
HAL Id: hal-03154669
https://hal.science/hal-03154669

Preprint submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Hypercontractivity for Markov semi-groups
C. Roberto, B. Zegarlinski

To cite this version:

C. Roberto, B. Zegarlinski. Hypercontractivity for Markov semi-groups. 2024. �hal-03154669�

https://hal.science/hal-03154669
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


HYPERCONTRACTIVITY FOR MARKOV SEMI-GROUPS

C. ROBERTO AND B. ZEGARLINSKI

Abstract. We investigate in a systematic way hypercontractivity property in Orlicz
spaces for Markov semi-groups related to homogeneous and non homogeneous diffusions
in Rn. We provide an explicit construction of a family of Orlicz functions for which we
prove that the associated hypercontractivity property is equivalent to a suitable func-
tional inequality.

1. Introduction

The first aim of this paper is to give a unified setting for strong contractivity properties
of Markov semi-group to be satisfied with respect to suitable family of Luxembourg norms
in Orlicz spaces.

Initiated by Nelson in the late sixties [Nel66, Nel73a, Nel73b] in quantum field theory,
the notion of hypercontractivity of the Ornstein-Ulhenbeck process was put in light by
Gross’ seminal work [Gro75]. One of the main observation of Gross is that hypercon-
tractivity is equivalent to the so called log-Sobolev inequality. See also [Fed69, Sta59] for
earlier papers on related topic.

More precisely, let γn be the standard Gaussian measure on Rn. Then the Ornstein-
Uhlenbeck semi-group (Pt)t≥0, whose infinitesimal generator is L := ∆ − x · ∇ (with the
dot sign standing for the Euclidean scalar product), is reversible with respect to γn and
satisfies the following remarkable hypercontractivity property: for any f : Rn → R smooth
enough it holds

‖Ptf‖q(t) ≤ ‖Psf‖q(s), s ≤ t
where q(t) = 1 + (q(0)− 1)e2t, q(0) ≥ 1, and ‖g‖pp :=

∫
|g|pdγn, p ≥ 1. Such a contraction

property is equivalent [Gro75] to the following log-Sobolev inequality: for any f : Rn → R
smooth enough, it holds

Entγn(f2) :=
∫
f2 log f2dγn −

∫
f2dγn log

∫
f2dγn ≤ 2

∫
|∇f |2dγn.

Using Gross’ paper and Γ2-calculus of Bakry-Emery [BE85, Bak94], it can be immediately
proved that any semi-group associated to a diffusion of the form L := ∆ −∇V · ∇, with
V satisfying Hess(V ) ≥ ρ > 0, as a matrix, enjoys the hypercontractivity property as
above with reference measure having density e−V with respect to the Lebesgue measure
and q(t) = 1 + (q(0)− 1)e(4/ρ)t, q(0) ≥ 1.

From the seventies, both the hypercontractivity property and the log-Sobolev inequality
found a huge amount of applications in various fields, including Analysis (isoperimetry,
concentration of measure phenomenon, convex geometry), Statistical mechanics, Infor-
mation Theory and others. Giving an exhaustive presentation of the literature is out of
reach. We refer to the textbooks [ABC+00, Led01, GZ03, BGL14, Mas07, O’D14] for an
introduction and references.

Key words and phrases. Hypercontractivity, Ornstein-Uhlenbeck semigroup, Markov semi-groups, Γ2
calculus.

Work supported by the Labex MME-DII funded by ANR, reference ANR-11-LBX-0023-01 and ANR-15-
CE40-0020-03 - LSD - Large Stochastic Dynamics, the grant of the Simone and Cino Del Duca Foundation,
and the grant Research Impulse Award DRI165BZ in the UK.

1

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0022123622000593
Manuscript_34d5825aef89c448d646daeee1b81a8b

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0022123622000593
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0022123622000593


Now, let Φ: R+ → R+ be a continuous convex function satisfying Φ(x) = 0 iff x = 0.
Later on we may call such a function a Young function1. Then, given f : Rn → R such
that

∫
Φ(αf)dγn < +∞ for some α > 0, one can define the so-called Luxembourg norm

associated to Φ and γn as

‖f‖Φ = inf
{
λ > 0 :

∫
Φ
( |f |
λ

)
dγn≤ 1

}
.

The power function Φ(x) = |x|p, p ≥ 1, trivially corresponds to the usual Lp-norm intro-
duced above ‖f‖Φ = ‖f‖p. The space of all functions with finite Luxembourg norm will
be denoted by LΦ(γn) (or simply LΦ when there is no confusion, note however that norms
are always computed with an underlying measure).

With this definition at hand, for the family of Young functions Φt(x) = |x|q(t), x ∈ R,
t ≥ 0 with q(t) = 1 + (q(0)− 1)e2t, q(0) ≥ 1, the hypercontractivity above can be restated
as follows

‖Ptf‖Φt ≤ ‖Psf‖Φs , s ≤ t.

In other words, the Ornstein-Uhlenbeck semi-group is a contraction along the family of
Orlicz spaces (LΦt)t≥0.

Following Gross’ ideas, in [BCR06] the authors proved that some contraction prop-
erty along a different type of family of Orlicz spaces could hold. Consider the following
infinitesimal generator2 in dimension n, L := ∆ − ∇V · ∇, with V (x) =

∑n
i=1 |xi|α,

α ∈ [1, 2], x ∈ Rn. Denote by (Pt)t≥0 the associated semi-group and by µ(dx) =
Z−1e−V (x)dx, x ∈ Rn, the associated reversible probability measure, Z :=

∫
e−V (x)dx

being the normalization constant. Finally define Φt(x) = |x|peq(t)F (x) with F (x) :=
log(1 + x)2(α−1)/α − log(2)2(α−1)/α, q(t) = Ct for some constant C > 0, and p > 1.
By construction LΦt ⊂ LΦs ⊂ Lp for any s ≤ t and LΦt 6⊂ Lp+ε for any ε > 0, t ≥ 0 and
α ∈ [1, 2) (since eq(t)F (x) � |x|ε near infinity, for any α ∈ [1, 2)).

In [BCR06] it is proved that (Pt)t≥0 is a contraction along the family of Orlicz spaces
(LΦt)t≥0: namely that, for any s ≤ t, it holds ‖Ptf‖Φt ≤ ‖Psf‖Φs . Moreover, such a
contraction property is equivalent to the following, known as F -Sobolev inequality ([Ros76,
Wan00]): for any f : Rn → R it holds∫

f2F

(
f2∫
f2dγn

)
dµ ≤ C ′

∫
|∇f |2dµ

where C ′ is a constant that depends on C and α. Note that α = 2 corresponds to the
Gaussian case depicted above. Such inequalities and contraction properties were used
to establish dimension free isoperimetric inequalities and concentration properties for µ
[BCR06, BCR07]. We refer the reader to [Wan13] for explicit criterion for a F -Sobolev
inequality to hold, and to [Wan00] for associated contraction property of the semi-group.

Motivated by the previous two fundamental examples, the aim of this paper is to inves-
tigate on contraction properties ‖Ptf‖Φt ≤ ‖Psf‖Φs , s ≤ t, along abstract general family
of Orlicz spaces (LΦt)t≥0, together with possible connection with functional inequalities of
F -Sobolev type.

1Note however that, usually, one does not require in the definition of a Young function neither the
regularity assumption, nor the condition φ(x) = 0 iff x = 0

2More precisely one should consider a regularized version of |x|α in a neighborhood of the origin. For
the sake of simplicity we may avoid such technical considerations in this introduction, that are irrelevant
for our purpose, and we refer to [BCR06] for details



The second objective of the paper is to explore a more general setting which would
include inhomogeneous diffusion operators associated to one parameter families of prob-
ability measures that we now introduce. Consider Lt := ∆ − ∇Vt · ∇, t ≥ 0, on Rn,
with Vt smooth enough and such that

∫
e−Vt = 1 so that µt(dx) = e−Vt(x)dx is a prob-

ability measure on Rn for all t ≥ 0. The associated semi-group will be denoted by
(P (t)

s )s≥0 (we refer to e.g. [Bak94, GZ03] for its construction and related technicali-
ties) which is reversible in L2(µt). One wishes to obtain contraction bounds of the type
‖P (t)

t f‖Φt ≤ m(t, s)‖P (s)
s f‖Φs , s ≤ t for some function m possibly equal to 1.

Thus in the more general setting we not only change with time the Orlicz functions,
but also the underlying probability measures. Here we are interested in a class of flows
through Orlicz spaces and how it relates to an action of contractions.

Besides interesting generalisations, we hope that our results can be used in the future
to study linear and nonlinear parabolic time dependent problems. Note that in case of a
time dependent parabolic problem of the form

∂tu = Lu+ βt · ∇u ≡ Ltu
u|t=0 = f

under suitable conditions on the coefficient βt, one can hope to approximate the solution
on small intervals s ∈ [tn, tn+1] by P

(tn)
s−tnutn . Then one needs to setup a suitable frame-

work to control convergence of such approximation when supn |tn+1 − tn| → 0. While we
mention here as an example a linear problem, we remark that nonlinear semigroups with
hypercontractivity properties has been studied in [FRZ12] and one could possibly extend
the above given idea to the nonlinear time dependent parabolic problems.

Moreover, as suggested to us by a referee, since Gross’s theorem is established for
symmetric Markov processes associated with Dirichlet forms, it is reasonable to conjecture
that most of the result of this paper can be extended to such an abstract framework and
leave this to future investigation.

After Section 2, that collects some technical facts about Orlicz functions/norms, we
deal in Section 3 with the homogeneous setting.

