocols. The work Kim et al. (2011) considers SISO
heterogeneous agents, but the design and the imple-
mentation of the controller are complex for high order
plants. For homogeneous agents, Li et al. (2019) pro-
poses a design algorithm for a reduced-order observer-
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type distributed dynamic output-feedback protocol
respecting a Sylvester equation and Li et al. (2018)
solves two sequential algebraic Riccati equations us-
ing a set of scalars to be chosen. Both results demand
precisely known Laplacian matrix. Finally, it is worthy
to mention that the design of decentralized protocols
allowing singularly perturbed multi-agent systems to
achieve synchronization has been studied very recently
(Rejeb et al. 2017, 2018). We highlight that Rejeb et al.
(2018) considers a global performance guarantee when
the states of all agents are available to communicate.

In this work, we consider the problem of designing a dis-
tributed output-feedback consensus protocol for homo-
geneous singularly perturbed linear multi-agent systems
as a robust design problem of full-order dynamic output
feedback (DOF) controllers with a guaranteed cost. We
design decentralized output feedback controllers able to
achieve asymptotically synchronization with global per-
formance guarantees. For the decentralized guaranteed
cost control design, the methodology relies on the trans-
formation of the synchronization problem in an uncer-
tain system stabilization one. We consider a multi-agent
system under a fixed but unknown undirected interac-
tion graph. Our results only require that the intercon-
nection graph is connected. Therefore, the eigenvalues of
the Laplacian matrix are uncertain but belong to known
bounds. As a novelty, we propose a time-scale decom-
position of the closed-loop system avoiding the design
of a composite control law composed by the slow and
fast components, separately designed. This approach al-
lows handling nonstandard singularly perturbed systems
where the fast dynamic matrix can be singular or un-
stable. We also propose the design of low order con-
trollers, independent of the singular parameter, for the
case where the singular parameter is unknown or when
the actuators cannot respond to the fast variables result-
ing in controllers economically implementable. To the
best of the author’s knowledge, no solution has been pro-
posed before for the problem of consensus of singularly
perturbed systems with the use of neighbors’ output in-
formation.

It is noteworthy to highlight that the synchronization
problem is not solved once it is transformed in a sta-
bilization one. First we note that we consider multiple
time-scales dynamics and it is well known that, applying
directly standard control methods may lead to high di-
mensionality and ill-posed numerical conditions for sta-
bility and control design. Singular perturbation frame-
work (Chow & Kokotovic 1976, Kokotovic et al. 1999)
adopts a time-scale decomposition as an efficient way
to overcome these problems. In this approach, the con-
trol design can be performed for each subsystem (slow
and fast lower-order dynamics) and their combination
allows to obtain a composite control for the global sys-
tem (Kokotovic et al. 1999). This approach has been
extensively used for state-feedback control (Kokotovic
et al. 1999) and, less frequent, observer-based controllers

(Daafouz et al. 1999a). For instance, the problem of
state feedback quadratic optimal control design for lin-
ear singularly perturbed systems is addressed in Gar-
cia et al. (2002). On the other hand, the output feed-
back design, without the use of the separation principle
(independent design of observer and controller gains),
for singularly perturbed systems still remains a field
less explored. In Daafouz et al. (1999a), an observer-
type strictly proper controller is proposed to the H2

guaranteed cost problem for uncertain singularly per-
turbed systems where two Riccati equations have to be
solved, one for the slow subsystem and the other for the
fast subsystem. Some works proposed conditions to de-
sign output controllers for singularly perturbed systems
based on the decomposition on slow and fast dynam-
ics (Christofides 2000, Khalil 2005, Glielmo & Corless
2010). However, these works require the fast subsystem
to be asymptotically stable (Christofides 2000, Glielmo
& Corless 2010), the transfer function of the boundary
layer input–output system to be zero (Glielmo & Cor-
less 2010) or are based on high-gain observer-based con-
trollers (Christofides 2000, Khalil 2005). Other disad-
vantages of the above approaches are the impossibility of
dealing with nonstandard singularly perturbed systems,
the lack of convex design conditions and the difficulty
to impose dynamic controllers that do not dependent on
the singular parameter. Another approach relies on the
the use of a descriptor representation of the system and
a convenient choice of the Lyapunov matrix to obtain
ǫ-independent conditions when ǫ approaches to zero, as
adopted in Assawinchaichote et al. (2004). In this case,
the time-scale separation is not adopted, the controller
has a multi-scale structure and the dynamic matrix of
the controller explicitly depends on ǫ, that, for this rea-
son, must be known.

This work proposes the following original contributions:
(i) a design of dynamic output protocols by a convex
approach (no need of algorithms with sequential steps)
and when the Laplacian matrix is uncertain; (ii) an out-
put feedback stabilization method with decomposition-
based approach for nonstandard singularly perturbed
systems which is used to solve the decentralized out-
put feedback synchronization problem; (iii) a convex de-
sign of low-order singular parameter-independent out-
put controller and with no fast components; (iv) guaran-
teed cost controllers for singularly perturbedmulti-agent
systems using the output information of the plants.

The presentation is structured as follows. In Section 2 we
provide some preliminaries related to the network and
controller structure as well as the problem formulation.
The main results on the DOF decentralized synchro-
nization for singularly perturbed systems are reported
in Section 3. To illustrate the effectiveness of our results
we provide some numerical examples in Section 4. The
paper ends with some brief conclusions.

Notation.The notationRn,R+ andRn×m respectively
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denote the sets of n-dimensional real vectors, positive
scalars, and n×m-dimensional real matrices. For a ma-
trix A, consider: AT denotes the transpose of A; A−1

and A−T denote the inverse of A and AT , respectively;
andHe{A} = A+AT , ifA is square. The block-diagonal
matrix is denoted by diag(·). The identity matrix of or-
der n is denoted by In and the null m× n matrix is de-
noted by 0m,n (or simply I and 0 if no confusion arises).
The symbol ⋆ denotes symmetric blocks in partitioned
matrices, and ⊗ denotes the Kronecker product.

2 Preliminaries

2.1 Network structure

We consider a set of n identical singularly perturbed
linear systems (called agents) described by the following
dynamics:

[

ẋi(t)

ǫżi(t)

]

=

[

A11 A12

A21 A22

] [

xi(t)

zi(t)

]

+

[

B1

B2

]

ui(t)

yi(t) =
[

C1 C2

]
[

xi(t)

zi(t)

]

, ∀i ∈ {1, . . . , n}
, (1)

where xi(t) ∈ R
nx and zi(t) ∈ R

nz are the states,
ui(t) ∈ R

nu is the control input, yi(t) ∈ R
ny is the mea-

sured output, i = 1, . . . , n, and ǫ > 0 is a small parame-
ter characterizing the time-scale separation between the
dynamics of variables xi and zi.

In the sequel, our objective is to design an output feed-
back consensus protocol guaranteeing the synchroniza-
tion of all agents. Before giving the structure of the de-
centralized controllers proposed in this paper, we will
present the structure of the interaction network under
consideration. Precisely we consider that each agent has
access to relative measurements for the output of some
neighbors. The interaction structure is captured by an
undirected graph G and the associated weighted adja-
cency matrix G = [gij ] ∈ R

n×n. The corresponding
weighted Laplacian matrix is L = [lij ] ∈ R

n×n defined

by

{

lii =
∑n

j=1 gij , ∀i = 1, . . . , n

lij = −gij if i 6= j.

Let us consider in this paper the following assumption.

