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This work addresses the question of a pertinent macroscale model describing creeping,
incompressible and single-phase �ow of a Newtonian �uid in an exuding, rigid and
homogeneous porous medium. The macroscopic model is derived by upscaling the pore-
scale Stokes equations considering a normal mass �ux at the solid-�uid interface. The
upscaled mass equation shows that the average velocity is non-solenoidal. In addition, the
macroscopic momentum equation involves a Darcy term with the classical permeability
tensor accounting for macroscopic drag and a correction velocity vector which is a
signature of the local �uid displacements induced by the exuding phenomenon. This
correction is the sum of a term accounting for the local exuding e�ect and a compensation
term associated to the assumption of spatial periodicity. The �rst term, as well as the
permeability tensor, are obtained from the solution of the same unique and intrinsic
closure problem, which corresponds to the one involved in classical Darcy's law. The
upscaled model is validated by comparisons with pore-scale numerical simulations in
several illustrative examples. The di�erent con�gurations evidence the richness of the
problem, despite the apparent simplicity of its formulation. The results of this work
motivate further investigation about the in�uence of internal �ow sources in transport
phenomena in porous media.

Key words: exuding porous media, momentum transport, upscaling, Darcy's law

1. Introduction

Low Reynolds number incompressible �ow of a single Newtonian �uid in a rigid porous
medium is governed, at the microscopic (pore) scale, by Stokes equations. In the absence
of rarefaction e�ects and of any source or sink, they are supplemented with a zero-velocity
condition at the solid-�uid interface. Provided the medium can be regarded as statistically
homogeneous at a scale much larger than the typical scale of its microstructure, the �ow
can be described, from a macroscopic point of view, by Darcy's law. This equation relates
the local average of the �uid velocity to the gradient of the average pressure via the
intrinsic permeability tensor, which only depends on the geometry of the microstructure

† Email address for correspondence: didier.lasseux@u-bordeaux.fr
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and accounts for the macroscopic drag on the solid phase. Darcy's law can be formally
obtained as the macroscopic momentum equation using various theoretical upscaling
methodologies, such as homogenization based on multiple scale expansions or the volume
averaging theory (see e.g., Sanchez-Palencia 1980; Whitaker 1986; Mei et al. 1996; Davit
et al. 2013). As a result of the zero mass-�ux condition at the solid-�uid interface at
the underlying pore scale, upscaling also yields a divergence-free average velocity as
the macroscopic mass conservation equation. Subject to prescribed conditions at the
external boundaries of the macroscopic domain, both equations can be used to solve the
macroscopic problem.
In a variety of situations, however, the zero mass-�ux condition at the solid-�uid

interface does not apply. This occurs, for example, when the �uid is released from the
solid into the pore space or absorbed from the pore space into the solid, due to many
possible mechanisms illustrated in the following. It is then a common practice to account
for the volume source in the macroscopic mass conservation equation, while using Darcy's
law and the value of the intrinsic permeability, valid in the absence of source (Lachaud
et al. 2017; Vu & Tsotsas 2018). However, the zero velocity at the solid-�uid interface
is a key feature in the derivation of the classical form of Darcy's law. There is, a priori,
no argument supporting that this equation remains unchanged if non-zero �uxes take
place at the interface and, even if a Darcy term remains, the modi�cation or not of the
permeability must be carefully addressed. Therefore, it is of interest to determine if such
a heuristic formulation is reliable or not. For example, in the presence of interfacial slip,
it has been reported that Darcy's law is applicable at the cost that the permeability
tensor is no longer intrinsic as it depends on the Knudsen number, in agreement with
the fact that the shear is modi�ed by the existence of slip (Lasseux et al. 2016). When a
normal �ux is present, one may expect that, if a Darcy term is preserved, the permeability
remains intrinsic as in classical Darcy's law since the drag is unaltered. However, how
the macroscopic momentum equation is a�ected by the normal inward or outward
�ow at the pore walls remains to be elucidated. Fundamentally, the problem under
consideration raises the questions: i) Is the solenoidal nature of the macroscopic (average)
velocity preserved? ii) Is the Darcy model (macroscopic momentum balance equation)
heuristically used for exuding media in some reported works in the literature a physically
sound one? iii) If a Darcy term persists in the macroscopic momentum equation, is the
permeability still the intrinsic permeability? These questions are addressed in detail in
the following sections. This is a very important problem, both from fundamental and
potential applications points of view, which, to the best of our knowledge, has not been
yet addressed in the literature. Derivation of a valid macroscopic model in such situations
is therefore the purpose of the present work.
In the above description, and in some of the following examples, the solid phase is