Our first main theorem is Theorem 3.9 that asserts that, for any properly chosen family
of Orlicz spaces (see Section 3.2), we have

‖Ptf‖Φt ≤ ‖Psf‖Φs

if and only if some inequality of log-Sobolev type holds. Theorem 3.9 encompasses the
above two known fundamental examples and can therefore be seen as a generalization of
Gross’ theorem.

Section 4 is devoted to the time-inhomogeneous setting. Our second main result is
Theorem 4.1 which constitutes some analog of Gross’ theorem for inhomogeneous Markov
semi-groups.

Acknowledgment. We warmly thank T. Tao for useful discussion on the topic of this
paper, and the anonymous referees for their suggestions to improve its content and pre-
sentation.

2. Technical preparations

In this section we collect some useful technical facts on various aspects of Young Func-
tions and Luxembourg norms.



2.1. Youngs functions. An even continuous convex function Φ: R → R+ satisfying
Φ(x) = 0 iff x = 0 is called a Young function. If in addition limx→0 Φ(x)/x = 0,
limx→∞Φ(x)/x = +∞, and Φ(R) ⊂ R+, Φ is called a nice Young function, or N -function
[RR91].

Classical examples include Φ(x) = |x|p, p ≥ 1 which is a nice Young function only for
p > 1; Φ(x) = e|x| − |x| − 1, Φ(x) = e|x|

δ − 1, δ > 1 are nice Young functions.
We say that Φ satisfies the ∆2-condition if for some K > 0 and all x ≥ 0, it holds

Φ(2x) ≤ KΦ(x). A useful consequence of the ∆2-condition is the fact that xΦ′(x) compares
to Φ. More precisely,

(2.1) Φ(x) ≤ xΦ′(x) ≤ (K − 1)Φ(x).

The first inequality follows from the convexity property of Φ and Φ(0) = 0, while the
second is a consequence of the ∆2-condition and Φ(2x)− Φ(x) =

∫ 2x
x Φ′(t)dt ≥ Φ′(x)x.

Given a Young function Φ and a probability measure µ, for any f : Rn → R we set

‖f‖Φ := inf
{
λ > 0 :

∫
Φ
( |f |
λ

)
dµ≤ 1

}
∈ [0,∞]

with the convention that inf ∅ = +∞. When useful we may write ‖f‖Φ,µ to emphasize the
underlying measure.

2.2. Derivative of Luxembourg norm. Here we give an explicit expression of the
derivative with respect to time of the following function t 7→ ‖Ptf‖Φt which will constitute
the starting point of our investigations.

In the sequel we will use the following notations. Given a family of twice differentiable
Young functions (Φt)t≥0 = (Φ(t, x))t≥0, we denote by Φ̇t the derivative with respect to t,
and by Φ′t and Φ′′t the first and second order derivative with respect to the second variable
x.

Consider the inhomogeneous diffusion generator Lt := ∆ − ∇Vt · ∇, t ≥ 0, on Rn,
with Vt sufficiently smooth and such that

∫
e−Vtdx = 1 so that µt(dx) = e−Vt(x)dx is

a probability measure on Rn for all t ≥ 0. Denote by (P (t)
s )s≥0 the associated semi-

group. By construction Lt is symmetric in L2(µt) and the following integration by parts
formula holds for any differentiable function Ψ: R → R, any f, g : Rn → R, such that
Ψ(f),∇Ψ(f) ∈ L2(µt) and g is in the domain of Lt.

(2.2)
∫

Ψ(f)Ltgdµt = −
∫

Ψ′(f)∇f · ∇gdµt.

As we explain in Appendix 1, formally we have

∂tP
(t)
t f = Ltf + Vtf

We prove the following differential property.

Lemma 2.1. Let f : Rn → R be a smooth bounded function not equal to zero a.e. and
(Φt)t≥0 be a family of C2 Young functions. Let N(t) := ‖P (t)

t f‖Φt and g := P
(t)
t f
N(t) , t ≥ 0.

Suppose ∇Vt · ∇V̇t −∆V̇t = −LtV̇t is µt-integrable. Then, it holds

N ′(t)
∫
gΦ′t(g)dµt = N(t)

(∫
Φ̇t(g)dµt −

∫
Φ′′t (g)|∇g|2dµt −

∫
Φt(g)V̇tdµt

)
+
∫ ∫ t

0
P

(t)
t−sf∇P (t)

s (Φ′t(g)) · ∇V̇tdsdµt

−
∫ [
∇Vt · ∇V̇t −∆V̇t

] ∫ t

0
P

(t)
t−sfP

(t)
s (Φ′t(g))dsdµt



In particular, when Vt does not depend on t (homogeneous case), the latter reduces to

N ′(t)
∫
gΦ′t(g)dµ = N(t)

(∫
Φ̇t(g)dµ−

∫
φ′′t (g)|∇g|2dµ

)
.

Remark 2.2. We assumed C2 for Young functions for simplicity. Most of the results in
this paper can easily be understood for any Young function using the notion of second
order derivative in the sense of Aleksandrov.

Proof. Let f : Rn → R be a smooth bounded function not equal to zero a.e.. From the very
definition of the Luxembourg norm, we observe that for any t ≥ 0,

∫
Φt

(
P

(t)
t f
N(t)

)
dµt = 1.

Therefore, taking the derivative, we get∫
Φ̇t(g)dµt +

∫
Φ′t(g) d

dt

(
P

(t)
t f

N(t)

)
dµt −

∫
Φt(g)V̇tdµt = 0

where as already mentioned the dot stands for the derivative with respect to the variable
t. Observe that,

d

dt

(
P

(t)
t f

N(t)

)
= Ṗ

(t)
t f

N(t) + LtP
(t)
t f

N(t) − P
(t)
t fN ′(t)
N(t)2 = Ṗ

(t)
t f

N(t) + Ltg −
N ′(t)
N(t) g

where we set

Ṗ
(t)
t f := lim

ε→0

P
(t+ε)
t f − P (t)

t f

ε
= lim

ε→0

1
ε

∫ t

0

d

ds

(
P (t+ε)
s (P (t)

t−sf)
)
ds

= lim
ε→0

1
ε

∫ t

0
P (t+ε)
s

(
[Lt+ε − Lt]P (t)

t−sf
)
ds

=
∫ t

0
P (t)
s

(
−∇V̇t · ∇P (t)

t−sf
)
ds.

Therefore, using (2.2), we get∫
Φ′t(g) d

dt

(
P

(t)
t f

N(t)

)
dµt = − 1

N(t)

∫ ∫ t

0
Φ′t(g)P (t)

s

(
∇V̇t · ∇P (t)

t−sf
)
dsdµt

−
∫

Φ′′t (g)|∇g|2dµt −
N ′(t)
N(t)

∫
gΦ′t(g)dµt.

The previous computations lead to
N ′(t)
N(t)

∫
gΦ′t(g)dµt =

∫
Φ̇t(g)dµt −

∫
Φ′′t (g)|∇g|2dµt −

∫
Φt(g)V̇tdµt

− 1
N(t)

∫ ∫ t

0
Φ′t(g)P (t)

s

(
∇V̇t · ∇P (t)

t−sf
)
dsdµt

and we are left with the study of the last term on the right hand side of the latter. By
reversibility of the semi-group, we have∫

Φ′t(g)P (t)
s

(
∇V̇t · ∇P (t)

t−sf
)
dµt =

∫
P (t)
s (Φ′t(g))∇V̇t · ∇P (t)

t−sfdµt

=
∫
P

(t)
t−sf∇∗t

(
P (t)
s (Φ′t(g))∇V̇t

)
dµt

where ∇∗t is the adjoint of ∇ in L2(µt), namely such that
∫
u∇vdµt =

∫
v∇∗tudµt. One

can see that ∇∗t = −div +∇Vt where ∇Vt acts multiplicatively. Therefore,∫
Φ′t(g)P (t)

s

(
∇V̇t · ∇P (t)

t−sf
)
dµt = −

∫
P

(t)
t−sf∇P (t)

s (Φ′t(g)) · ∇V̇tdµt

+
∫
P

(t)
t−sfP

(t)
s (Φ′t(g))

[
∇Vt · ∇V̇t −∆V̇t

]
dµt



From this the desired result follows. �

2.3. Expansion of the square. Here we may recall the expansion of the square method
or, as it is called in [HZ10], U -bounds. That is the bounds obtained by using Leibnitz rule
together with integration by parts as follows. Let U : Rn → R be such that

∫
e−Udx <∞.

Then, for any differentiable function f : Rn → R, one has

(2.3)
∫
f2(|∇U |2 − 2∆U)e−Udx ≤ 4

∫
|∇f |2e−Udx.

In fact, expanding the square, one has

0 ≤
∫
|∇(fe−U/2)|2dx =

∫
|∇f |2e−Udx−

∫
f∇f · ∇Ue−Udx+ 1

4

∫
f2|∇U |2e−Udx.

The expected inequality (2.3) then follows by applying an integration by parts on the cross
term.

The expansion of the square method revealed to be very powerful. It can be used for
instance to prove Hardy’s inequality with optimal constant on Rd, d ≥ 3, or Poincaré
inequality for the Gaussian measure. We refer the interested reader to [HZ10, DV12] for
more results and references.

3. Hypercontractivity for homogeneous Markov semi-groups

In this section our aim is to introduce the notion of standard Orlicz family that will
play a key role for proving the equivalence between some functional inequality and a
hypercontractivity property along the corresponding family of Orlicz spaces. We need
first to analyze how to get a hypercontractivity property along a general family of Orlicz
spaces.