Assumption 1 The undirected graph G is connected
and all gij ∈ {0} ∪ [gm, gM ], where gM ≥ gm > 0 are
known bounds. The weight gij = 0 if and only if (i, j) is
not an edge in the graph G.

Remark 2 There exist an orthonormal matrix T ∈
R

n×n and positive scalars δ1 < δ2 such that TLT T =
D = diag(λ1, λ2, . . . , λn) and 0 = λ1 < δ1 < λ2 ≤ . . . ≤

λn < δ2, where λi, i = 1, . . . , n, are the eigenvalues
of the Laplacian matrix L. The bounds δ1 and δ2 can
be obtained from gm and gM , respectively, as shown in
Friedland & Nabben (2002).

Besides synchronizing the states of the n singularly per-
turbed systems, we also want to impose a threshold on
the overall control effort required to achieve this task.
Consequently, we consider the following global cost as-
sociated with synchronization of the dynamics in (1):

J =

∫
∞

0

x(t)T (L⊗ Inx
)x(t) + z(t)T (L⊗ Inz

)z(t)

+ u(t)T (In ⊗R)u(t)dt (2)

where x(t) = (x1(t)
T , . . . , xn(t)

T )T ∈ R
nnx , z(t) =

(z1(t)
T , . . . , zn(t)

T )T ∈ R
nnz and u(t) = (u1(t)

T , . . . ,
un(t)

T )T ∈ R
nnu , are the vectors collecting the states

and the control input of all agents, and R is a positive
definite matrix that penalizes the control effort required
for synchronization.

2.2 Controller structure

Let us now introduce the structure of the controller used
to synchronize the n systems while keeping the control
effort under some threshold. We consider that each sys-
tem has a local controller that accesses local informa-
tion, i.e., the output of the system and the output of
neighboring systems in the graph. Consequently, we end-
up with the problem of designing a distributed dynamic
output-feedback consensus protocol with the following
structure

[

η̇i(t)

ǫν̇i(t)

]

=

[

Ac011 Ac012

Ac021 Ac022

] [

ηi(t)

νi(t)

]

+

[

Ac11 Ac12

Ac21 Ac22

][

ϑi(η(t))

ϑi(ν(t))

]

+

[

Bc1

Bc2

]

ϑi(y(t))

ui(t) =
[

Cc1 Cc2

]
[

ϑi(η(t))

ϑi(ν(t))

]

+Dcϑi(y(t))

(3)
where ηi(t) ∈ R

nx and νi(t) ∈ R
nz , i = 1, . . . , n,

are the states of the distributed controller, η(t) =
(η1(t)

T , . . . , ηn(t)
T )T ∈ R

nnη , ν(t) = (ν1(t)
T , . . . ,

νn(t)
T )T ∈ R

nnν , y(t) = (y1(t)
T , . . . , yn(t)

T )T ∈ R
nny ,

and the function ϑ(w) : R
nnw → R

nw is defined by
ϑi(w) =

∑n
j=1 gij(wi − wj), where gij 6= 0 means that

agent i has access to the output yj and gij = 0 otherwise.
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2.3 Closed-loop and problem formulation

First, observe that the function ϑi(·) is a linear map,
then

ϑi(y) =

n∑

j=1

gij((C1xi + C2zi)− (C1xj + C2zj))

=

n∑

j=1

gij (C1(xi − xj) + C2(zi − zj))

= C1ϑi(x) + C2ϑi(z)

and the closed-loop formed by (1) and (3) is given by

[

ξ̇i(t)

ǫµ̇i(t)

]

=

[

Â11 Â12

Â21 Â22

][

ξi(t)

µi(t)

]

+

[

Ǎ11 Ǎ12

Ǎ21 Ǎ22

] [

ϑi(ξ(t))

ϑi(µ(t))

]

,

(4)
with ξi(t) = (xi(t)

T , ηi(t)
T )T ∈ R

2nx , µi(t) =
(zi(t)

T , νi(t)
T )T ∈ R

2nz and

Âij =

[

Aij 0

0 Ac0ij

]

, Ǎij =

[

BiDcCj BiCcj

BciCj Acij

]

,

i, j = 1, 2.

If we collect the states of all agents, one can rewrite (4)
as [

ξ̇(t)

ǫµ̇(t)

]

=

[

Ā11 Ā12

Ā21 Ā22

][

ξ(t)

µ(t)

]

(5)

with ξ(t) = (ξ1(t)
T , . . . , ξn(t)

T )T ∈ R
2nnx , µ(t) =

(µ1(t)
T , . . . , µn(t)

T )T ∈ R
2nnz and

Ā11 = In ⊗ Â11 − (In ⊗ Ǎ11)(L ⊗ I2nx
),

Ā12 = In ⊗ Â12 − (In ⊗ Ǎ12)(L ⊗ I2nz
),

Ā21 = In ⊗ Â21 − (In ⊗ Ǎ21)(L ⊗ I2nx
),

Ā22 = In ⊗ Â22 − (In ⊗ Ǎ22)(L ⊗ I2nz
).

We are now ready to state the problem addressed in this
paper.

Problem 3 For the singularly perturbed multi-agent
system (1) the design the protocol (3) that uses local in-
formation such that the closed-loop multi-agent system
(5) achieves synchronization with a global guaranteed
cost (2) for a sufficiently small parameter ǫ. In other
words, there exist positive scalars J̄ and ǫ∗ such that

lim
t→∞

||xi(t)− xj(t)|| = 0, lim
t→∞

||zi(t)− zj(t)|| = 0

and J ≤ J̄ for all ǫ ∈ (0, ǫ∗).

2.4 Reformulation of synchronization as robust stabi-
lization

Following Rejeb et al. (2018), we propose the following
change of variable

x̃(t) = (T ⊗ Inx
)x(t), z̃(t) = (T ⊗ Inz

)z(t),

η̃(t) = (T ⊗ Inx
)η(t), ν̃(t) = (T ⊗ Inz

)ν(t)
(6)

where T is defined in Assumption 1. Then, Problem 3
becomes a robust stability analysis problem for the in-
dividual set of n− 1 dynamics given by

[ ˙̃
ξi(t)

ǫ ˙̃µi(t)

]

=

[

Ã11(λi) Ã12(λi)

Ã21(λi) Ã22(λi)

]

︸ ︷︷ ︸

Ã(λi)

[

ξ̃i(t)

µ̃i(t)

]

, i = 2, . . . , n,

(7)

with ξ̃i(t) = (x̃i(t)
T , η̃i(t)

T )T ∈ R
2nx , µ̃i(t) =

(z̃i(t)
T , ν̃i(t)

T )T ∈ R
2nz , Ãkℓ(λi) = Âkℓ − λiǍkℓ,

k, ℓ = 1, 2, and λi ∈ [δ1, δ2], i = 2, . . . , n. Observe that,
since λ1 = 0, system (7) with i = 1 is uncontrolled.

Observe also that the global cost J in (2) can be rewrit-
ten as a sum of individual costs associated with the sys-
tems in (7): J =

∑n
i=1 Ji,

Ji =

∫
∞

0

λix̃i(t)
T x̃i(t) + λiz̃i(t)

T z̃i(t) + ũi(t)
TRũi(t)dt

(8)
where ũi(t) is the i-th component of ũ(t) = (T⊗Inu

)u(t).

Note that J1 = 0 since ũi(t) = −λi[DcC1 Cc1]ξ̃i(t) −
λi[DcC2 Cc2]µ̃i(t).

It is interesting to note that the change of variable above
decouples the dynamics in n independent ones. The first
one describes the synchronization manifold and the rest
of them have to be stabilized by the protocol (3). Con-
sequently, solving Problem 3 is equivalent with solving
the following stabilization problem.