actually often a nanoporous material. Nevertheless, this nanoporous structure is generally
too tight to actively participate to the �ow within its volume at the scale of description
of interest. Consequently, it can be considered as an apparent continuous solid material
allowing �uid transfer between its surface and the neighbouring macropores. An example
is provided by the exploitation of tight gas reservoirs for which natural or induced
fracturing is required to access the resource. The gas contained under high pressure
in the nanoporous matrix is exuded at the fracture walls. Its �ow towards the producing
well through the fractures is described, in �eld scale simulation models, by Darcy's law
(Olorode et al. 2012; Jiang & Younis 2015), with a permeability which is deduced from
the fracture geometrical characteristics in the absence of surface sources (Mourzenko
et al. 2018).
Drying or pyrolytic processes also induce interfacial sources, with water vapor or
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pyrolytic gases produced in the solid and exuded into the pore space. Water can be
initially chemically bonded or con�ned in liquid state in nanopores. Pyrolytic gases can
result from thermal decomposition of biomass or organic compounds, such as kerogen
trapped in the nanopores of oil shales. In the latter case, a largely predominant inert
mineral matrix prevents the solid from deforming (Elayeb et al. 2017). Darcy's law and
the usual intrinsic permeability are universally used in the macroscopic modelling of such
situations, see e.g. (Erriguible et al. 2006; Warning et al. 2015) for drying, (Shepel et al.
2010) for plaster dehydration, (Di Blasi 1994; Larfeldt et al. 2000; Bryden et al. 2002;
Mahmoudi et al. 2014) for pyrolysis.
Chemical reactions can also give rise to non-zero velocities at the solid-�uid interface.

Consider, for instance, a carbonaceous solid and the heterogeneous reactions O2 +2C→
2CO (oxidation) or CO2 + C → 2CO (gasi�cation). In both cases, a single mole of O2

or CO2 is consumed and two moles of CO are produced. This volume increase resulting
from the net production of gas localized at the solid surface, can be accounted for by a
normal velocity directed into the pores. Reactions between gaseous species can result in
the same behaviour, if they require a catalyst contained in the solid, such as, for example,
the methanation reaction CO2 + 4H2 → CH4 + 2H20, or the inverse process of steam
reforming (Rönsch et al. 2016). By converting 5 moles of gas into 3 or conversely, it
induces a velocity at the surface directed towards or from the solid, respectively.
Fluxes at the pore/solid interface can also result from phase changes. Interesting

examples are provided by the water ice/vapour system, with sublimation/condensation
at the solid surface. The equilibrium vapour pressure depends on the surface curvature
as described by Kelvin's law, giving rise to the isothermal snow ageing metamorphism,
with vapour migration from surface sources to surface sinks (Flin et al. 2003; Vetter et al.
2010). It also depends on temperature. Thus, in a bubble enclosed in an ice mass subject
to a temperature gradient, a water vapour transfer takes place from a surface source by
sublimation on the warm side to a surface sink by condensation on the cold side. This
phenomenon, in turn, induces the slow migration of the bubble (Shreve 1967; Dadic et al.
2010).
In many of the above examples, the solid geometry is subject to evolution, by ei-

ther mass loss or gain inducing shrinkage or growth. However, the characteristic time
associated to the deformation is usually very large compared to the one associated to
the �uid displacement, so that the �ow problem can be treated with a quasi-steady
approximation within a �xed geometry. In the water ice/vapour system for instance, this
can be explained by the very large solid/gas density contrast.
As a generic problem accounting for the above mentioned situations, the interest is

focused in this work on the macroscopic description of �ow in a porous material resulting
from exuding at the solid-�uid interface at the pore scale, i.e., from a non-zero velocity
normal component at this interface. Exuding is meant here in a general sense including
�uid release from the surface into the pores or, conversely, absorption from the pore into
the solid through the interface. The key question then arises whether Darcy's law is still
a valid model at the macroscopic scale, keeping the hypotheses of a Newtonian �uid and
creeping incompressible �ow conditions.
To address this issue, the article is organized as follows. In section 2, the pore-scale

model is presented, the solution of which is illustrated in a simple case, showing that the
classical Darcy's law fails and hence, highlighting the necessity of deriving a macroscopic
model. Section 3 is dedicated to the upscaling of the pore-scale problem which yields
macroscopic mass and momentum transport equations. The former involves a term
accounting for the net mass that is released (or absorbed) through the solid-�uid interface
and the latter contains a correction term to Darcy's law. This term involves a local
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Figure 1. a) Schematic representation of a porous medium saturated with a single �uid phase
along with the averaging domain and characteristic lengths. b) Position vectors associated to
the averaging volume.

contribution of the exuding e�ect and a compensation for the periodicity assumption.
The model is validated in section 4 by comparisons with pore-scale numerical simulations
in a variety of physical situations. Discussion and concluding remarks are provided in
section 5.

2. Pore-scale model

In this section, the boundary value problem under consideration and an illustrative
analytical solution in a simple case, justifying the analysis proposed in the following
sections, are provided.