All along the section we set L = ∆ − ∇V · ∇, with V smooth enough and such that
µ(dx) = e−V dx is a probability measure on Rn. We denote by (Pt)t≥0 the associated
semi-group which is reversible with respect to µ. Orlicz spaces and their corresponding
Luxembourg norms are understood with respect to µ.

3.1. Hypercontractivity along Orlicz spaces. Using Lemma 2.1 we first prove that
hypercontractivity is a direct and immediate consequence of some family of functional
inequalities. Our second result shows how that family can, under some assumptions, be
reduced to one single functional inequality of log-Sobolev-type.

Proposition 3.1. Let (Φt)t≥0 be a family of C2 Young functions. Assume that for any
t ≥ 0, any sufficiently smooth function f , we have

(3.1) ‖f‖2Φt
∫

Φ̇t

(
f

‖f‖Φt

)
dµ ≤

∫
Φ′′t
(

f

‖f‖Φt

)
|∇f |2dµ.

Then, for any t ≥ s,
‖Ptf‖Φt ≤ ‖Psf‖Φs .

Proof. We need to prove is that N : t 7→ ‖Ptf‖Φt is non-increasing. Lemma 2.1 asserts
that

N ′(t)
N(t)

∫
gΦ′t (g) dµ =

∫
Φ̇t (g) dµ−

∫
Φ′′t (g) |∇g|2dµ

where g := Ptf
N(t) . Since for any t ≥ 0, Φt is a Young function, it satisfies xΦ′t(x) ≥ 0 for

any x ∈ R. It follows by (3.1) that N ′(t) ≤ 0 which is the expected result. �

Using an isometry between LΦt and LΦs , we may translate (3.1) for Φs into a similar
inequality for Φt, therefore reducing the family of inequalities (3.1) possibly to a single
one.



Proposition 3.2. Let (Φt)t≥0 be a family of C2 Young functions. Assume that for some
t, s ≥ 0 there exist two positive constants C(t, s) and C̃(t, s) such that
(i)

Φ̇t(Φ−1
t ) ≤ C(t, s)Φ̇s(Φ−1

s ),
(ii)

Φ′′t
Φ′t

2 ◦ Φ−1
t ≥ C̃(t, s) Φ′′s

Φ′s2 ◦ Φ−1
s .

Assume furthermore that for some constant c > 0 and for any f (smooth enough), it holds

(3.2) ‖f‖2Φs
∫

Φ̇s

(
f

‖f‖Φs

)
dµ ≤ c

∫
Φ′′s
(

f

‖f‖Φs

)
|∇f |2dµ.

Then, for any f smooth enough it holds

‖f‖2Φt
∫

Φ̇t

(
f

‖f‖Φt

)
dµ ≤ cC(t, s)

C̃(t, s)

∫
Φ′′t
(

f

‖f‖Φt

)
|∇f |2dµ.

Proof. Let
Is,t : LΦt → LΦs

f 7→ ‖f‖ΦtΦ−1
s ◦ Φt

(
f

‖f‖Φt

)
.

For any f ∈ LΦt , by the very definition of the Luxembourg norm, it holds ‖Is,t(f)‖Φs =
‖f‖Φt . Therefore, Is,t(f) is an isometry between the two Orlicz spaces LΦt and LΦs .
Applying (3.2) to Is,t(f) leads to

‖f‖2Φt
∫

Φ̇s

(
Φ−1
s ◦ Φt

( f

‖f‖Φt

))
dµ ≤

c

∫
Φ′′s ◦ Φ−1

s ◦ Φt

(
f

‖f‖Φt

) Φ′t
(

f
‖f‖Φt

)2
|∇f |2

Φ′s ◦ Φ−1
s ◦ Φt

(
f

‖f‖Φt

)2dµ.

The result follows by (i) and (ii). �

The simplest example is given by the Lp scale Φt(x) = |x|q(t) for some function q that
we assume to be increasing. Then, it holds

Φ̇t(Φ−1
t ) = q′(t)

q(t) x log x and Φ′′t
Φ′t

2 ◦ Φ−1
t = q(t)− 1

q(t)
1
x
.

Therefore assumptions (i) and (ii) hold with C(t, s) = q′(t)q(s)
q(t)q′(s) and C̃(t, s) = (q(t)−1)q(s)

q(t)(q(s)−1) .
In particular, the choice q(t) = 1 + e(4/ρ)t, ρ > 0, guarantees that C(t, s) = C̃(t, s) for all
s, t. Hence, the family of inequalities (3.2) are all equivalent to (3.2) with s = 0, which
reads

Entµ(f2) ≤ ρ
∫
|∇f |2dµ

since Φ0 = |x|2 (and therefore Φ̇0(x) = (2/ρ)x2 log x2 and Φ′′0(x) = 2). This is the log-
Sobolev inequality and therefore Proposition 3.2 is just one direction in Gross’ theorem
[Gro75].

In the above example, both Φ̇t(Φ−1
t ) and Φ′′t

Φ′t
2 ◦ Φ−1

t are of the form a(t)b(x). Based on
this simple observation, we may construct a generic family of Orlicz functions that, by
construction, will automatically satisfies assumptions (i) and (ii) of the latter. This is the
object of the next section.



3.2. The standard Orlicz family. We define a large class of family of N -functions that
we will call the standard Orlicz family.

Definition 3.3 (standard Orlicz family). Let F : (0,∞)→ R be a C2 increasing function
with F (1) = 0. Assume that (0,∞) 3 x 7→ xF (x) is convex and that 1/xF (x) is not
integrable at x = 0, x = 1 and x = +∞. Let F1 : (0, 1) → R and F2 : (1,+∞) → R be
two primitives of x 7→ 1/(xF (x)).

Let Φ0 be a nice Young function and xo the unique positive point such that Φ0(xo) = 1.
We assume that −

(
Φ0
Φ′0

)′
F (Φ0)−Φ0F

′(Φ0) is non-increasing on R+ and that Φ0 is of class
C2 on (0,∞).

Given an increasing function λ : [0,∞)→ [0,∞), with λ(0) = 0, we define the family of
functions (Φt)t≥0 by

Φt(x) =


0 for x = 0
F−1

1 (F1(Φ0(x)) + λ(t)) for x ∈ (0, xo)
1 for x = xo

F−1
2 (F2(Φ0(x)) + λ(t)) for x ∈ (xo,+∞).

∀t > 0.

We shall call the family (Φt)t≥0 the standard Orlicz family built from F , Φ0 and λ.

Remark 3.4. The Lemma below will prove that all Φt are indeed Young functions and
in fact nice Young functions. This justifies the terminology ”Orlicz family”. Also, it is not
difficult to check that the definition above does not depend on the choice of the primitives:
any two different primitives lead to the same final function Φt.

Example 3.5. As an example consider F (x) = log(x) and any nice Young function
Φ0. Then, F1(x) = log(log(1/x)), x ∈ (0, 1) and F2(x) = log(log(x)), x > 1 so that
F−1

1 (x) = e−e
x and F−1

2 (x) = ee
x , x ∈ R. Hence, Φt(x) = Φeλ(t)

0 . This corresponds to an
Lp scale when Φ0(x) = |x|q for some q > 1. More specifically, if q(t) = 1 + e(4/ρ)t and
λ(t) = log(q(t)/2), with Φ0(x) = x2, we have Φt(x) = |x|q(t) and we are back to Gross’
setting.

The more general choices F (x) = log(1+x)β−log(2)β, β ∈ (0, 1), can also be considered,
but lead to non explicit F1 and F2. Although one can easily give an asymptotic of
the corresponding Φt(x), when x tends to 0 or +∞. For instance, Φt is equivalent to
Φ0e

aβλ(logφ0)β when x tends to infinity, where aβ is a numerical constant that depends
only on β. This amounts to the family of Young functions x2ectF (x) considered in [BCR06,
Section 7].

In the next lemma we collect some property of the standard Orlicz families.

Lemma 3.6. Let F , Φ0 and λ satisfying the assumptions of Definition 3.3 and let (Φt)t≥0
be the standard Orlicz family built from F , Φ0 and λ. Then,
(i) F1 and F2 are C2 functions respectively on (0, 1) and (1,+∞). F1 is decreasing with
limx→0F1(x) = − limx→1F1(x) = +∞. While F2 is increasing with limx→1F2(x) =
− limx→+∞F2(x) = −∞. In particular Φt is well defined and continuous. Moreover, for
t ≥ s, Φt ≤ Φs on (0, x0) and Φt ≥ Φs on (x0,+∞).
(ii) For any t ≥ 0, Φt is a nice Young function of class C2 on (0,∞) (with Φ′t(xo) = Φ′0(xo)
and Φ′′t (xo) = Φ′′0(xo)).
(iii) For any t ≥ 0, Φ̇t ◦ Φ−1

t = λ′(t)xF (x).
(iv) For any t ≥ s ≥ 0. Φ′′t

Φ′t
2 ◦ Φ−1

t ≥
Φ′′s
Φ′s2 ◦ Φ−1

s .
(v) Assume that λ tends to infinity at infinity. Then for any f ∈ L∞, limt→+∞ ‖f‖Φt =
1
x0
‖f‖∞.