Problem 4 Design a protocol (3) that uses local infor-
mation and stabilizes systems (7) with guaranteed indi-
vidual costs Ji, i = 2, . . . , n.

Remark 5 It is noteworthy that although the further
developments may give the sensation that we use λi in
our design, this is not the case. Indeed, Theorem 11 in
Section 3 provides the design of the dynamic feedback
controller (3) using only decentralized information and
the values of δ1, δ2.

Let us finish this section with some lemmas which are
instrumental for the further developments.

Lemma 6 Let a symmetric matrixM0 ∈ R
n×n and ma-

trices M1 ∈ R
m×n and M2 ∈ R

m×n. The following con-
ditions are equivalents:
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(i) M0 +He
{
MT

1 M2

}
< 0,

(ii) ∃ P1 ∈ R
n×m and P2 ∈ R

m×m :

[

M0 +He {P1M1} ⋆

M2 − PT
1 + P2M1 −P2 − PT

2

]

< 0.

PROOF. The equivalence can be demonstrated by the
well-known Projection Lemma (Gahinet & Apkarian
1994) and is omitted for the sake of brevity.

Lemma 7 (Deaecto et al. (2012)) Consider two
symmetric matrices with the following structure

Θ =

[

Θ11 Θ12

⋆ Θ22

]

, Υ =

[

0 Υ12

⋆ Υ22

]

Υ22 non singular. Then there exists ǫ∗ such that for all
ǫ ∈ (0, ǫ∗) the conditions (9) and (10) are equivalent.

Θ+ ǫ−1Υ < 0 (9)

Υ12 = 0, Θ11 < 0, Υ22 < 0 (10)

3 Main results

In this section we present a solution for Problem 3. Note
that the controller (3) is ǫ-dependent and has a two time-
scale property. Hence, we suppose that the actuator of
the agents are able to respond to the fast variables pre-
sented in the signal ui(t). This assumption will be re-
laxed later when we present ǫ-independent controllers.

3.1 ǫ-dependent DOF controllers

First, we will rewrite the cost (8) as

Ji =

∫
∞

0

ỹzi(t)
T ỹzi(t)dt

where

ỹzi(t) =
[

Cz1(λi) Cz2(λi)
]
[

x̃i(t)

z̃i(t)

]

+Dũi(t) (11)

and

[

Cz1(λi) Cz2(λi)
]

=







√
λiInx

0

0

0
√
λiInz

0






, D =







0

0
√
R






.

(12)

Considering the controller (3), we can replace the control

signal ũi(t) in (11) by ũi(t) = −λi[DcC1 Cc1]ξ̃i(t) −
λi[DcC2 Cc2]µ̃i(t) yielding

ỹzi(t) =
[

C̃z1(λi) C̃z2(λi)
]

︸ ︷︷ ︸

C̃z(λi)

[

ξ̃i(t)

µ̃i(t)

]

, (13)

with

C̃zj(λi) =
[

Czj(λi)− λiDDcCj −λiDCcj

]

, j = 1, 2.

If we consider a scalar γ > 0 and the Lyapunov function

V (ξ̃i, µ̃i) =

[

ξ̃i

µ̃i

]T

W−1

[

ξ̃i

µ̃i

]

, (14)

W = WT > 0, W ∈ R
2nx+2nz , for the closed-loop

system (7), one has that the integration of

V̇ (ξ̃i(t), µ̃i(t)) + γ−1ỹzi(t)
T ỹzi(t) ≤ 0, i = 2, . . . , n,

(15)
over that interval [0,∞) implies

Ji ≤ γV (ξ̃i(0), µ̃i(0)), i = 2, . . . , n, (16)

that is, the cost Ji is upper limited by the initial condi-
tion (ξ(0), µ(0)) weighted by γW−1. For the minimiza-
tion of the guaranteed cost of J we can exploit the fact
the initial condition of the controller can be set arbitrar-
ily to zero, impose some constraint on the trace of W−1

or minimizing γ.

LMI conditions to solve Problem 4 may present ill-
conditioned numerical issues for small values of ǫ (Koko-
tovic et al. 1999). Therefore, we adopt the time-scale
decomposition (Chow & Kokotovic 1976, Kokotovic
et al. 1999) to define two ǫ-independent subsystems
associated with the closed-loop system (7). In the liter-
ature of singularly perturbed systems the control law is
usually decomposed for each lower-order subsystem and
separately designed. Then, the control gains are com-
bined to obtain a composite control for the full system
(1) (Kokotovic et al. 1999). This approach requires A22

to be nonsingular and, in the case of designing DOF
controllers in the form (3), yields a non-trivial formu-
lation to recovery the gains of the composite controller
from its slow and fast components. A way to circumvent
such difficulties consists of performing the time-scale
decomposition in the closed-loop system (7) instead of
(1). As a consequence, we can deal with nonstandard
singularly perturbed systems where matrix A22 is not
required to be nonsingular.
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Let us introduce some notation that allows us to com-
pletely decouple the slow and fast dynamics that occur
in the overall system. Following the lines presented in
Kokotovic et al. (1999), the slow subsystem is obtained
by setting ǫ = 0 in (7) and expressing the slow part of
µi(t), denoted by µi,s(t), in terms of the slow part of
ξi(t), denoted by ξi,s(t), that is,

µi,s(t) = −G(λi)ξi,s(t),

where G(λi) = Ã22(λi)
−1Ã21(λi). Therefore, the

reduced-order (slow) system is

ξ̇i,s(t) = As(λi)ξi,s(t), ξi,s(0) = ξi(0), (17)

where As(λi) = Ã11(λi)− Ã12(λi)G(λi).

The boundary-layer (fast) system is defined by treating
ξi(t) as a constant variable and removing the slow bias
from µi(t), that is, µi,f (t) = µi(t)− µi,s(t), yielding

ǫµ̇i,f (t) = Ã22(λi)µi,f (t), µi,f (0) = µi(0)+G(λi)ξi(0).
(18)

Then, one has

yzi(t) = C̃z1(λi)ξi,s(t) + C̃z2(λi)(µi,f (t)−G(λi)ξi,s(t))

= Cs(λi)ξi,s(t) + C̃z2(λi)µi,f (t),
(19)

where Cs(λi) = C̃z1(λi)− C̃z2(λi)G(λi).

The system (17) is well-defined if Ã22(λi) is non
singular. This is verified if there exist matrices
(Ac022, Ac22, Bc2, Cc2, Dc) such that Ã22(λi) is Hurwitz,
that is, assuring the asymptotic stability of the fast
system (18).

Remark 8 Considering a decentralized control scheme
each agent only knows their local weights and, by As-
sumption 1, lower and uppers bounds of the weights re-
lated to the connections of other agents. As a conse-
quence, the eigenvalues cannot be precisely known and
stability conditions must be verified for all values of λi

such that δ1 ≤ λi ≤ δ2, i = 2, . . . , n. Note that we do not
need to solve n − 1 inequalities since all eigenvalues λi,
i = 2, . . . , n, belong to the same interval. We first present
infinite-dimensional conditions that will be useful for the
main results, expressed in terms of bounds δ1 and δ2.

Next, we present ǫ-independent conditions for asymp-
totically stability with guaranteed cost of the close-loop
system (7) in terms of its slow and fast decomposition.