2.1. Pore-scale boundary value problem

Consider a rigid and homogeneous porous medium, VM , of typical size L and of external
macroscopic boundary ∂VM , made of a solid rigid skeleton (σ-phase) and saturated by
a single �uid (β-phase) as sketched in �gure 1a. The situation of interest is when the β-
phase is either released or absorbed at the solid-�uid interface Aβσ. For this process,
the β-phase is considered as Newtonian and the �ow is supposed to remain in the
incompressible creeping regime.
Let V , of measure V and size r0, in which the region occupied by the β-phase is

denoted by Vβ (of measure Vβ), be a subdomain of VM (V ⊆ VM ) referred to as the
averaging domain in the following (see �gure 1a). At any point located at r = x + y
within Vβ , x denoting the position of the centroid of V (see �gure 1b), the �uid pressure
may be decomposed under the form p|

r
= 〈p〉β

∣∣
r

+ p̃|
r
(Gray 1975). Application of the

gradient operator, leads to

∇p|
r
= ∇〈p〉β

∣∣
r

+ ∇p̃|
r

(2.1)

In these relationships, 〈ψ〉β
∣∣
r

denotes the intrinsic average of ψ evaluated at r. The
averaging operator at any point x is de�ned as

〈ψ〉β
∣∣
x

=
1

Vβ

∫
Vβ(x)

ψ dV (2.2)

while ψ̃ represents the deviations of ψ with respect to its intrinsic average. In the course
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of the development, the super�cial average de�ned as

〈ψ〉|
x
=

1

V

∫
Vβ(x)

ψ dV = ε〈ψ〉β (2.3)

will also be used, ε being the porosity of the medium (ε = Vβ/V ), which is supposed to
be constant. This is a reasonable assumption that is supported by the consideration of
geometrical homogeneity of the porous medium.

As in the double scale homogenization technique, x may be understood as the macro-
scopic (or �slow�) variable, having a typical length-scale of variation L while y corresponds
to the microscopic (or �rapid�) variable having a characteristic length of variation `β ,
typical of the pore dimension (see �gure 1b). As for any upscaling procedure, a separation
of length-scales is assumed, expressed as `β � r0 � L. The gradient of the average
pressure evaluated at r in equation (2.1) may be further considered using the following
Taylor series expansion written in a generic form as

Ψ |
r
= Ψ |

x
+ y · ∇ Ψ |

x
+

1

2
yy : ∇∇ Ψ |

x
+ . . . (2.4)

Performing an order of magnitude estimate on the �rst-order term in this expansion
allows writing

Ψ |
r
= Ψ |

x
+O

(r0
L
∆Ψ
)

(2.5)

where ∆Ψ represents the characteristic variation of Ψ over the length-scale L. Since the
order of magnitude of ∆Ψ can be at most as large as Ψ , and as a result of the separation
of length scales, it seems reasonable to use the approximation Ψ |

r
' Ψ |

x
. When Ψ

represents an average quantity 〈ψ〉β , and, denoting from now on 〈ψ〉β
∣∣
x

≡ 〈ψ〉β , this
readily implies

〈ψ̃〉β ' 0 (2.6)

When Ψ is taken to be ∇〈p〉β and when the resulting approximation is introduced in
equation (2.1), the �ow problem under consideration can be written in V as

∇ · v = 0, in Vβ (2.7a)

0 = − 1

µ
∇p̃+∇2v− 1

µ
∇〈p〉β , in Vβ (2.7b)

v = −v0n, at Aβσ (2.7c)

In these equations, v is the velocity in the β-phase, whose dynamic viscosity, µ, is
assumed to be constant. For the sake of simplicity, albeit keeping generality, no body
force is considered in the analysis. In the exuding boundary condition at Aβσ, (equation
(2.7c)), v0 denotes the rate of production (or consumption) of �uid per unit interfacial
area. It is supposed to be a position-dependent but known function of space, a priori,
and n is the unit normal vector at Aβσ directed from the β to the σ-phase.

Additional boundary conditions at the entrances and exits, Aβe, of V must be pre-
scribed in order to complete the problem statement. In a classical homogenization
approach, one would certainly consider periodicity at Aβe as this is the classical way
of carrying out the upscaling, assuming locality (Mei et al. 1996). However, taking the
super�cial average of the mass balance equation (2.7a), applying the divergence theorem
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and making use of the boundary condition at Aβσ, yields

1

V

∫
Aβe

n · v dA = ϕ0 (2.8)

with

ϕ0 =
1

V

∫
Aβσ

v0 dA (2.9)

Clearly, periodicity on v at Aβe is not physically admissible unless ϕ0 = 0. Even if it
will be further considered later in the development, the boundary condition at Aβe is left
unspeci�ed at this point. The macroscopic boundary condition over VM shall nevertheless
be denoted as

G (v, p) = 0, at AMβe (2.10)

AMβe denoting the portion of ∂VM intersecting the �uid phase. Here again, G (v, p) must
be compliant with the equivalent of equation (2.8) when the entire macroscopic domain
is considered.