Proof. Points (i) and (iii) are simple consequences of the definitions of the object involved.
It is not difficult but tedious to prove that for all t ≥ 0, Φt is C2 (we omit the proof).
Using that Φt ≤ Φ0 on (0, xo) and since Φ0 is a nice Young function we deduce that
limx→0

Φt(x)
x = 0. Similarly, limx→∞

Φt(x)
x = +∞. In order to prove that Φt is a nice

Young function it therefore remains to show that Φt is convex. For x 6= x0, a simple
differentiation gives

Φ′′t
Φ′t

2 = F ′(Φt)
(
−F

′′(Φt)
F ′(Φt)2 + F

′′(Φ0)
F ′(Φ0)2 + Φ′′0

F ′(Φ0)Φ′0
2

)
(3.3)

= F ′(Φt)
(( 1
F ′
)′

(Φt)−
( 1
F ′
)′

(Φ0) + Φ′′0
F ′(Φ0)Φ′0

2

)

where F = F1 when x ∈ (0, x0) and F = F2 when x > x0. A Taylor expansion of
(

1
F ′
)′

at the first order insures that

Φ′′t
Φ′t

2 = F ′(Φt)
(

(Φt − Φ0)
( 1
F ′
)′′

(θ) + Φ′′0
F ′(Φ0)Φ′0

2

)

for some θ ∈ (Φt,Φ0) when x ∈ (0, x0) and θ ∈ (Φ0,Φt) when x > x0. Since x 7→ xF (x)
is convex, 1

F ′ is convex. It follows that
(

1
F ′
)′′

(θ) ≥ 0 and thus that (Φt −Φ0)
(

1
F

′)′′ (θ) +
Φ′′0

F ′(Φ0)Φ′0
2 has the same sign as F ′(Φt). This proves that Φt is convex.

Next, we deal with Point (iv). From (3.3) we have with the same notation as before

Φ′′t
Φ′t

2 ◦ Φ−1
t (x) = −F

′′(x)
F ′(x) + F ′(x)

(
F ′′(Φ0)
F ′(Φ0)2 + Φ′′0

F ′(Φ0)Φ′0
2

)
◦ Φ−1

t (x).

Note that by hypothesis,

F ′′(Φ0)
F ′(Φ0)2 + Φ′′0

F ′(Φ0)Φ′0
2 = −

(Φ0
Φ′0

)′
F (Φ0)− Φ0F

′(Φ0)

is non-increasing. Thus, by Point (ii) and using the sign of F ′(x) on each domain (0, x0)
and (x0,+∞), we have

Φ′′t
Φ′t

2 ◦ Φ−1
t (x) ≥ −F

′′(x)
F ′(x) + F ′(x)

(
F ′′(Φ0)
F ′(Φ0)2 + Φ′′0

F ′(Φ0)Φ′0
2

)
◦ Φ−1

s (x)

= Φ′′s
Φ′s2 ◦ Φ−1

s (x)

which is the expected result.
Finally we will prove Point (v). Let f ∈ L∞. Then,

∫
Φt

(
x0|f |
‖f‖∞

)
dµ ≤ Φt(x0) = 1.

Hence, by definition of the norm, ‖f‖Φt ≤ 1
x0
‖f‖∞. In order to prove the bound from

below, fix ε > 0 small enough. Then note that for any x > x0, limt→+∞Φt(x) = +∞.
Thus∫

Φt

( |f |x0
‖f‖∞(1− ε)

)
dµ ≥

∫
{|f |≥‖f‖∞(1− ε2 )}

Φt

( |f |x0
‖f‖∞(1− ε)

)
dµ

≥ Φt

(
x0
(
1 + ε

2(1− ε)
))

µ

(
{|f | ≥ ‖f‖∞(1− ε

2)}
)
≥ 1

provided t is large enough. It follows that 1
x0
‖f‖∞(1−ε) ≤ ‖f‖Φt for t large enough. This

leads to the expected result and achieves the proof of the lemma. �



Remark 3.7. When λ(t) = αt for some α > 0, the standard Orlicz family enjoy a shift
type property. Indeed, in that case Φt = F−1

i (Fi(Φs) + λ(t− s)), i = 1, 2. Therefore, the
standard Orlicz families (Φt)t≥0 built from Φ0, F and λ and (Ψt)t≥0 built from Φs, F and
λ, satisfy Ψt = Φt+s for any t ≥ 0.

Remark 3.8. When Φ0(x) = x2,

−
(Φ0

Φ′0

)′
F (Φ0)− Φ0F

′(Φ0) = −1
2F (x2)− x2F ′(x2).

Thus, this function is non-increasing if and only if 3
2F
′(x) + xF ′′(x) ≥ 0 if and only if

x 7→ xF (x2) is convex. Thus, in that case, one can only assume that x 7→ xF (x2) is
convex (which implies that x 7→ xF (x) is convex).

3.3. Gross-Orlicz’ theorem. Thanks to the above definition of the standard Orlicz fam-
ily, we can state one of our main results which generalizes Gross’s theorem.

Theorem 3.9 (Gross-Orlicz). Let (Φt)t≥0 be a standard Orlicz family built from F , Φ0
and λ satisfying the hypotheses of Lemma 3.6. Let c > 0. Then the following are equivalent
(i)

(3.4) ‖f‖2Φ0

∫
Φ0
( f

‖f‖Φ0

)
F

(
Φ0
( f

‖f‖Φ0

))
dµ ≤ c

∫
Φ′′0
(

f

‖f‖Φ0

)
|∇f |2dµ;

for any function f for which the right hand side is well defined;
(ii) t ≥ s ≥ 0, it holds

‖Ptf‖Φt ≤ ‖Psf‖Φs .
for any function f for which the right hand side is well defined.
Moreover (i) ⇒ (ii) with any (increasing) λ such that Φ′′t

Φ′t
2 ◦ Φ−1

t ≥ cλ′(t) Φ′′0
Φ′0

2 ◦ Φ−1
0 for

any t ≥ 0 (in particular, any λ satisfying λ′(t) ≤ 1/c would do); and (ii) ⇒ (i) with
c = 1/λ′(0).

Proof. We first prove that (i) implies (ii). Item (iv) of Lemma 3.6 guarantees that Φ′′t
Φ′t

2 ◦

Φ−1
t ≥ cλ′(t)

Φ′′0
Φ′0

2 ◦Φ−1
0 with λ(t) = t/c. Hence, the set of functions λ, increasing, satisfying

Φ′′t
Φ′t

2 ◦ Φ−1
t ≥ cλ′(t)

Φ′′0
Φ′0

2 ◦ Φ−1
0 for any t ≥ 0 is non empty and we may fix one of them.

Consider the standard Orlicz family (Φt)t≥0 built from F , Φ0 and λ.
Note that by definition of the standard Orlicz family, Φ̇0 = λ′(0)Φ0F (Φ0). Thus In-

equality (3.4) reads as

‖f‖2Φ0

∫
Φ̇0

(
f

‖f‖Φ0

)
dµ ≤ λ′(0)c

∫
Φ′′0
(

f

‖f‖Φ0

)
|∇f |2dµ.

From the properties proved in Lemma 3.6 we can apply Proposition 3.2 with C(t, 0) = λ′(t)
λ′(0)

and C̃(t, 0) = cλ′(t). We get that, for any t ≥ 0, any smooth function f satisfies

‖f‖2Φt
∫

Φ̇t

(
f

‖f‖Φt

)
dµ ≤ λ′(0)cC(t, 0)

C̃(t, 0)

∫
Φ′′t
(

f

‖f‖Φt

)
|∇f |2dµ =

∫
Φ′′t
(

f

‖f‖Φt

)
|∇f |2dµ.

The result of Point (ii) follows by Proposition 3.1.
Now we prove that (ii) implies (i). Let N(t) = ‖Ptf‖Φt . By Lemma 2.1 at t = 0, we

infer that
N ′(0)
N(0)

∫
f

‖f‖Φ0

Φ′0
(

f

‖f‖Φ0

)
dµ =

∫
Φ̇0

(
f

‖f‖Φ0

)
dµ−

∫
Φ′′0
(

f

‖f‖Φ0

)
|∇ f

‖f‖Φ0

|2dµ.



The hypercontractivity property of Point (ii) insures thatN ′(0) ≤ 0. Thus, since xΦ′0(x) ≥
0, we get that

‖f‖2Φ0

∫
Φ̇0

(
f

‖f‖Φ0

)
dµ ≤

∫
Φ′′0
(

f

‖f‖Φ0

)
|∇f |2dµ.

The result follows by the formula Φ̇0 = λ′(0)Φ0F (Φ0) proved in Lemma 3.6. �

Remark 3.10. When Φ0(x) = x2, Inequality (3.4) reads as∫
f2F

(
f2

µ(f2)

)
dµ ≤ 2c

∫
|∇f |2dµ.

This is the usual F -Sobolev inequality introduced by Rosen [Ros76] (see also Wang
[Wan00]), and corresponds to the log-Sobolev inequality when F (x) = log x.

When F = log, one can consider λ(t) = log(1 + e(4/ρ)t) − log 2, with ρ = 2c. Then, as
already mentioned in Example 3.5, the standard Orlicz family built from Φ0(x) = x2, F
and λ, is Φt(x) = |x|q(t) with q(t) = 1 + e(4/ρ)t. In that case Theorem 3.9 is nothing but
Gross’ equivalence between the log-Sobolev inequality and the hypercontractivity in Lp
scale recalled in the introduction.

Theorem 3.9 has to be compared to [BCR06, Theorem 6]. When F = log, [BCR06,
Theorem 6] asserts that ‖Ptf‖q̃(t) ≤ ‖f‖2 with q̃(t) = 2eρt which is off by a factor of 2 in
the exponential (though capturing the exponential character of the Lp scale).

Furthermore, for F (x) := log(1 + x)β − log(2)β, β ∈ (0, 1), [BCR06, Theorem 6 and
Corollary 34] does not give an hypercontractivity property, but only hyper-boundedness
(see section 3.5 below for more on hyper-boundedness). One of the main difference comes
from the fact that in [BCR06] the authors deals with an explicit family of Young func-
tions which imposes in some situation stronger assumptions. This happens for the sec-
ond assumption of [BCR06, Theorem 6] which reads in our setting as Φt(x)F (x2) ≤
`(t)Φt(F (Φt(x))) +m. We do not need such an assumption here.