Lemma 9 Suppose there exist symmetric positive defi-
nite matrices W1 ∈ R

nx×nx and W2 ∈ R
nz×nz , and a

scalar γ ∈ R+ verifying the following conditions for all

λ ∈ [δ1, δ2]:

[

As(λ)W1 +W1As(λ)
T ⋆

Cs(λ)W1 −γI

]

< 0, (20)

Ã22(λ)W2 +W2Ã22(λ)
T < 0. (21)

Then, there exists ǫ∗ > 0 such that for all ǫ ∈ (0, ǫ∗)
the closed-loop system (7) is asymptotically stable with

guaranteed cost given by J̄i = γξ̃i(0)
TW−1

1 ξ̃i(0) +

γµ̃i,f(0)
TW−1

2 µ̃i,f (0), i = 2, . . . , n.

PROOF. It follows from the proof of Theorem 1 of
Deaecto et al. (2012) by considering the system (7)
rewritten as

[ ˙̃
ξi(t)

˙̃µi(t)

]

= A(λi, ǫ)

[

ξ̃i(t)

µ̃i(t)

]

, (22)

A(λi, ǫ) = E(ǫ)−1Ã(λi), E(ǫ) =

[

I 0

0 ǫI

]

, i = 2, . . . , n.

Condition (15) with the Lyapunov function given by
(14) is equivalent to

WA(λi, ǫ)
T +A(λi, ǫ)W + γ−1WC̃z(λi)

T C̃z(λi)W < 0.
(23)

Consider W with the following partition

W =

[

W1 −W1G(λi)
T

⋆ W2 +G(λi)W1G(λi)
T

]

. (24)

Then, if we replace (24) in (23), we obtain an ex-
pression in the form of (9) with Υ12 = 0, Θ11(λi) =
As(λi)W1 +W1As(λi)

T + γ−1W1Cs(λi)
TCs(λi)W1 and

Υ22(λi) = Ã22(λi)W2 + W2Ã22(λi)
T . From condition

(10) of Lemma 7, Υ22(λi) < 0 and Θ11(λi) < 0 are
equivalent to (23) for i = 2, . . . , n. Finally, applying
the Schur complement in Θ11(λi) < 0 and considering
λi ∈ [δ1, δ2], i = 2, . . . , n, conditions Υ22(λ) < 0 and
Θ11(λ) < 0, λ ∈ [δ1, δ2], are equivalent to (20)–(21)
assuring (16) and the asymptotically stability of the
closed-loop system (7). Observe that W is a candidate
Lyapunov matrix in (14) since W > 0 is assured by
W1 > 0 and, by Schur complement, W2 > 0.

From (24), one has

W−1 =

[

W−1
1 +G(λi)

TW−1
2 G(λi) G(λi)

TW−1
2

⋆ W−1
2

]
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then, considering (14) and (16), one has

Ji ≤ γ

[

ξ̃i(0)

µ̃i(0)

]T

W−1

[

ξ̃i(0)

µ(0)

]

= γξ̃i(0)
TW−1

1 ξ̃i(0)

+ γ(µ(0) +G(λi)ξ̃i(0))
TW−1

2 (µ(0) +G(λi)ξ̃i(0))

= γξ̃i(0)
TW−1

1 ξ̃i(0) + γµ̃i,f(0)
TW−1

2 µ̃i,f (0).

Observe from Lemma 9 that V1(ξ̃i,s) = ξ̃Ti,sW
−1
1 ξ̃i,s and

V2(µ̃i,f ) = µ̃T
i,fW

−1
2 µ̃i,f can be viewed as Lyapunov

functions that assure the stability of the slow and fast
systems, respectively, for all ǫ ∈ (0, ǫ∗), which agrees
with the arguments of time-decomposition as in Koko-
tovic et al. (1999). However, conditions of Lemma 9 are
non-convex for the design of the controller (3).

The design of (3) such that conditions (20) and
(21) hold can be done in two steps. First, the gains
(Ac022, Ac22, Bc2, Cc2, Dc) are designed by condition

(21) such that Ã22(λi), i = 2, . . . , n, are Hurwitz us-
ing standard conditions from the literature of dynamic
output feedback control. After that, the obtained gains
are used as input parameters in (20) (Ã22(λi) becomes
an input parameter) and the remaining gains of (3) are
obtained by algebraic manipulations in (20). One may
note that the design in two independent steps is not
convenient since the gains (Ac22, Bc2, Cc2, Dc) may not
be suitable to find a solution for (20) or may yield a
conservative guaranteed cost.

Therefore, we propose a one-step procedure to design
(3) such that (17) and (18) are asymptotic stable with
a guaranteed cost. Firstly, we consider the following
parametrization for the Lyapunov matrices as adopted
in Scherer et al. (1997):

Wi =

[

Xi UT
i

Ui Hi

]

, W−1
i =

[

Yi Vi

V T
i Zi

]

, i = 1, 2, (25)

where X1 ∈ R
nx×nx , Y1 ∈ R

nx×nx , H1 ∈ R
nx×nx , Z1 ∈

R
nx×nx , X2 ∈ R

nz×nz , Y2 ∈ R
nz×nz , H2 ∈ R

nz×nz ,
Z2 ∈ R

nz×nz are symmetric positive definite matrices,
U1 ∈ R

nx×nx , V1 ∈ R
nx×nx , U2 ∈ R

nz×nz , V2 ∈ R
nz×nz

are full row rank. From W−1
1 W1 = I and W−2

2 W2 =
I, one has Y1X1 + V1U1 = I and Y2X2 + V2U2 = I,
respectively.

We observe that matrices Ã11(λi), Ã12(λi), Ã21(λi) and

Ã22(λi) have the same structure, then the product with
the Lyapunov matrices can be handled with the con-
gruence transformation and the change of variables pro-
posed by Scherer et al. (1997). Define the following non-

singular matrices

T1 =

[

I Y1

0 V T
1

]

, T2 =

[

I Y2

0 V T
2

]

. (26)

Then, pre- and post-multiplying (20) by diag(T T
1 , I) and

its transpose, respectively, and introducing the terms
T2T

−1
2 = I and W2T2T

−1
2 W−1

2 = I in appropriate posi-
tions, one can observe that the inequality (20) is equiv-
alent to




He

{

T T
1 Ã11(λi)W1T1 −∆1

}

⋆

C̃z1(λi)W1T1 −∆2 −γI



 < 0, (27)

i = 2, . . . , n, where

∆1 = T T
1 Ã12(λi)(W2T2T

−1
2 W−1

2 )Ã22(λi)
−1

× (T−T
2 T T

2 )Ã21(λi)W1T1

∆2 = C̃z2(λi)(W2T2T
−1
2 W−1

2 )Ã22(λi)
−1

× (T−T
2 T T

2 )Ã21(λi)W1T1,

that can be rewritten as

[

He
{
Ψ11(λi)−Ψ12(λi)Ψ22(λi)

−1Ψ21(λi)
}

⋆

Λ1(λi)− Λ2(λi)Ψ22(λi)
−1Ψ21(λi) −γI

]

< 0,

(28)

where Ψjk(λi) = T T
j Ãjk(λi)WkTk and Λj(λi) =

C̃zj(λi)WjTj , j, k = 1, 2. If we define the following
variables

Lj =
[

DcCj Ccj

]
[

Xj

Uj

]

, Fj =
[

Yj Vj

]
[

BjDc

Bcj

]

Qjk =
[

Yj Vj

]
[

BjDcCk BjCck

BcjCk Acjk

][

Xk

Uk

]

,

Sjk =
[

Yj Vj

]
[

Ajk 0

0 Ac0jk

][

Xk

Uk

]

.