2.2. Preliminary comments about the interpretation of Darcy's law

At this point of the analysis, it is pertinent to make a clear distinction between the
super�cial average of the pore-scale velocity (i.e., 〈v〉) and another de�nition of the
seepage velocity (denoted qs in the following) that is typically found in the porous media
literature. To this end, let 〈v〉 be expressed as follows:

〈v〉 = 1

V

∫
Vβ

∇ · (vr) dV − 1

V

∫
Vβ

(∇ · v)r dV (2.11)

The last term in the above equation is zero due to the solenoidal nature of the pore-scale
velocity. Using the divergence theorem in the remaining term, it follows that

〈v〉 = qs +
1

V

∫
Aβσ

n · (vr) dA (2.12)

with

qs =
1

V

∫
Aβe

n · vr dA (2.13)

In the above equations, qs is recognized in the porous media literature (see, for instance
Adler 1992) as the �ux or seepage velocity. This de�nition of the seepage velocity is
intuitively appealing and corresponds to a quantity that is easily measurable in the
laboratory, with an empirical origin dating back to H. Darcy's pioneering experiments.
In the classical Darcy's law, for which the velocity is zero at the solid-�uid interface, the
last term in equation (2.12) is zero and it results that 〈v〉 = qs = − 1

µK · ∇〈p〉β so that

〈v〉 or qs may be indi�erently employed. However, in the case under study, v = −v0n at
Aβσ and equation (2.12) takes the form

〈v〉 = qs −
1

V

∫
Aβσ

v0r dA (2.14)

Two important remarks must be made from the expressions of 〈v〉 and qs. First, it
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Figure 2. Two-dimensional �at channel made by a pair of plane parallel plates.

should be noted that qs, as given in equation (2.13), is ill-de�ned because it explicitly
depends on the origin of the system of coordinates when there are net sources in the
domain. Conversely, the average velocity, 〈v〉, does not and, consequently, this is the
appropriate de�nition of the macroscopic velocity that must be used in an upscaled
equation. Second, the de�nition of 〈v〉 captures both the mean �ow entering/leaving
the porous medium (qs) and the local �uid displacements resulting from the interfacial
sources and/or sinks. These local phenomena must be taken into account for a complete
macroscopic description of the �ow. The derivations presented in what follows are hence
given in terms of 〈v〉 and not of qs, which are di�erent in the case under consideration.

2.3. Solution for a two-dimensional �at channel

Before developing the macroscopic model and in order to illustrate the speci�c features
of the problem, it is instructive to investigate a simple case for which an analytical solution
can be achieved. To this end, a two-dimensional periodic layered medium is considered.
Its unit cell contains a channel with aperture 2h as illustrated in �gure 2. The surface
sources are denoted v+0 and v−0 at y = h and y = −h, respectively, and are assumed to
be independent of x, so that ϕ0 = ε

2h

(
v+0 + v−0

)
.

The analytical solution is derived imposing vx = 0 at x = 0 with the idea that this
is a plane of horizontal symmetry resulting from the fact that the channel is open to
the atmosphere at both ends along x. The dimensionless solution for the horizontal
and vertical velocities, v∗x and v∗y , and pressure, p∗, in the unit cell is obtained using

2h, vref = max
(∣∣v+0 ∣∣ , ∣∣v−0 ∣∣) and µ

vref
2h as the reference length, velocity and pressure,

respectively. This solution is given by

v∗x =
3

2

ϕ∗
0

ε

(
1− 4y∗2

)
x∗ (2.15a)

v∗y = −3

2

ϕ∗
0

ε

(
1− 4

3
y∗2
)
y∗ − v+∗

0 − v−∗
0

2
(2.15b)

p∗ = p∗1 + 6
ϕ∗
0

ε

(
y∗2 − x∗2

)
(2.15c)

p∗1 in equation (2.15c) being an arbitrary constant. If ϕ
∗
0 is positive, the pressure decreases

with x∗ and from the walls to the channel mid-plane. The opposite applies if ϕ∗
0 results

in a net sink and p∗ remains constant if there is no net source or sink.
Although v∗x can be identi�ed as a Poiseuille-like solution at each position x∗, the

�ow remains two-dimensional. This contrast with respect to the classical �ow induced
by a pressure gradient along the channel may be better highlighted with the average
expressions of v∗x, v

∗
y and p∗ given by

〈v∗x〉β = − 1

12

∂〈p∗〉β
∂x∗

(2.16a)
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〈v∗y〉β = −v
+∗
0 − v−∗

0

2
(2.16b)

〈p∗〉β = p∗2 − 6
ϕ∗
0

ε
x∗2 (2.16c)

with 〈ψ∗〉β =
1/2∫

−1/2

ψ∗dy and p∗2 = p∗1 + ϕ∗
0/(2ε). Equation (2.16a), once multiplied by

ε, corresponds to the classical Darcy's law, involving the dimensionless permeability,
ε/12, of the channel system in the x-direction. For the y-component of the velocity, no
analogy is possible with a Darcy-like �ow. Note that this term accounts for the local �uid
displacements and remains even if ϕ0 = 0.
This simple example is a clear evidence that the upscaled model accounting for the

presence of surface sources and/or sinks at the solid-�uid interfaces can not be reduced,
in general, to Darcy's law.

3. Upscaling

In this section, the derivation of a macroscopic model for the �ow problem given
in equations (2.7) is proposed. The macroscale mass equation is obtained following
the classical volume averaging method (Whitaker 1999). However, for the derivation of
the upscaled momentum equation, an approach inspired by the adjoint homogenization
method recently proposed by Bottaro (2019) is used.