To conclude with the comparison between the two theorems, we observe that the first
assumption of [BCR06, Theorem 6] is implied by x 7→ xF (x2) convex, see remark 3.8
above and [BCR06, Proposition 7].

Notice that, for the following smooth version of |x|α, α ∈ (1, 2),

uα(x) =
{
|x|α for |x| > 1
α(α−2)

8 x4 + α(4−α)
4 x2 + (1− 3

4α+ 1
8α

2) for |x| ≤ 1

it has been proved in [BCR06, Proposition 33] that the probability measure dµnα(x) =∏n
i=1 Z

−1
α e−uα(xi)dxi on Rn satisfies (3.4) with F (x) = log(1 + x)β − log(2)β with β =

2(1− 1
α), Φ0(x) = x2 and some constant c = c(α) > 0 (that does not depend on n). This

in turn leads to an hypercontractivity property for the standard Orlicz family built from
F , Φ0 and any λ satisfying λ′(t) ≤ 1/c.

3.4. Perturbation of Orlicz families and hypercontractivity. In this next section
we show how to translate the hypercontractivity property from one family of Young func-
tions to another.

Proposition 3.11. Let (Ψt)t≥0 and (Φt)t≥0 be two families of Young functions and (Pt)t≥0
be a linear semi-group acting on a set of functions A onto itself. Assume that for some
t ≥ 0,
(i) any f ∈ A satisfies ‖Ptf‖Ψt ≤ ‖f‖Ψ0,
(ii) the function Ψ−1

t ◦Φt is convex, satisfies Ψ−1
t ◦Φt ≤ Ψ−1

0 ◦Φ0 and Ψ−1
t ◦Φt(A) ⊂ A,

(iii) for any function f ∈ A, any convex function F , F (Ptf) ≤ Pt(F (f)).
Then, any f ∈ A satisfies

‖Ptf‖Φt ≤ ‖f‖Φ0 .



Proof. By definition of the norm and Jensen’s inequality given in (iii), together with (ii),
we have

1 =
∫

Φt

(
Ptf

‖Ptf‖Φt

)
dµ =

∫
Ψt ◦Ψ−1

t ◦ Φt

(
Pt

f

‖Ptf‖Φt

)
dµ

≤
∫

Ψt

(
PtΨ−1

t ◦ Φt

(
f

‖Ptf‖Φt

))
dµ.

This implies by definition of the norm and the hypercontractivity for the family Ψt (given
in (i)) that

1 ≤ ‖PtΨ−1
t ◦ Φt

( f

‖Ptf‖Φt

)
‖Ψt ≤ ‖Ψ−1

t ◦ Φt

( f

‖Ptf‖Φt

)
‖Ψ0 .

It follows that 1 ≤
∫

Ψ0 ◦Ψ−1
t ◦Φt

(
f

‖Ptf‖Φt

)
dµ. Hence by point (ii), 1 ≤

∫
Φ0
(

f
‖Ptf‖Φt

)
dµ.

In turn, ‖f‖Φ0 ≥ ‖Ptf‖Φt . This ends the proof. �

Example 3.12. Assume that Φt = Ψt ◦F for a fixed Young function F . Then hypotheses
(ii) and (iii) are automatically satisfied. For instance, it is known that the linear semi-
group with diffusion generator L = ∆−∇U∇ with Hess(U) ≥ ρ > 0 satisfies log-Sobolev
inequality with constant 2/ρ and in turn is hypercontractive in the sense that

‖Ptf‖q(t) ≤ ‖f‖2, with q(t) := 1 + e(4/ρ)t.

Now let Ψt(x) = |x|q(t). Hence, for any Young function F , the previous proposition asserts
that

‖Ptf‖F q(t) ≤ ‖f‖F 2 .

Similarily from [BCR06] we learn that the semi-group associated to L = ∆−∇U∇ with
U(x) = |x|α (more precisely a smoothed version of |x|α), 1 ≤ α ≤ 2, is hypercontractive
in the Orlicz’ spaces family LΦt with Φt = x2ect log(1+|x|2)2(1− 1

α ) for some constant c. It
follows that for any Young function F , the semi-group (Pt)t≥0 is also hypercontractive in
the Orlicz’ spaces family LΨt with Ψt = F (x)2ect log(1+|F (x)|2)2(1− 1

α ) .

3.5. Hypercontractivity versus hyper-boundedness. In this section, we deal with
perturbation arguments that allows one to get some hyper-boundedness property starting
from hypercontractivity.

Theorem 3.13. Let (Φt)t≥0 and (Ψt)t≥0 be two standard Orlicz families built respectively
from F and F̃ , Φ0 and λ, both satisfying the hypotheses of Definition 3.3.

Assume that for any ε > 0 there exists D(ε) ≥ 0 such that all x ≥ 0 satisfy

F̃ (x) ≤ εF (x) +D(ε).

Suppose also that for any f and any t ≥ 0, it holds

‖Ptf‖Φt ≤ ‖f‖Φ0 .

Then, for any s2 ≥ s1 ≥ 0, any t ≥ 0, any C1 increasing function q : R+ → R+ with
q(0) = s1 and q(t) = s2, it holds

‖Ptf‖Ψs2 ≤ ‖f‖Ψs1 exp
{∫ t

0
q′(u)λ′(q(u))D

(
λ′(0)

q′(u)λ′(q(u))

)
du

}
∀f ∈ LΨs1 .

Proof. Our aim is to use the hypercontractivity property in Orlicz spaces LΦt together
with Theorem 3.9 to get a functional inequality involving the Young functions Φt, and
then use the assumption on F and F̃ to get a similar inequality for F̃ .



Fix s2 ≥ s1 ≥ 0, t ≥ 0 and a C1 increasing function q : R+ → R+ with q(0) = s1
and q(t) = s2. Fix f ∈ LΨs1 and let N(u) := ‖Puf‖Ψq(u) and g := Puf/N(u). Applying
Lemma 2.1 to Ψ̃(t, x) := Φq(t)(x), and observing that ∂

∂tΨ̃(t, x) := q′(t)Ψ̇q(t)(x), we get
N ′(u)
N(u)

∫
gΨ′q(u) (g) dµ = q′(u)

∫
Ψ̇q(u) (g) dµ−

∫
Ψ′′q(u) (g) |∇g|2 dµ.

Since Ψq(u) is a nice Young function, xΨ′q(u)(x) ≥ Ψq(u)(x) for any x ≥ 0, any u.
Therefore

∫
gΨ′q(u) (g) dµ ≥ 1 and in turn, when N ′(u) ≥ 0, we have

N ′(u)
N(u) ≤ q

′(u)
∫

Ψ̇q(u) (g) dµ−
∫

Ψ′′q(u) (g) |∇g|2 dµ.

Now, thanks to Theorem 3.9, the hypercontractivity assumption guarantees that

‖f‖2Φ0

∫
Φ0

(
f

‖f‖Φ0

)
F

(
Φ0

(
f

‖f‖Φ0

))
dµ ≤ 1

λ′(0)

∫
Φ′′0
(

f

‖f‖Φ0

)
|∇f |2dµ.

By our assumption, item (iii) of Lemma 3.6 (recall that Ψ0 = Φ0), we have

Ψ̇0 = λ′(0)Φ0F̃ (Φ0) ≤ λ′(0)εΦ0F (Φ0) + λ′(0)D(ε)Φ0.

Therefore, for any f with ‖f‖Φ0 = 1,∫
Ψ̇0 (f) dµ ≤ λ′(0)ε

∫
Φ0 (f)F (Φ0 (f)) dµ+ λ′(0)D(ε)

≤ ε
∫

Φ′′0 (f) |∇f |2 dµ+ λ′(0)D(ε) = ε

∫
Ψ′′0 (f) |∇f |2 dµ+ λ′(0)D(ε).

Recall the isometry
Is,t : LΨt → LΨs

f 7→ ‖f‖ΨtΨ−1
s ◦Ψt

(
f

‖f‖Ψt

)
from Proposition 3.2 that we may use with s = 0 and t = q(u). The previous inequality ap-
plied to I0,q(u)(f) ensures that for any f with ‖f‖Ψq(u) = ‖I0,q(u)(f)‖Ψ0 = ‖I0,q(u)(f)‖Φ0 =
1, it holds∫

Ψ̇0 ◦Ψ−1
0 ◦Ψq(u)(f)dµ ≤ ε

∫ Ψ′′0
Ψ′0

2 ◦Ψ−1
0 ◦Ψq(u)(f) |∇f |2 Ψ′q(u)

2(f)dµ+ λ′(0)D(ε).

It follows from items (iii) and (iv) of Lemma 3.6 that
λ′(0)

λ′(q(u))

∫
Ψ̇q(u)(f)dµ ≤ ε

∫
Ψ′′q(u)(f) |∇f |2 dµ+ λ′(0)D(ε).

This leads to
N ′(u)
N(u) ≤

q′(u)λ′(q(u))
λ′(0)

(
ε

∫
Ψ′′q(u)(f) |∇f |2 dµ+ λ′(0)D(ε)

)
−
∫

Ψ′′q(u)(f) |∇f |2 dµ

for any u such that N ′(u) ≥ 0. The latter being valid for any ε > 0, choose ε such that
q′(u)λ′(q(u))ε = λ′(0). Therefore, provided that N ′(u) ≥ 0 it holds

N ′(u)
N(u) ≤ q

′(u)λ′(q(u))D
(

λ′(0)
q′(u)λ′(q(u))

)
.