(29)
the terms Ψjk and Λj can be rewritten as

Ψjk(λi) =

[

AjkXk − λiBjLk Ajk − λiBjDcCk

−λiQjk + Sjk YjAjk − λiFjCk

]

,

Λj(λi) =
[

Czj(λi)Xj − λiDLj Czj(λi)− λiDDcCj

]

.

(30)

Observe in (30) that Ψjk(λi) and Λj(λi) are affine in
the variables Xj , Yj , Lj , Fj , Qjk and Dc. Exploring
this property, Lemma 6 can be applied to decouple the
product involving the terms Ψjk(λi) and Λj(λi) in (28).
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Remark 10 Note that the conditions in Lemma 9 de-
pend on λi, that are assumed to be unknown. To ob-
tain finite dimension conditions we represent λi and

√
λi

as convex combinations of their extreme values, that is,
λi ∈ Co{δ1, δ2} and

√
λi ∈ Co{

√
δ1,

√
δ2}, where Co de-

notes the convex hull.

Using the structure of the Lyapunov matrix (25) and the
change of variables (29), we propose convex conditions
for Lemma 9 and, therefore, to solve Problem 3.

Theorem 11 If there exist symmetric positive definite
matrices X1 ∈ R

nx×nx , Y1 ∈ R
nx×nx , X2 ∈ R

nz×nz ,
Y2 ∈ R

nz×nz , a scalar γ ∈ R+ and matrices F1 ∈
R

nx×ny , L1 ∈ R
nu×nx , F2 ∈ R

nz×ny , L2 ∈ R
nu×nz

Q11 ∈ R
nx×nx , Q12 ∈ R

nx×nz , Q21 ∈ R
nz×nx , Q22 ∈

R
nz×nz , S11 ∈ R

nx×nx , S12 ∈ R
nx×nz , S21 ∈ R

nz×nx ,
S22 ∈ R

nz×nz and Dc ∈ R
nu×ny , a scalar ς > 0, and a

given matrix I ∈ R
2nx×2nz , such that

[

Xi I

I Yi

]

> 0, i = 1, 2, (31)

Ξℓ,κ < 0, ℓ, κ = 1, 2, (32)

hold with

Ξℓ,κ =







He {Ψ11(δℓ) + Θ(δℓ)} ⋆ ⋆

Ω(δℓ) ςHe {Ψ22(δℓ)} ⋆

Λ̃1(δℓ, δκ) + Λ̃2(δℓ, δκ)IT ςΛ̃2(δℓ, δκ) −γI






,

(33)
and

Θ(δℓ) = IΨ12(δℓ)
T , (34)

Ω(δℓ) = Ψ21(δℓ) + Ψ22(δℓ)IT + ςΨ12(δℓ)
T , (35)

Λ̃i(δℓ, δκ) =
[

Czi(δκ)Xi − δℓDLi Czi(δκ)− δℓDDcCi

]

,

(36)
i = 1, 2, with Ψij(·), i, j = 1, 2, given by (30), then there
exists ǫ∗ > 0 such that for all ǫ ∈ (0, ǫ∗) the controller
(3) with gains

[

Acij Bci

Ccj Dc

]

=

[

V −1
i −V −1

i YiBi

0 I

][

Qij Fi

Lj R

]

×
[

U−1
j 0

−CjXjU
−1
j I

]

,

(37)

Ac0ij = V −1
i (Sij − YiAijXj)U

−1
j , i, j = 1, 2, (38)

where Vi and Ui are such that YiXi + ViUi = I, i, j =
1, 2, asymptotically synchronize with local information
the multi-agent system (1). Furthermore, the guaran-
teed cost J̄i such that Ji ≤ J̄i, i = 2, . . . , n, is given by

J̄i = γξ̃i(0)
TW−1

1 ξ̃i(0) + γµ̃i,f (0)
TW−1

2 µ̃i,f (0), where

µ̃i,f (0) = µ̃i(0) +Gξ̃i(0).

PROOF. First, observe that Λj(λi) ∈ Co{Λ̃j(δ1, δ1),

Λ̃j(δ1, δ2), Λ̃j(δ2, δ1), Λ̃j(δ2, δ2)} and Ψjk(λi) ∈
Co{Ψjk(δ1),Ψjk(δ2)}, j, k = 1, 2, then, from the defini-
tion of Ξi,κ in (33), one has Ξ(λi) ∈ Co{Ξ1,1,Ξ1,2,Ξ2,1,
Ξ2,2}, where

Ξ(λi) =







He
{
Ψ11(λi) + IΨ12(λi)

T
}

Ψ21(λi) + Ψ22(λi)IT + ςΨ12(λi)
T

Λ1(λi) + Λ2(λi)IT

⋆ ⋆

ςHe {Ψ22(λi)} ⋆

ςΛ2(λi) −γI







Therefore, (32) implies Ξ(λi) < 0 for all λi ∈ [δ1, δ2].

Note that inequality (31) is equivalent to T T
i WiTi > 0,

with W1 and W2 as in (25) and T1 and T2 as in (26).
Then Wi > 0, i = 1, 2, since Ti is nonsingular.

Observe that the inequality (28) can be written as con-
dition (i) of Lemma 6 with

M0 =

[

He {Ψ11(λi)} ⋆

Λ1(λi) −γI

]

, (39)

MT
1 = −

[

Ψ12(λi)

Λ2(λi)

]

Ψ22(λi)
−1, M2 =

[

Ψ21(λi) 0
]

,

(40)

where the inverse of Ψ22(λi) is well defined due to the
block (2,2) of Ξ(λi). If we define P

T
1 = −Ψ22(λi)[IT 0]

and P2 = −ςΨ22(λi)
T , then condition (ii) of Lemma 6 is

equivalent to Ξ(λi) < 0. Therefore, by Lemma 6, if (33)
holds, then (28) is satisfied. By considering the change of
variables (25) and (29), rewriting (28) as (27), pre- and

post-multiplying (27) by diag(T−T
1 , I) and its transpose,

respectively, one obtains (20). Finally, pre- and post-

multiplying Ξ(λi) < 0 by [0 T−T
2 0], one obtains (21) for

any ς > 0. By Lemma 9, we conclude the proof.

Remark 12 Condition (33) becomes an LMI for fixed
values of ς and I. Matrix I is a given matrix used to
adjust the dimension in (33) for the case nx 6= nz. We
have observe good numerical results for the choice I = 0
or I = τI, where I ∈ R

2nx×2nz is a matrix with ones on
the main diagonal and zeros elsewhere, and τ ∈ R is a
scalar that represents an extra degree of freedom.
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Remark 13 The inequality (28) can be also written as
condition (i) of Lemma 6 with

M1 = Ψ22(λi)
−1

[

Ψ21(λi) 0
]

, MT
2 = −

[

Ψ12(λi)

Λ2(λi)

]

and M0 as in (39). Therefore, the choice PT
1 =

−[I 0]Ψ22(λi)
T and P2 = −ςΨ22(λi)

T yields Ξℓ,κ in
(33) with

Θ(δℓ) = IΨ21(δℓ),

Ω(δℓ) = Ψ12(δℓ)
T +Ψ22(δℓ)

TIT + ςΨ21(δℓ).
(41)

The conditions of Theorem 11 with (34) and (41) are not
equivalent yielding different controllers and costs.

3.2 ǫ-independent DOF controllers

In this section, we design an output controller that does
not depend on ǫ. Wemay be motivated by the case where
ǫ is uncertain but supposed to be upper bounded by a
known value or by the design of controllers that do not
contain fast variables due to processing constraints or
limitations in the bandwidth of the actuator response.