3.1. Mass balance equation

In order to derive the macroscopic mass equation, it is convenient to recall the result
given in equation (2.8) and use the relationship reported by Slattery (1967),

1

V

∫
Aβe

n · v dA = ∇ · 〈v〉 (3.1)

in order to obtain

∇ · 〈v〉 = ϕ0 (3.2)

ϕ0 being given in equation (2.9). It should be noticed that, except when ϕ0 = 0, this
result contrasts with the macroscopic mass balance equation obtained while deriving the
classical Darcy's law with a zero velocity at Aβσ (Whitaker 1986, 1999) or when a slip �ow
boundary condition is considered (Lasseux et al. 2016). In other words, a consequence of
the conservation of mass within the averaging domain is that 〈v〉 has a non-solenoidal
character, despite the fact that the �ow is incompressible at the underlying pore-scale.
This non-solenoidal nature of the average velocity is an important modi�cation to the
classical Darcy model as it accounts for the mass entering/exiting the system through
the solid-�uid interface. At this point, the macroscopic model must be complemented
with the momentum balance equation as proposed in the following paragraphs.

3.2. Momentum equation

An e�cient and simple way to derive a macroscopic form of the momentum equation,
is to make use of the adjoint method proposed by Bottaro (2019). To this purpose, an
adjoint problem can be conveniently de�ned with the minimum requirements as follows

∇ ·D = 0, in Vβ (3.3a)
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0 = −∇d+∇2
D+ I, in Vβ (3.3b)

D = 0, at Aβσ (3.3c)

Again, boundary conditions for D and d at Aβe are necessary for this problem to be
well-posed. However, they are not speci�ed here as they are not required at this point of
the development.
The derivation is carried out by adding the product of equation (2.7a) by d to equation

(2.7b) pre-multiplied by DT . Forming the super�cial average of the result leads to

〈d∇ · v〉+
〈
D
T ·
(
− 1

µ
∇p̃+∇2v

)〉
=

1

µ

〈
D
T
〉
· ∇〈p〉β (3.4)

The three terms on the left-hand side of the above equation can be respectively rewritten
as

〈d∇ · v〉 = 〈∇ · (vd)〉 − 〈v · ∇d〉 (3.5a)

− 1

µ

〈
D
T · ∇p̃

〉
= − 1

µ
〈∇ · (p̃D)〉 (3.5b)〈

D
T · ∇2v

〉
= 〈v · ∇2

D〉+
〈
∇ ·
(
∇v ·D− v · (∇D)

T1
)〉

(3.5c)

Equation (3.5b) is obtained while taking into account the divergence-free property of
D. Note that in equation (3.5c), the superscript T1 denotes the transpose operator on

the third order tensor ∇D which permutes the �rst and second indices, i.e. (∇D)
T1
ijk =

(∇D)jik. Introducing these expressions into equation (3.4) and making use of equation
(3.3b), allows expressing 〈v〉 as

〈v〉 =− 1

µ
〈DT 〉 · ∇〈p〉β +

〈
∇ ·
[
v ·
(
Id− (∇D)

T1
)
+

(
− 1

µ
p̃I+∇v

)
·D
]〉

(3.6)

This last expression can be reformulated using the divergence theorem together with the
boundary conditions for v and D at Aβσ given in equations (2.7c) and (3.3c) in order to
obtain

〈v〉 =− 1

µ
〈D〉T · ∇〈p〉β − 1

V

∫
Aβσ

v0 (d− nn : ∇D) dA

+
1

V

∫
Aβe

n ·
(
− 1

µ
p̃I+∇v

)
·D dA− 1

V

∫
Aβe

n ·
[
v ·
(
−Id+ (∇D)T1

)]
dA (3.7)

Here, the fact that nn : ∇DT1 = nn : ∇D was taken into account as a result of the
symmetry property of the tensor nn. It must be noted that equation (3.7) is valid
whatever the boundary conditions at Aβe are imposed for both the physical (equations
(2.7)) and adjoint (equations (3.3)) problems and that the only approximation is the one
associated to equation (2.5).
To make further progress towards a closed form of this macroscopic momentum

equation, it is now assumed that the porous structure can be assimilated to a periodic
one and that v0 is also periodic. Under theses circumstances, V is selected as the smallest
periodic unit cell satisfying these properties. Moreover, periodic boundary conditions on
D and d can be considered for the adjoint problem as this does not imply any physical or
mathematical contradiction. This choice is retained in the remainder of the development.
Nevertheless, appropriate boundary conditions at Aβe for the physical problem are still
required, keeping in mind that periodicity on v is incompatible with equation (2.8) when
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ϕ0 6= 0. To handle this situation, it is proposed, as an ansatz, to consider periodic
boundary conditions for both v and p̃ at Aβe and then, compensate for this assumption
as it is explained below. For the moment, it su�ces to note that, on the basis of periodic
boundary conditions for both the physical and adjoint problems, equation (3.7) reduces
to