This bound trivially holds when N ′(u) < 0. Hence

log ‖Ptf‖Ψs2 − log ‖P0f‖Ψs1 =
∫ t

0

d

du
log ‖Puf‖Ψq(u)du =

∫ t

0

N ′(u)
N(u) du

≤
∫ t

0
q′(u)λ′(q(u))D

(
λ′(0)

q′(u)λ′(q(u))

)
du.

The result follows. �



As an example of application, consider, for β ∈ (0, 1], Fβ(x) = (log(1 + x))β − (log 2)β.
It is not difficult to check that for any ε > 0 and any β′ < β, it holds

Fβ′(x) ≤ εFβ(x) +D(ε)

with

D(ε) := −(log 2)β′ + ε(log 2)β +
(
β′

β

) β′
β−β′ β − β′

β

(1
ε

) β′
β−β′

.

Now let

uα(x) =
{
|x|α for |x| > 1
α(α−2)

8 x4 + α(4−α)
4 x2 + (1− 3

4α+ 1
8α

2) for |x| ≤ 1
be a smooth version of |x|α, α ∈ (1, 2). Define the probability measure dµnα(x) =∏n
i=1 Z

−1
α e−uα(xi)dxi on Rn. As already mentioned in Remark 3.10, it follows from [BCR06,

Proposition 33] that Inequality (3.4) holds for Fβ, Φ0(x) = x2 and some c = c(α) > 0
and therefore that the semi-group (Pt)t≥0 associated to µnα is hypercontractive along the
standard Orlicz family (Φt)t≥0 built from Fβ, Φ0 and any λ satisfying λ′(t) ≤ 1/c. Fix for
simplicity λ(t) = t/c.

Consider the standard Orlicz families (Ψt)t≥0 built from Fβ′ , Φ0(x) = x2 and λ.
The previous theorem shows that (for s1 = 0 and s2 = s)

‖Ptf‖Ψs ≤ m(t)‖f‖2
where

m(t) = inf
q

exp
{1
c

∫ t

0
q′(u)D

( 1
q′(u)

)
du

}
where the infimum is running over all increasing q : [0, t]→ R+ with q(0) = 0 and q(t) = s.
We stress that the Luxembourg norm is computed here with reference measure µnα.

One has

q′(u)D
( 1
q′(u)

)
= −q′(u)(log 2)β′ + (log 2)β + Cβ,β′(q′(u))

β
β−β′

where we set, for simplicity, Cβ,β′ :=
(
β′

β

) β′
β−β′ β−β′

β . Therefore,

inf
q

{∫ t

0
q′(u)D

( 1
q′(u)

)
du

}
= −s(log 2)β′ + t(log 2)β + Cβ,β′ inf

q

{∫ t

0
(q′(u))

β
β−β′ du

}
.

Since β/(β− β′) ≥ 1, by Holder’s inequality (and equality cases in Holder’s inequality), it
is easy to see that

inf
q

{∫ t

0
(q′(u))

β
β−β′ du

}
= s

β
β−β′ t

− β′
β−β′ .

As a conclusion

m(t) = exp
{1
c

(
−s(log 2)β′ + t(log 2)β + Cβ,β′s

β
β−β′ t

− β′
β−β′

)}
.

Note in particular that the factor in the exponential explodes for a fixed t, when s goes to
infinity. This must be since the semi-group associated to µnα can not be ultracontractive.

4. Contraction property for inhomogeneous Markov semi-groups

In this section we deal with the time-dependent diffusion operators Lt := ∆−∇Vt·∇, t ≥
0, on Rn, with Vt smooth enough and such that

∫
e−Vt = 1. Recall that the associated semi-

group (P (t)
s )s≥0 is reversible with respect to the probability measure µt(dx) := e−Vt(x)dx.

All along this section Luxembourg norms are understood with respect to µt. We may omit
such a dependence when not needed and write otherwise ‖ · ‖Φt,µt .



In order to obtain contraction bounds for P (t)
t f , one could try to use the following

natural simple strategy. For t fixed, one may assume that Hess(Vt) ≥ ρt for some ρt > 0
so that Gross’ theorem applies and leads to

‖P (t)
s f‖qt(s),µt ≤ ‖f‖2,µt s, t ≥ 0,

with, say, qt(s) ≤ 1 + e(4/ρt)s where we set ‖g‖q,µt := (
∫
|g|qdµt)

1
q for the Lq norm of g

with respect to µt (we choose qt(0) = 2 for simplicity). Applying the latter at time s = t
leads to

‖P (t)
t f‖qt(t),µt ≤ ‖f‖2,µt .

Now observe that the latter might be very weak if ρt is small. Moreover and more es-
sentially one would like to deal with a norm on the right hand side independent of t (say
related to µ0). Before achieving this program, by means of Lemma 2.1, let us end this in-
troduction with an easy (and very specific) example of inhomogeneous Markov semi-group
whose hypercontractivity property can be derived from the results of the previous section.

Consider for instance Vt = U1 for t ∈ [0, T ] and Vt = U2 for t > T where U1 and U2
are associated to hypercontractivity properties in Orlicz spaces LΦ(1)

t

and LΦ(2)
t

respec-

tively. Then, we can argue that ‖P (t)
t f‖Φ(1)

t

≤ ‖P (s)
s f‖Φ(1)

s
, for any s ≤ t ≤ T , and then

‖P (t)
t f‖Φ(2)

t

≤ ‖P (s)
s f‖Φ(2)

s
for any T < s ≤ t. Therefore, if the two families of Orlicz spaces

coincide at time T, i.e. Φ(1)
T = Φ(2)

T , and potentially modulo some extra assumptions on
the Young functions Φ(1)

t , Φ(2)
t , if we set Φt = Φ(1)

t for t ∈ [0, T ] and Φt := Φ(2)
t for t ≥ T ,

one has ‖P (t)
t f‖Φt ≤ ‖P

(s)
s f‖Φs for all s ≤ t. As already mentioned this is however very

specific and somehow artificially inhomogeneous. We would like to deal with examples of
potentials Vt that evolve all along the time t.

In the next section we will deal under the restricted hypothesis of the log-Sobolev
inequality (4.1) related to the Orlicz family Φt(x) = |x|q(t) (Lp scale). This makes the
presentation more precise and easier by reducing some technicalities. However, it already
encompasses many of the difficulties. The last section (that comes after) will finally deal
with a more general setting.

We stress that the results below are a first step in the understanding of contraction
properties for inhomogeneous Markov semi-groups. Many remain to be discovered and
we believe that our investigations open new lines of research with possible application,
as mentioned in the introduction, to non-linear parabolic time dependent problems (in
infinite dimension).

4.1. Lp-scales. In order to give the flavor of what is happening in the inhomogeneous
setting (and avoid some technicalities), in this section we may only deal with contractivity
properties in Lp-scales. Recall that X− = max(−X, 0) stands for the negative part.

Theorem 4.1. Consider the inhomogeneous diffusion operator Lt as above. Set at :=
‖(V̇t)−‖∞, bt := ‖|∇V̇t|‖∞, ct := ‖(∇Vt · ∇V̇t −∆V̇t)−‖∞ and assume that at, bt, ct < ∞
for all t ≥ 0. Assume also that, for all t ≥ 0 there exists ρt ∈ R such that Hess(Vt) ≥ ρt.
Finally, assume that there exists ρ̄t > 0 such that the following log-Sobolev inequality holds

(4.1)
∫
f2 log(f2)dµt ≤ ρ̄t

∫
|∇f |2dµt.

for all f with
∫
f2dµt = 1 for which the right hand side is well defined. Then, for any

f : Rn → R+ smooth enough, any p > 1 and any s ≤ t, it holds

‖P (t)
t f‖Φt,µt ≤ m(s, t)‖P (s)

s f‖Φs,µs



where Φt(x) = |x|q(t), q(t) = 1 + (p− 1) exp{
∫ t

0(2/ρ̄s)ds}, t ≥ 0 and

m(s, t) := exp
{∫ t

s

au
q(u) + ucu + b2u

1− e−ρuu

2ρu
(q(u)− 1)du

}
.

Remark 4.2. As already mentioned, one possible criterion for the log-Sobolev inequality
(4.1) to hold, is Hess(Vt) ≥ ρt > 0 (as a matrix), which implies ρ̄t ≤ 2

ρt
. Alternatively, as

will be used below, one can apply a perturbation argument à la Holley & Stroock [HS87].
If Vt does not depend on t then m(s, t) = 1 and q(t) = 1 + (p− 1)e(2/ρ̄)t, which is Gross’

theorem off by a factor of 2 in the exponential (see the introduction). This is coming from
a technical computation that uses Cauchy-Schwarz’ inequality. One can actually improve
this and get q(t) = 1 + (p− 1) exp{(2− ε)

∫ t
0(2/ρ̄s)ds}, for any ε > 0, but at the price of

a factor m(s, t) that depends on ε, and that increases when ε decreases.
Modulo such a factor 2, the above theorem can therefore be seen as an inhomogeneous

counterpart of Gross’ theorem.

Example 4.3. The above theorem contains some non trivial examples. For instance one
can consider potentials of the form Vt(x) = U(x) + α(t)V (x) + γ(t) with V unbounded
and γ(t) := log

∫
e−U−αV dx so that µt indeed defines a probability measure.