We propose the following ǫ-independent DOF con-
troller 1 :

η̇i(t) = Ac011ηi(t) +Ac11ϑi(η(t)) +Bc1ϑi(y(t))

ui(t) = Cc1ϑi(η(t)) +Dcϑi(y(t))
(42)

yielding the individual set of n−1 closed-loop dynamics
given by (7) with matrices

Ã11(λi) =

[

A11 − λiB1DcC1 −λiB1Cc1

−λiBc1C1 −λiAc11 +Ac011

]

,

Ã12(λi) =

[

A12 − λiB1DcC2

−λiBc1C2

]

,

Ã21(λi) =
[

A21 − λiB2DcC1 −λiB2Cc1

]

,

Ã22(λi) = A22 − λiB2DcC2,

(43)

and (13) expressed with

C̃z1(λi) =
[

Cz1(λi)− λiDDcC1 −λiDCc

]

,

C̃z2(λi) = Cz2(λi)− λiDDcC2.

The following result is presented to design (42).

1 We maintained the same subscription pattern for the con-
troller’s gains so that we benefit from the previous variable
definitions.

Theorem 14 If there exist symmetric positive definite
matrices X1 ∈ R

nx×nx , Y1 ∈ R
nx×nx , W2 ∈ R

nz×nz , a
scalar γ ∈ R+ andmatrices F1 ∈ R

nx×ny ,L1 ∈ R
nu×nx ,

Q11 ∈ R
nx×nx , S11 ∈ R

nx×nx , and Dc ∈ R
nu×ny , a

scalar ς > 0, and a given matrix I ∈ R
2nx×nz , such that

(31) and

Ξℓ,κ < 0, Υℓ < 0, ℓ, κ = 1, 2, (44)

hold with

Ξℓ,κ =







He
{
Ψ11(δℓ) + Iϕ12(δℓ)

T
}

ϕ21(δℓ) + Ã22(δℓ)IT + ςϕ12(δℓ)
T

Λ̃1(δℓ, δκ) + Λ̃2(δℓ, δκ)IT

⋆ ⋆

ςHe
{

Ã22(δℓ)
}

⋆

ςΛ̃2(δℓ, δκ) −γI






, (45)

ϕ12(δℓ) =

[

A12 − δℓB1DcC2

Y1A12 − δℓF1C2

]

,

ϕ21(δℓ) =
[

A21X1 − δℓB2L1 A21 − δℓB2DcC1

]

,

Λ̃2(δℓ, δκ) = Cz2(δκ)− δℓDDcC2,

Υℓ =

[

He {A22W2 − δℓB2DcC2} ⋆

C2W2 − C2 − δℓD
T
c B

T
2 −2I

]

, (46)

where Ψ11(·) and Λ̃1(·) given by (30) and (36), respec-
tively. Then there exists ǫ∗ > 0 such that for all ǫ ∈ (0, ǫ∗)
the controller (42) asymptotically synchronize with lo-
cal information the multi-agent system (1). The gains of
(42) are given by (37) and (38) with i = j = 1 where V1

and U1 are such that Y1X1 + V1U1 = I. Furthermore,
the guaranteed cost J̄i such that Ji ≤ J̄i, i = 2, . . . , n, is
given by J̄i = γξ̃i(0)

TW−1
1 ξ̃i(0)+ γµ̃i,f (0)

TW−1
2 µ̃i,f (0).

PROOF. First, observe that the inequality (20) with
matrices (43) is equivalent to




He

{

T T
1 Ã11(λi)W1T1 −∆1

}

⋆

C̃z1(λi)W1T1 −∆2 −γI



 < 0

with

∆1 = T T
1 Ã12(λi)Ã22(λi)

−1Ã21(λi)W1T1

∆2 = C̃z2(λi)Ã22(λi)
−1Ã21(λi)W1T1,
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or, alternatively,




He

{

Ψ11(λi)− ϕ12(λi)Ã22(λi)
−1ϕ21(λi)

}

Λ1(λi)− (Cz2(λi)− λiDDcC2)Ã22(λi)
−1ϕ21(λi)

⋆

−γI

]

< 0, (47)

for λi ∈ [δ1, δ2], where ϕ12(λi) = T T
1 Ã12(λi) and

ϕ21(λi) = Ã21(λi)W1T1. Following similar steps of the
proof of Theorem 11, if we apply Lemma 6 with

M0 =

[

He {Ψ11(λi)} ⋆

Λ1(λi) −γI

]

,

MT
1 = −

[

ϕ12(λi)

Cz2(λi)− λiDDcC2

]

Ã22(λi)
−1,

M2 =
[

ϕ21(λi) 0
]

, PT
1 = −Ã22(λi)[IT 0],

P2 = −ςÃ22(λi)
T , then Ξℓ,κ < 0, ℓ, κ = 1, 2, implies

(47), and consequently (20), for all λi ∈ [δ1, δ2]. Finally,
pre- and post-multiplying Υℓ < 0 by [I B2Dc] and its
transpose, one gets (21).

Remark 15 Observe that, unlike Theorem 11, Theo-
rem 14 needs an extra LMI to satisfy (21). Condition (21)

with Ã22 given in (43) is interpreted as the static out-
put feedback control problem with gain Dc to be designed.
We could use standard conditions from the literature (see
Sadabadi & Peaucelle (2016) for a survey) to design Dc,
however most of them does not present the static gain as
an explicit variable, that is, Dc is recovered from other
decision variables. In this case, condition (21) need to be
solved as a previous step and the gainDc used as an input
parameter to solve Ξℓ,κ < 0 yielding more a conservative
result. Condition Υℓ < 0 circumvent this problem allow-
ing the design of Dc and the other gains of the controller
(42) concurrently.

Remark 16 Observe that the control signal of con-
troller (42) is composed by slow and fast variables,
ui = Ccϑi(η) +DcC1ϑi(x) +DcC2ϑi(z). If we consider
the boundary-layer (fast) system open-loop stable, that
is, A22 Hurwitz, one can design strictly proper con-
trollers by imposing Dc = 0 in Theorem 14. In this case,
the control signal ui(t) does not contain the fast variable
zi(t) avoiding the necessity fast actuators that can be
expensive or even impossible to use.

Remark 17 The techniques proposed in this paper can
also be adapted to the problem of designing DOF con-
trollers for singularly perturbed systems. The dynamic is
described by (1) with n = 1 (one agent) and the objective

is to design a DOF controller that minimizes the follow-
ing quadratic cost function:

J =

∫
∞

0

x(t)TQxx(t) + z(t)TQzz(t) + u(t)TRu(t)dt,

where Qx ≥ 0, Qz ≥ 0 and R > 0 are symmetric ma-
trices that weights the effort of the control action and
convergence of the trajectories.

The ǫ-dependent and ǫ-independent DOF controllers are
given by

[

η̇(t)

ǫν̇(t)

]

=

[

Ac11 Ac12

Ac21 Ac22

][

η(t)

ν(t)

]

+

[

Bc1

Bc2

]

y(t)

u(t) =
[

Cc1 Cc2

]
[

η(t)

ν(t)

]

+Dcy(t)

(48)

and
η̇c(t) = Ac11η(t) +Bc1y(t)

u(t) = Cc1η(t) +Dcy(t),
(49)

respectively.

In Theorems 11 and 14 just impose Sij = 0, ij = 1, 2,
δℓ = −1, ℓ = 1, 2 and replace Czi(δκ), i = 1, 2, by

[

Cz1 Cz2

]

=







√
Qx

0

0

0
√
Qz

0







inmatrices Ξℓ,κ andΥℓ. The controller gains are recovery
by

[

Acij Bci

Ccj Dc

]

=

[

V −1
i −V −1

i YiBi

0 I

]

×
[

Qij − YiAijXj Fi

Lj Dc

] [

U−1
j 0

−CjXjU
−1
j I

]

.