〈v〉 = − 1

µ

〈
D
T
〉
· ∇〈p〉β − 1

V

∫
Aβσ

v0d dA+
1

V

∫
Aβσ

v0nn : ∇D dA (3.8)

An additional simpli�cation can be made regarding the last term in the above expres-
sion of 〈v〉. Taking into account the fact that v is a solenoidal �eld allows writing〈

D
T ·
(
∇ · (∇v)T

)〉
=
〈
∇ ·
(
(∇v)T ·D− v · ∇D

)〉
= 0 (3.9)

Applying the divergence theorem to the term in the middle of this equation (3.9) leads
to

1

V

∫
Aβσ

v0nn : ∇D dA+
1

V

∫
Aβe

n · (∇v)T ·D dA− 1

V

∫
Aβe

n · (v · ∇D) dA = 0 (3.10)

When periodic boundary conditions for both v and D are considered, the two last terms
on the left hand side of this last relationship are zero, which means that

1

V

∫
Aβσ

v0nn : ∇D dA = 0 (3.11)

This allows simplifying equation (3.8) to

〈v〉 = − 1

µ
〈D〉T · ∇〈p〉β − 1

V

∫
Aβσ

v0d dA (3.12)

It must be kept in mind that this form is an approximation of 〈v〉, as a result of the
application of periodic boundary conditions for v at Aβe. Moreover, at this stage of the
derivations, an important point remains to be carefully addressed. Indeed, the adjoint
problem for D and d given in equations (3.3), complemented with periodic boundary
conditions, remains ill-posed as d can only be determined to within an arbitrary additive
constant, and this leaves the expression of 〈v〉 undetermined due to the last integral
term on the right hand side of equation (3.12). When v0 is uniformly zero, i.e., when
the problem reduces to the derivation of Darcy's law, it can be shown that an additional
constraint can be imposed on d by setting 〈d〉β equal to an arbitrary constant for the
adjoint problem to be well-posed. This is due to the fact that, in this particular case,
the closed macroscopic momentum equation only involves 〈D〉 and that the �eld of D is
insensitive to any additive constant superimposed to the �eld of d. Indeed, the only source
of the physical problem originates from the gradient of the average pressure re�ected in
the source term I in equation (3.3b). However, when a non-zero exuding �ux is present,
d must be uniquely de�ned in equation (3.12) to obtain a closed expression for 〈v〉. This
feature results from the fact that periodic boundary conditions have been considered for
v, while the solution for 〈v〉 depends on both the internal surface source or sink, v0,
and the macroscopic boundary conditions. To circumvent this di�culty, it is convenient
to consider the decomposition of d under its intrinsic average λ = 〈d〉β and deviation
d1 = d̃ as

d = λ+ d1 (3.13)
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Keeping in mind that, within the periodic unit cell, V , 〈d1〉β = 0 (see equation (2.6)
with ψ̃ = d1) and that λ can be considered as a constant (see equation (2.5) with Ψ = λ
together with the ensuing approximation), the adjoint problem for d1 and D can be
written as

∇ ·D = 0, in Vβ (3.14a)

0 = −∇d1 +∇2
D+ I, in Vβ (3.14b)

D = 0 at Aβσ (3.14c)

ψ(r+ li) = ψ(r), i = 1, 2, 3;ψ = d1,D (3.14d)

〈d1〉β = 0 (3.14e)

where li are the periodic lattice vectors of V . This problem exactly corresponds to the
closure problem (D and d1 being the closure variables) involved in the derivation of the
classical Darcy's law from which the intrinsic permeability tensor K is given by (Whitaker
1986, 1999; Mei et al. 1996; Mei & Vernescu 2010)

K = 〈D〉 (3.15)

Introduction of the decomposition for d into equation (3.12) while taking into account
that K is a symmetric tensor (see e.g. Lasseux & Valdés-Parada 2017), yields

〈v〉 = − 1

µ
K · ∇〈p〉β + vs (3.16)

where the vector vs, denoting the correction velocity to Darcy's law due to the surface
source or sink, v0, is de�ned as

vs = −
1

V

∫
Aβσ

v0d1 dA

︸ ︷︷ ︸
vd

−λϕ0︸ ︷︷ ︸
vλ

(3.17)

It should be noted that both K and vd are obtained from the same closure (adjoint)
problem that is intrinsic to the structure under consideration and it corresponds to the
same closure problem yielding K in the classical Darcy's law. This is novel in the volume
averaging method, where it is usually required to produce a distinct closure problem for
each source in the pore-scale model. In addition, it should be noted that vd, like K, is
independent of the �uid viscosity, but, unlike K, it is unmodi�ed in a homothetic change
of scale of the microstructure.
To clarify the physical meaning of the terms involved in the macroscopic momentum

equation (3.16), it is instructive to rewrite it in the following alternative form