Take for instance U(x) = |x|2
2 , α : [0,∞) → [0,∞) non-decreasing and V (x) = (1 +

|x|2)
β
2 , with β ∈ (0, 1] (this is an unbounded (time-dependent) perturbation of the standard

Gaussian potential U).
Then, V̇t = α′(t)(1 + |x|2)

β
2 so that at = 0; ∇V̇t = α′(t)β(1 + |x|2)

β
2−1x, whence

bt = α′(t)β
√

(1−β)1−β

(2−β)2−β (which is understood as its limit when β = 1, namely bt = α′(t)

if β = 1). Using crude estimates, it is not difficult to prove that ct ≤ n2α′(t)(α(t) + 2).
On the other hand (again we omit details) Hess(Vt) ≥ 1 so that ρt = 1 and (4.1) holds
with ρ̄t = 2. Theorem 4.1 then implies that the corresponding inhomenegous semi-group
(P (t)

t )t≥0 is hyper-bounded in the Lq(t) scale, with q(t) = 1 + (p− 1)et.
For V (x) = log(1 + |x|2) one can easily see that at = 0, bt = α′(t) and ct < ∞. The

issue is coming from estimating ρ̄t. In fact Hess(Vt)(x) is bounded below by a positive
matrix only outside a ball (of radius proportional to α). Therefore, one can write Vt =
H + R, with H strictly convex, in the sense that Hess(H) ≥ 1/2, say, and R is bounded.
Then Bakry-Émery criterion applies to the measure with density proportional to e−H ,
leading to a log-Sobolev constant at most 4, and then we use Holley-Stroock perturbation
Lemma, see e.g. [ABC+00, THeorem 3.4.3] to get Inequality (4.1) with constant ρ̄t at
most 4eOsc(R) (therefore potentially exponentially big in α) where Osc(R) = supR− inf R
is the oscillation of R. Theorem 4.1 applies and finally leads to some contraction property
with q(t) → ∞ for α bounded or slowly growing to infinity (for instance α(t) = log log t
would do).

Proof of Theorem 4.1. Let Φt(x) := |x|q(t) with q : [0,∞)→ [0,∞) increasing and satisfy-
ing q(0) > 1. Set N(t) := ‖P (t)

t f‖Φt,µt for some non-negative smooth f , and g := P
(t)
t f
N so

that
∫

Φt(g)dµt = 1. From Lemma 2.1, we have

N ′(t)
∫
gΦ′t(g)dµt ≤ N(t)

(∫
Φ̇t(g)dµt −

∫
Φ′′t (g)|∇g|2dµt + at

)
+ bt

∫ ∫ t

0
P

(t)
t−sf |∇P (t)

s (Φ′t(g))|dsdµt + ct

∫ ∫ t

0
P

(t)
t−sfP

(t)
s (Φ′t(g))dsdµt.



We observe that xΦ′t(x) = qΦt(x) so that
∫
gΦ′t(g)dµt = q. Also, by reversibility, the last

term of the latter satisfies∫ ∫ t

0
P

(t)
t−sfP

(t)
s (Φ′t(g))dsdµt =

∫ t

0

∫
P (t)
s (P (t)

t−sf)Φ′t(g)dµtds

= tN(t)
∫
gΦ′t(g)dµt = tN(t)q(t).

Since Φ̇t(x) = q′(t)|x|q log(|x|) and Φ′′t (x) = q(q − 1)|x|q−2, we get

q(t)N
′(t)

N(t) ≤
q′(t)
q(t) Entµt(gq)− q(q − 1)

∫
gq−2|∇g|2dµt + at + tctq(t)

+ bt
N(t)

∫ ∫ t

0
P

(t)
t−sf |∇P (t)

s (Φ′t(g))|dsdµt.

The condition Hess(Vt) ≥ ρt ensures that |∇P (t)
s h| ≤ e−ρtsP

(t)
s (|∇h|) for all s ≥ 0 and all

h (see e.g. [ABC+00][Proposition 5.4.5]). Hence, by reversibility∫ ∫ t

0
P

(t)
t−sf |∇P (t)

s (Φ′t(g))|dsdµt ≤
∫ ∫ t

0
e−ρtsP

(t)
t−sfP

(t)
s (|∇Φ′t(g)|)dsdµt

=
∫ ∫ t

0
e−ρtsP

(t)
t fΦ′′t (g)|∇g|dsdµt

= N(t)1− e−ρtt

ρt
q(q − 1)

∫
gq−1|∇g|dµt.

Using the inequality uv ≤ 1
2εu

2 + ε
2v

2 with ε = bt
1−e−ρtt

ρt
, u = g

q
2−1|∇g| and v = g

q
2 we get

1− e−ρtt

ρt

∫
gq−1|∇g|dµt ≤

1
2bt

∫
gq−2|∇g|2dµt + 1

2bt

(
1− e−ρtt

ρt

)2 ∫
gqdµt

so that, since
∫
gqdµt =

∫
Φt(g)dµt = 1,

q(t)N
′(t)

N(t) ≤
q′(t)
q(t) Entµt(gq)−

q(q − 1)
2

∫
gq−2|∇g|2dµt + at + tctq(t)

+ b2t
1− e−ρtt

2ρt
q(t)(q(t)− 1).

Next, we observe that
∫
gq−2|∇g|2dµt = 4

q2
∫
|∇g

q
2 |2dµt. Hence, for q(t) := 1 + (p −

1) exp{
∫ t

0(2/ρ̄s)ds} which satisfies 2(q−1)
q′ = ρ̄t, we are guaranteed by (4.1) that

q′(t)
q(t) Entµt(gq)−

q(q − 1)
2

∫
gq−2|∇g|2dµt

= q′(t)
q(t)

(
Entµt(gq)−

2(q − 1)
q′(t)

∫
|∇g

q
2 |2dµt

)
= q′(t)
q(t)

(
Entµt(gq)− ρ̄t

∫
|∇g

q
2 |2dµt

)
≤ 0.

It follows that

N ′(t)
N(t) ≤

at
q(t) + tct + b2t

1− e−ρtt

2ρt
(q(t)− 1)

which leads to the desired conclusion. �



4.2. General result. In this section we establish a more general result than Theorem 4.1
that allows one to deal with more general Orlicz families, and not only the Lp-scales. As
a motivation, one can consider for instance as above Vt(x) = U(x) +α(t)V (x) + γ(t) with
U(x) ' |x|α

α (for large |x|), γ(t) := log
∫
e−U−αV dx and Φt(x) = x2ectF (x), with F (x) '

log(x)β (for large x). This corresponds, with a proper choice of V , to a generalization of
the hypercontractivity property proved in [BCR07] in the homegenenous setting (recall
the introduction, see also Remark 3.10.

Theorem 4.4. Consider the inhomogeneous diffusion operator Lt as above. Assume that
for all t ≥ 0, bt := ‖|∇V̇t|‖∞ <∞ and that there exists ρt ∈ R such that Hess(Vt) ≥ ρt (as
a matrix).

Let (Φt)t≥0 be a family of Young functions satisfying Φt(x) ≤ xΦ′t(x) ≤ BtΦt(x), Φ′t
2 ≤

CtΦtΦ′′t and x2Φ′′t (x) ≤ DtΦt(x) + Et for all x ≥ 0 and some constants Bt, Ct, Dt, Et.
Assume that for all t ≥ 0 there exist δt ∈ [0, 1) and Ft ∈ R such that (V̇t)− ≤

δt
4Ct

(
|∇Vt|2 − 2∆Vt

)
+ Ft.

Set Wt := (∇Vt · ∇V̇t−∆V̇t)− and denote by ρ̄t ∈ (0,∞] the best constant such that for
all f with ‖f‖Φ0 = 1 it holds

(4.2)
∫

Φ̇t(f)dµt ≤ ρ̄t
∫

Φ′′t (f)|∇f |2dµt.

Finally, assume either that
(i) ct := ‖Wt‖∞ <∞ and ρ̄t < 1− δt;
or
(ii) c′t := max

(
2‖|∇Wt|‖∞/bt, supx:Wt(x)6=0

(
LtWt
Wt
− ρt

)
−

)
< ∞ and that for all t ≥

0 there exists δ′t ∈ [0, 1) and F ′t ∈ [0,∞) such that δ′t
∫ t

0 e
(c′s−ρs)sds < 1 and Wt ≤

δ′t
4BtCt

(
|∇Vt|2 − 2∆Vt

)
+ F ′t .

Then, for any f : Rn → R+ smooth enough, it holds

‖P (t)
t f‖Φt,µt ≤ m(s, t)‖P (s)

s f‖Φs,µs
where under assumption (i),

m(s, t) = exp


∫ t

s
Fu +

(
bu

1− e−ρuu

ρu

)2
Du + Eu

2(1− δu − ρ̄u) + cuBuudu

 ,
and under assumption (ii),

m(s, t) = exp
{∫ t

s

(∫ u

0
e(c′v−ρv)vdv

)2 bu(Du + Eu)
2(1− δu − ρ̄u − δ′u

∫ u
0 e

(c′v−ρv)vdv)

+
∫ u

0
e(c′v−ρv)vdv

(
BuF

′
u + Fu

)
du

}
.

Remark 4.5. Observe that, when δt = 0, the assumption (V̇t)− ≤ δt
Ct

(
|∇Vt|2 − 2∆Vt

)
+Dt

amounts to at := ‖(V̇t)−‖∞ < ∞ which is the assumption that we used in Theorem 4.1.
Also, it might be that V̇t ≥ 0 so that, in that case, one chooses δt = Dt = 0.

Observe also that the first inequality in the assumption Φt(x) ≤ xΦ′t(x) ≤ BtΦt(x)
is satisfied by all Young functions, while the second inequality is a consequence of the
∆2-condition.