Despite the existence of many works for this problem,
we propose a more suitable solution with the following
advantages: output stabilization of nonstandard singu-
larly perturbed systems (A22 singular), the design of ǫ-
independent DOF controllers and the minimization of a
guaranteed cost by LMIs.

3.3 Guaranteed cost evaluation

To evaluate the guaranteed cost J̄i, i = 2, . . . , n, it is
necessary to compute W−1

1 and W−1
2 from the variables

Xj and Yj , j = 1, 2, obtained in Theorems 11 and 14.
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From the relation W−1
j Wj = I and (25), one has Zj =

−U−T
j XjVj , whereUj and Vj are square and nonsingular

matrices satisfying YjXj + VjUj = I. The choice Uj =
−Xj, with no loss of generality, yields Zj = Vj , that is,

W−1
j =

[

Yj Vj

Vj Vj

]

, Vj = Yj −X−1
j . (50)

Note that Theorems 11 and 14 provide guaranteed costs
for the individual plants. The global guaranteed cost
J̄ can be obtained by the summation of all guaranteed
costs, that is, J̄ =

∑n
i=2 J̄i.

Remark 18 The guaranteed costs given by Theorems 11
and 14 does not depend on the singular perturbation pa-
rameter ǫ. However the obtained J̄i depends on the initial
conditions of the agents. As a matter of simplicity, we
can consider the dynamic controller with zero initial con-
ditions, that is, ξ̃i(0) = (x̃i(0), 0) and µ̃i(0) = (z̃i(0), 0),
yielding

J̄ = γx̃−(0)
T (In−1 ⊗ Y1)x̃−(0)

+ γµ̃−f (0)
T (In−1 ⊗W−1

2 )µ̃−f (0),

with x̃−(t) = (x̃2(t)
T , . . . , x̃n(t)

T )T ∈ R
(n−1)nx and

µ̃−f (t) = (µ̃2,f (t)
T , . . . , µ̃n,f(t)

T )T ∈ R
(n−1)nz .

The dependence on the initial conditions can be com-
pletely removed if we consider (ξ̃i(0), µ̃i(0)) ∈ Σi, where

Σi = {(ξ̃i, µ̃i) ∈ R
2nx+2nz : V (ξ̃i, µ̃i) ≤ 1}.

In this case, one has Ji ≤ γV (ξ̃i(0), µ̃i(0)) ≤ γ, i =
2, . . . , n, and the global guaranteed cost is J̄ = (n− 1)γ.

Remark 19 If we consider ξ̃i(0) = (x̃i(0), 0) and
µ̃i(0) = (z̃i(0), 0), we can minimize J̄ for a given γ
by the minimization of the trace of Y1 and W−1

2 . Con-
sidering the structure of the Lyapunov matrix given in
(25), one has Tr

(
W−1

2

)
= Tr

(
Y2 + Y2 −X−1

2

)
where

Y2 − X−1
2 > 0 from (31). Therefore, the minimiza-

tion of the guaranteed cost is obtained by solving the
following optimization problem: min Tr (Q) subject to
Q > diag(Y1, Y2) and relations of Theorem 11 (Theo-
rem 14).

Remark 20 It is possible to determine ǫ∗ by taking the
controllers (3) or (42) obtained in Theorems 11 and 14,
respectively, and solving ǫ∗ = supǫ>0 subject to (23). To
relax the structure on W in (24) and to avoid numerical
problems due to the ill conditioning, the following Lya-

punov function is considered

V(ξ̃i, µ̃i, ǫ) =

[

ξ̃i

µ̃i

]T

P (ǫ)E(ǫ)

[

ξ̃i

µ̃i

]

, P (ǫ) =

[

P1 P12

ǫP ′

12 P2

]

for the closed-loop system described by (22), yielding the
following optimization problem:

ǫ∗ = sup
ǫ>0,P1>0,P2>0,P12,γ>0

ǫ

such that

P (ǫ)E(ǫ) > 0 (51)

Π(δℓ, δκ, ǫ) =

[

P (ǫ)Ã(δℓ) + Ã(δℓ)
TP (ǫ)T ⋆

C̄z(δℓ, δκ) −γI

]

< 0,

(52)

ℓ, κ = 1, 2, where Ã(·) is given by (7) and

C̄z(δℓ, δκ) =
[

Cz1(δκ)− δℓDDcC1 − δℓDCc1

Cz2(δκ)− δℓDDcC2 − δℓDCc2

]

.

Observe that P (ǫ)E(ǫ) > 0 and Π(δℓ, δκ, ǫ) < 0 can be
written as P1+O(ǫ) < 0 and Π(δℓ, δκ, 0)+O(ǫ) < 0, re-
spectively, where O(ǫ) → 0 when ǫ → 0. Therefore, there
is no numerical problems to solve (51)–(52) for small val-
ues of ǫ. Furthermore, the guaranteed cost can be recal-
culated by J̄ =

∑n
i=2 J̄i, with J̄i = γV(ξ̃i(0), µ̃i(0), ǫ

∗).

4 Numerical simulations

In the numerical examples we adopt I = τI with τ ∈ R.
Therefore, a search must be performed in the scalar τ
in Theorems 11– 14. The same for the scalar ς . In the
numerical examples, the choice (ς, τ) = (1, 0) has been
adopted whenever the conditions are feasible otherwise
a search has been done in the following sets ς ∈ U =
{1, 10−1, 10−2, 10−3, 10−6, 10−9} and τ ∈ {0} ∪ U ∪ −
U .

The first and second example illustrate the main results
where in the first one the agents converge to a static
manifold and in the second one to an oscillating trajec-
tory. The third example shows the design of a DOF con-
troller for singularly perturbed systems, as presented in
Remark 17.

Example 21 Consider the synchronization of three

11



agents as in (1) where (Rejeb et al. 2018):

A11 =

[

2.5 −6

−2 2

]

, A12 =

[

2 3

0 −2

]

, A21 =

[

0.5 2

−1 1

]

,

A22 =

[

−2 1

0 −1

]

, B1 =

[

2

1

]

, B2 =

[

1

1

]

,

C1 =
[

0 1
]

, C2 =
[

0 0
]

.

The communication network is described by an undirected
graph G, connected, and with weights belonging to the
interval [1, 2]∪{0} yielding δ1 = 0.0278 and δ2 = 6. The
nominal Laplacian matrix is given by:

L =







3 −1 −2

−1 3 −2

−2 −2 4






.

In the design, we consider R = 1 and matrices Cz1(λi),
Cz2(λi), and D are given by (12) where λi ∈ [δ1, δ2].
Theorem 11 provided solution for several values of ς and τ
such that (7) is stable for all ǫ ∈ (0, ǫ∗) and λi ∈ [δ1, δ2].
For the time simulations presented next, we adopted zero
initial condition for the controller (3) and the following
initial conditions for the three agents: [2.5, 2.0, −0.5, −
1.5], [1.5, 1.0, 4.0, − 2.0] and [0.5, − 1.0, 3.0, 1.0].
We present in Figures 1–3 the time-simulation adopting
ǫ = 0.01 that satisfies (51)–(52). The controller (3) is
obtained by Theorem 11 and the minimization problem
as in Remark 19 with I = τI, τ = ς = 0.1. The gains
are given by:




Ac11 Ac12

Ac21 Ac22



 =










−292.57 −8556.06 −109.18 −125.39

482.77 3453.70 180.19 206.90

172.64 −401.76 64.44 73.99

174.74 −410.90 65.22 74.89










,




Bc1

Bc2



 =










−9244.45

4589.69

4.48

0.28










, Dc = −0.11,

[

Cc1 Cc2

]

=
[

−169.42 398.54 −63.24 −72.60
]

,




Ac011 Ac012

Ac021 Ac022



 =










108.25 −198.85 18.31 71.13

−54.47 97.69 −8.09 −35.81

0.69 1.56 −2.02 0.99

−0.69 0.27 −0.04 −1.02










.