−K
µ
· ∇〈p〉β = −K

µ
· 1

Vβ

∫
Aβσ

n · T dA = v1 = 〈v〉 − vs (3.18)

where T is the total stress tensor (T = −pI + µ
(
∇v +∇vT

)
). In this formulation,

v1, which identi�es as the Darcy term, corresponds to the average contribution of the
microscale �ow �eld that induces a force on the solid phase (which translates into the
macroscopic pressure gradient). Conversely, vs is the contribution that does not induce
such a force but is nevertheless not zero due to the local �uid displacements.
In the expression of vs, the �rst term (i.e., vd) accounts for the local e�ect of v0

whereas the second term (i.e., vλ) is a compensation of the e�ect of the periodic boundary
condition applied to v at the level of the unit cell. The idea here is that λ can be computed
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from equation (3.16) with 〈v〉 obtained from solving the pore-scale �ow problem in a
domain potentially signi�cantly smaller than VM with the same macroscopic boundary
condition (see equation (2.10)). If such reduction is not possible, then it should be
evaluated from a �ow solution over the entire domain. Nevertheless, as illustrated in
section 4 below, λ has no signi�cant contribution in many circumstances, even if it can
be crucial in some very speci�c cases. The correction term vλ in vs does not even exist
when ϕ0 = 0 and this is consistent with the fact that, in that case, periodic boundary
conditions for v at Aβe are physically admissible.
A particular feature of vd must be pointed out when the structure is non-percolating

in a direction, ek, of space. In such circumstances, the projection of the closure problem
on ek admits the unique solution

D · ek = 0 (3.19a)

and consequently

d1 · ek = (r− rG) · ek (3.19b)

rG being the barycentre of Vβ . From equation (3.19b), it appears that vd · ek is the �rst
moment of v0 in the ek direction. Hence, an average velocity may be induced in a non-
percolating direction of the medium in the absence of a macroscopic pressure gradient,
as already noted in the case of the �at channel (see equation (2.16b)). This is further
illustrated in section 4.
The fact that the correction to Darcy's law given in equation (3.16) is a vector implies

that, for situations in which the microstructure and the distribution of v0 are both
isotropic, vs should be 0 due to the absence of a privileged direction. Isotropy can also
result from statistical reasons, such as the averaging of the randomness in real media. In
addition, vd may also be evanescent because of an uncorrelated combination of d1 and
v0. In other words, vs plays a role only if there is some spatial alignment in the local
geometrical and/or �uid exuding distribution properties, in particular, when v0 presents
some kind of polarization between releasing and absorbing interfaces. Moreover, an order
of magnitude estimate can be performed on vd and vλ as reported in Appendix A. It
shows that both vd and vλ are, at most, of order v0.
As a summary, the upscaled (or macroscopic) model describing �ow in porous media

of a Newtonian �uid in the creeping incompressible regime, induced by a rigid and
homogeneous exuding solid matrix, is given by

∇ · 〈v〉 = ϕ0 (3.20a)

〈v〉 = − K

µ
· ∇〈p〉β + vs (3.20b)

in which ϕ0 and vs are given by equations (2.9) and (3.17), respectively, and this
represents the salient result of this work. Clearly, the macroscopic momentum equation
(3.20b) di�ers from Darcy's law by the correction term vs, while 〈v〉 is not a divergence-
free �eld, except when ϕ0 = 0.

4. Results

The purpose of this section is to assess the validity of the macroscale model derived
in section 3 for a variety of situations. Firstly, �ow in two geometries of corrugated
two-dimensional channels is considered for three con�gurations of v0 at the solid-�uid
interface. Secondly, �ow in both isotropic and anisotropic two-dimensional model porous
media is analysed. Finally, the case of exuding within spherical bubbles is investigated, a
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situation which may be thought of as a simple representation of the migration of water
vapor bubbles in ice.
In all the situations studied here, the reference macroscale velocity and pressure results

are those obtained from averaging the numerical solution of the governing �ow equations
at the pore-scale carried out in VM . The pore-scale numerical simulation (PSNS) of the
�ow problem, as well as the solutions of the closure problem given in equation (3.14) and
of the upscaled model are carried out using the �nite element solver Comsol Multiphysics
5.5. The smoothed aggregation algebraic multigrid solver was chosen for the �uid �ow
variables considering preconditioning. In addition, typical tests of convergence in terms
of the relative tolerance and number of mesh elements were performed so that the results
presented here are independent of these numerical degrees of freedom.
For the developments reported below, it is convenient to introduce the following

dimensionless variables and parameters

r∗ =
r

`cell
; v∗ =

v

vref
; v∗0 =

v0
vref

p∗ =
p`cell
µvref

; ϕ∗
0 =

ϕ0`cell
vref

; K
∗ =

K

`2cell
;

λ∗ =
λ

`cell
; d∗

1 =
d1

`cell
; D

∗ =
D

`2cell
(4.1)

Here vref = max(|v0|) and `cell is the length of the geometrical periodic unit cell used to
construct the solution domain.
Before presenting the numerical results, the analytical solution obtained from the

macroscopic model in the case of the �at channel is compared to the �ow solution reported
in section 2.3, keeping the same conditions. In that case, `cell = 2h and the analytical
solution of equations (3.14) for D∗ and d∗