Finally we observe that, although we weakened most of the hypotheses of Theorem 4.1,
one key assumption one would like to remove/reduce is bt = ‖|∇V̇t|‖∞ < ∞. Indeed one
interesting example one would like to deal with is for instance Vt(x) = (1− t)2

+|x|2 + |x|α,
with α ∈ (1, 2), where we have a critical point t = 1 in which hypercontractivity property



in Lp spaces is replaced by a weaker property. Such an example is not covered by Theorem
4.4 since bt =∞.

Proof of Theorem 4.4. We start as in the proof of Theorem 4.1. Set N(t) := ‖P (t)
t f‖Φt,µt ,

g := P
(t)
t f
N so that from Lemma 2.1 for some non-negative smooth function f , it holds

N ′(t)
∫
gΦ′t(g)dµt ≤ N(t)

(∫
Φ̇t(g)dµt −

∫
φ′′t (g)|∇g|2dµt −

∫
Φt(g)V̇tdµt

)
+
∫ ∫ t

0
P

(t)
t−sf∇P (t)

s (Φ′t(g)) · ∇V̇tdsdµt(4.3)

−
∫ ∫ t

0
[∇Vt · ∇V̇t −∆V̇t]P (t)

t−sfP
(t)
s (Φ′t(g))dsdµt.

We analyze each term separately.
Since xΦ′t(x) ≥ Φt(x), it holds

∫
gΦ′t(g)dµt ≥

∫
Φt(g)dµt = 1. Hence, if N ′(t) ≥ 0, the

left hand side of the latter is bounded below by N ′(t).
Since (V̇t)− ≤ δt

4Ct
(
|∇Vt|2 − 2∆Vt

)
+Ft, we can use the expansion of the square, namely

Inequality (2.3) with f =
√

Φt(g), to get that

−
∫

Φt(g)V̇tdµt ≤
∫

Φt(g)(V̇t)−dµt ≤
δt
Ct

∫ Φ′t
2(g)

Φt(g) |∇g|
2dµt + Ft

≤ δt
∫

Φ′′t (g)|∇g|2dµt + Ft.

Now assume first that assumption (i) holds, namely that ct = ‖(∇Vt ·∇V̇t−∆V̇t)−‖∞ <
∞. In that case we can proceed as in the proof of Theorem 4.1 to get∫ ∫ t

0
P

(t)
t−sf∇P (t)

s (Φ′t(g)) · ∇V̇tdsdµt −
∫ ∫ t

0
[∇Vt · ∇V̇t −∆V̇t]P (t)

t−sfP
(t)
s (Φ′t(g))dsdµt

≤ bt
∫ ∫ t

0
P

(t)
t−sf |∇P (t)

s (Φ′t(g))|dsdµt + ct

∫ ∫ t

0
P

(t)
t−sfP

(t)
s (Φ′t(g))dsdµt

≤ btN(t)1− e−ρtt

ρt

∫
gΦ′′t (g)|∇g|dµt + cttN(t)

∫
gΦ′t(g)dµt.

Using our assumption on Φt and uv ≤ 1
2εu

2 + ε
2v

2, the latter is bounded above, for any
ε > 0, by

btN(t)1− e−ρtt

ρt

( 1
2ε

∫
g2Φ′′t (g)dµt + ε

2

∫
Φ′′t (g)|∇g|2dµt

)
+ ctBttN(t)

∫
Φt(g)dµt

≤ btN(t)1− e−ρtt

ρt

1
2ε(Dt + Et) + ctBttN(t) + ε

btN(t)(1− e−ρtt)
2ρt

∫
Φ′′t (g)|∇g|2dµt.

Choose ε so that ε bt(1−e
−ρtt)

2ρt = [1 − δ − ρ̄t]/2 so that, collecting the above computations
together with inequality (4.2), we can conclude that for any t such that N ′(t) ≥ 0,

N ′(t) ≤ N(t)

Ft +
(
bt

1− e−ρtt

ρt

)2
Dt + Et

2(1− δt − ρ̄t)
+ ctBtt


from which the conclusion under assumption (i) follows.

Now we turn to assumption (ii). We need to bound the last two terms in (4.3). Using
Proposition 4.6 with W := Wt/bt (observe that, since µt is a probability measure, bt 6= 0),



it holds∫ ∫ t

0
P

(t)
t−sf∇P (t)

s (Φ′t(g)) · ∇V̇tdsdµt −
∫ ∫ t

0
[∇Vt · ∇V̇t −∆V̇t]P (t)

t−sfP
(t)
s (Φ′t(g))dsdµt

≤ bt
∫ ∫ t

0
P

(t)
t−sf

(
|∇P (t)

s (Φ′t(g))|+ Wt

bt
P (t)
s (Φ′t(g))

)
dsdµt

≤ bt
∫ ∫ t

0
e(cs−ρs)sP

(t)
t−sfP

(t)
s

(
|∇Φ′(g)|+ Wt

bt
Φ′(g)

)
= N(t)

∫ t

0
e(cs−ρs)sds

(
bt

∫
gΦ′′t (g)|∇g|dµt +

∫
WtgΦ′t(g)dµt

)
where we used the reversibility in the last inequality. For the first term in the right hand
side of the latter, we proceed as for aasumption (i). Namely, it holds for all ε > 0∫

gΦ′′t (g)|∇g|dµt ≤
1
2ε

∫
g2Φ′′t (g)dµt + ε

2

∫
Φ′′t (g)|∇g|2dµt

≤ 1
2ε(Dt + Et) + ε

2

∫
Φ′′t (g)|∇g|2dµt.

For the second term, we use the expansion of the square (inequality (2.3) with f =
√

Φt(g))
to get that∫

WtgΦ′t(g)dµt ≤ Bt
∫
WtΦt(g)dµt ≤

δ′

4Ct

∫
Φt(g)

(
|∇Vt|2 − 2∆Vt

)
dµt +BtF

′
t

≤ δ′

4Ct

∫ Φ′t(g)2

Φt(g) |∇g|
2dµt +BtF

′
t ≤ δ′

∫
Φ′′t (g)2‖∇g|2dµt +BtF

′
t .

Summarizing, under assumption (ii), when N ′(t) > 0, we obtain
N ′(t)
N(t) ≤

∫
Φ̇t(g)dµt −

(
1− δt −

ε

2

∫ t

0
e(c′s−ρs)sds+ δ′t

∫ t

0
e(c′s−ρs)sds

)∫
φ′′t (g)|∇g|2dµt

+
∫ t

0
e(c′s−ρs)sds

(
bt(Dt + Et)

2ε +BtF
′
t + Ft

)
≤
∫ t

0
e(c′s−ρs)sds

(
bt(Dt + Et)

2ε +BtF
′
t + Ft

)
(thanks to (4.2))

=
(∫ t

0
e(c′s−ρs)sds

)2 bt(Dt + Et)
2(1− δt − ρ̄t − δ′t

∫ t
0 e

(c′s−ρs)sds)
+
∫ t

0
e(c′s−ρs)sds

(
BtF

′
t + Ft

)
for ε so that ε

2
∫ t
0 e

(c′s−ρs)sds = 1−δt−ρ̄t−δ′t
∫ t

0 e
(c′s−ρs)sds

2 . The desired conclusion follows. �

In the proof of Theorem 4.4 we used the following results borrowed from [RZ21].

Proposition 4.6. Let L = ∆ − ∇U · ∇, on Rn, and denote by (Pt)t≥0 its associated
semi-group. Assume that U : Rn → R is smooth enough and satisfies

∫
e−U = 1 so that

µ(dx) = e−U(x)dx is a probability measure on Rn and Hess(U) ≥ ρ (as a matrix) for some
ρ ∈ R. Let W : R → R+ be such that c := max

(
2‖|∇W |‖∞, supx:W (x)6=0

(
LW
W − ρ

)
−

)
<

∞. Then, for all f non negative

|∇Ptf |+WPtf ≤ e(c−ρ)tPt (|∇f |+Wf) .
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6001, 2012. 6

[Fed69] P. Federbush. Partially alternate derivation of a result of nelson. Journal of Mathematical
Physics, 10(1):50–52, 1969. 1
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5. Appendix 1

Here we discuss the following formula

∂tP
(t)
t f = Ltf +

∫ t

0

(
eτL(t)L̇te

(t−τ)L(t)f
)
dτ.



Note that

∂tP
(t)
t f = lim

s→0

1
s

(
P

(t+s)
t+s f − P (t)

t f
)

= lim
s→0

1
s

(
P

(t+s)
t f − P (t)

t f
)

+ lim
s→0

1
s

(
P

(t+s)
t+s f − P (t+s)

t f
)

For the first term on the right hand side we have

P
(t+s)
t f − P (t)

t f =
∫ t

0

(
eτL(t+s)

(
L(t+s) − L(t)

)
e(t−τ)L(t)f

)
dτ

provided e(t−τ)L(t)f is in the domain of L(t+s) − L(t) for every sufficiently small s and all
τ ∈ [0, t]. Hence if the limit

lim
s→0

1
s

(
L(t+s) − L(t)

)
e(t−τ)L(t)f ≡ L̇te(t−τ)L(t)f

is well defined, we have

lim
s→0

1
s

(
P

(t+s)
t f − P (t)

t f
)

=
∫ t

0

(
eτL(t)L̇te

(t−τ)L(t)f
)
dτ

On the other hand

P
(t+s)
t+s f − P (t+s)

t f = L(t+s)

∫ s

0
e(t+τ)L(t+s)fdτ

is well defined for C0-semigroup and for f in the domain of Ltwe have

lim
s→0

1
s

(
P

(t+s)
t+s f − P (t+s)

t f
)

= Ltf.

Combining all the above yields

∂tP
(t)
t f = Ltf +

∫ t

0

(
eτL(t)L̇te

(t−τ)L(t)f
)
dτ.
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