(53)

Figures 1 and 2 show the synchronization of the slow,
fast and controller (slow and fast) state variables with
the change of variable (6). As expected, the transformed
variables go to zero in the consensus. Figure 3 illustrates
the consensus of the slow and fast states of the closed-
loop system. We see the trajectories of agents 2 and 3
converging to the synchronization manifold given by the
trajectories of agent 1. Finally, it is worthy to mention
that, differently from Rejeb et al. (2018), only the slow
state x2 is measured.
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0
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4

6

Time (s)

z̃
(t
)

z̃2,1
z̃2,2
z̃3,1
z̃3,2

Fig. 1. Trajectories of x̃(t) (left) and z̃(t) (right) for Exam-
ple 21.
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Fig. 2. Trajectories of the states of the controller (η̃i(t), ν̃i(t)),
i = 1, 2, for Example 21.
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-8
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z
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)
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Agent 2
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Fig. 3. State trajectories of the system for Example 21.

Example 22 Example 21 is adapted to illustrate oscil-
lating trajectories for the consensus manifold considering
the same graph and number of agents,

A =




A11 A12

A21 A22



 =










0 0 1 0

0 −1 0 0

−1 0 0 0

0 0 0 −1










, C2 =
[

1 1
]
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and, B1, B2 and C1 the same of Example 21. Note that
A is the rotation matrix (with rotation angle of π/2) in
R

4 to get a pair of pure imaginary eigenvalues, and C2

is modified to make system (1) observable.

The controller (3) is obtained by Theorem 11 with ς = 0.1
and I = 0.1I. The synchronization of the slow and fast
state variables of the closed-loop system can be observed
from the trajectories of the transformed variables x̃ and
z̃ presented in Figure 4 with the same initial states of
Example 21. Figure 5 and 6 depict slow and fast state
trajectories of the closed-loop system, respectively. One
observes two manifolds, the first state of each agent con-
verges to an oscillating trajectory and the second one to
a fixed value. Clearly, the figures demonstrated that con-
sensus is reached.

0 0.5 1 1.5 2 2.5 3 3.5 4
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x̃3,1
x̃3,2
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Time (s)

z̃
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z̃2,2
z̃3,1
z̃3,2

Fig. 4. Trajectories of x̃(t) and z̃(t) for Example 22.
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x
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Fig. 5. Trajectories of xi,1 (left) and xi,2 (right) for agent
i ∈ {1, 2, 3} for Example 22.

Example 23 Let system (1) with n = 1 given by the
nominal singularly perturbed in Kokotovic et al. (1999),
Daafouz et al. (1999a), Garcia et al. (1998) with the

0 0.5 1 1.5 2
-25

-20

-15

-10

-5

0

5

10

15

20

25

0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)Time (s)

z i
1
(t
)

z1,1
z2,1
z3,1

z i
2
(t
)

z1,2
z2,2
z3,2

Fig. 6. Trajectories of zi,1 (left) and zi,2 (right) for agent
i ∈ {1, 2, 3} for Example 22.

following matrices:

A11 =

[

−0.195 −0.676

1.478 0

]

, A12 =

[

−0.917 0.109

0 0

]

,

A21 =

[

−0.052 0

0.014 0

]

, A22 =

[

−0.368 0.438

−2.103 −0.215

]

,

B1 =

[

−0.023

−16.945

]

, B2 =

[

−0.048

−3.811

]

, D =

[

0

10

]

,

C1 =

[

0 1

0 0

]

, C2 =

[

0.921 −0.161

0 1

]

, Cz1 =

[

0.1 0

0 0

]

and Cz2 = 0. Theorem 11 with ς = 1, I = 0 provides the
following gains for the controller (48)




Ac11 Ac12

Ac21 Ac22



 =










−0.35 −0.49 −1.0 −1.3

1.3 −1.9 −1.4 −5.7

−0.16 0.023 −0.76 0.19

0.17 2.4 0.1 −0.53










,




Bc1

Bc2



 =










0.16 −1.3

−1.4 −5.6

0.016 −0.14

2.1 0.038










, Dc =
[

−0.59 0.31
]

10−9,

[

Cc1 Cc2

]

=
[

−2.68 −21.44 −3.94 1.13
]

10−3.

The singular perturbation parameter is ǫ = 0.0336
(Kokotovic et al. 1999) and we verify that the open and
closed-loop systems are stable for arbitrarily large values
of ǫ. We would like to highlight the following scenarios
that cannot be handled by the classical approaches Koko-
tovic et al. (1999), Daafouz et al. (1999b,a), Garcia
et al. (1998).
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We consider now the case of designing ǫ-independent
DOF controllers. The following gains for the controller
(49) are obtained by Theorem 14 with ς = 10−3, and
I = −0.01I:

Ac11 =

[

3.13 14.34

−1.01 −4.04

]

, Bc1 =

[

−0.81 −18.63

−1.44 −5.71

]

,

Cc1 =
[

−0.58 −1.69
]

, Dc =
[

−0.063 1.063
]

.

We can also imposeDc = 0 to obtain a control signal u(t)
independent of the fast variable as a matter of actuator
rate constraints, as point out in Remark 16, yielding the
following gains for the controller (49) obtained by Theo-
rem 14 with ς = 10−9 and I = 0:

Ac11 =

[

−0.39 −2.10

1.33 −1.39

]

, Bc1 =

[

−1.36 −3.96

−1.30 −1.67

]

,

Cc1 =
[

−2.00 −0.32
]

· 10−2.

Wewould like to stress the advantage of the proposed con-
ditions over the existing results in the literature by impos-
ing matrix A22 singular and with an unstable eigenvalue.
The arbitrary choice is made (eigenvalues 0 and 0.07):

A22 =

[

−0.368 0.438

−0.368 0.438

]

. The following gains for the con-

troller (48) are obtained with Theorem 11 with ς = 1 and
I = 0:




Ac11 Ac12

Ac21 Ac22



 =










−0.24 −0.56 −61.21 −386.77

1.26 −3.13 −780.86 −4751.98

−0.11 −1.43 −48.77 −283.93

0.07 3.36 −102.80 −646.94










,




Bc1

Bc2



 =










0.11 −19.01

−1.62 −81.69

−1.35 −12.00

3.51 1.41










, Dc =
[

2.90 2.12
]

· 10−8,

[

Cc1 Cc2

]

=
[

−0.010 −0.086 −31.10 −183.62
]

.

5 Conclusion

In this work, we presented results on the design of decen-
tralized dynamic output feedback protocols for the syn-
chronization of singularly perturbed systems. The de-
signs proposed do not require the fast dynamic matrix
to be nonsingular, the knowledge on the singular pertur-
bation parameter and fast actuators to stabilize the fast
dynamics. On top of that, we are able to guaranty that

the overall synchronization cost is upper bounded by a
value that can be a priori computed. The results are also
extended for implementation oriented output feedback
stabilizationmethods. Numerical simulations emphasize
the effectiveness of our results.
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currently Full Professor at Université
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