1 is given by

D∗
xx =

1

2

(
−y∗2 + 1

2

)
, D∗

yx = 0, d∗1x = 0 (4.2a)

D∗
xy = 0, D∗

yy = 0, d∗1y = y∗ (4.2b)

Note that the results in equations (4.2b) correspond to the solution in equations (3.19),
as expected. Once these results are inserted into equation (3.16), it yields

〈v∗x〉 = −
ε

12

∂〈p∗〉β
∂x∗

(4.3a)

〈v∗y〉 = −
ε(v+∗

0 − v−∗
0 )

2
(4.3b)

Combining the macroscopic mass and momentum equations (3.20), leads to the following
average dimensionless pressure equation

− ε

12

∂2〈p∗〉β
∂x∗2

= ϕ∗
0 = ε

(
v+∗
0 + v−∗

0

)
(4.4a)

The solution of this equation is obtained by considering that 〈v∗x〉 = 0 (i.e. ∂〈p∗〉β/∂x∗ =
0) at x∗ = 0 and it can be written as

〈p∗〉β = p∗2 − 6
ϕ∗
0

ε
x∗2 (4.4b)

with p∗2 being an arbitrary constant. The results given in equations (4.3) and (4.4b)
coincide with those obtained from the �ow solution (see equations (2.16)). In particular,
v∗
λ is zero and the result from the macroscopic model is exact in that case.



14 Lasseux, Valdés-Parada, Thovert and Mourzenko

a)

b)

c)

Figure 3. Pore-scale streamlines corresponding to a) Case a, b) Case b and c) Case d. Case c
is not reported for the sake of brevity.

4.1. Flow in corrugated channels

In this section, two types of two-dimensional channels, for which the macroscopic
domain, VM , is composed of the N -repetition (N = 11 here) along x of a geometrical
periodic unit cell, are considered. This geometry may be viewed as a simple model to
study �ow in exuding fractures (cf., Rasoulzadeh et al. 2020). For the �rst channel
geometry, namely the wavy channel, the lower wall at y∗ = 0 is �at, while the upper wall
follows the oscillatory function y∗ = 0.35 + 0.25 cos(2πx∗). The developed dimensionless
length of the upper wall is denoted by A∗

upper. The second type of geometry, referred to
as the shark-�n channel, is such that the lower wall is corrugated and not symmetric.
It presents a positive undulation over the baseline y∗ = 0 while the upper wall is �at,
positioned at y∗ = 1. In the following numerical evaluations, the dimensionless height
of the unit cell is taken equal to the maximum dimensionless channel aperture, i.e., 0.6
and 1 for the wavy and shark-�n channels respectively. The interest is to examine the
following four con�gurations:

Case a v∗0 = 1 at the upper wall and v∗0 = −A∗
upper at the lower wall in the wavy channel,

so that ϕ∗
0 = 0;

Case b v∗0 = 1 at Aβσ in the wavy channel;
Case c A Janus-type† con�guration for which v∗0 = 1 at the solid-�uid interfaces located
in the right half and v∗0 = 0 in the left half of each geometrical unit cell in the wavy
channel;
Case d v∗0 = 1 at Aβσ in the shark-�n channel.

To complete the problem statement, the following form of G ∗(v∗, p∗) for the condition
at the macroscopic boundaries, AMβe, (see equation (2.10)) is imposed for all the pore-

† named after the ancient Roman two-faced sculpture.
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Table 1. Values of the permeability (K∗) and the components of v∗s for all the numerical
simulation cases. Note that v∗λx was found to be irrelevant in all cases.

Case K
∗ ϕ∗0 v∗dx v∗dy v∗λy

Wavy channel Case a (
6.14 0
0 0

)
×10−4

0 0 0.854 0
Wavy channel Case b 4.11 0 0.048 −0.349
Wavy channel Case c 2.05 0.401 0.024 −0.174
Shark-�n channel Case d

(
1.18 0
0 0

)
× 10−2 3.04 0.143 0.211 0.514

Isotropic porous medium Case a
(
1.94 0
0 1.94

)
×10−2 0 0 0.404 0

Isotropic porous medium Case b 0.793 0.283 0 0
Anisotropic porous medium (

31.10 3.31
3.31 1.72

)
×10−5

4.92 0.039 0.346 0
vertical Janus
Anisotropic porous medium

4.81 0.384 0.137 0
horizontal Janus

scale numerical simulations

G ∗(v∗, p∗) = n ·
[
−p∗I+∇∗v∗ + (∇∗v∗)T

]
= 0 (4.5)

with n being the unit normal vector at AMβe pointing out of the β-phase. The PSNS
were performed considering a channel composed of eleven geometrical unit cells and it
was veri�ed that similar results were obtained considering larger values of N . In all the
simulations, the coordinate axes origin is located at the lower left corner of the system.
The pore-scale streamlines for the three cases listed above are presented in �gure 3.
Regarding these results the following comments are in order:
(i) In Case a, the streamlines appear to be periodic from one geometric unit cell to
another. Since ϕ∗

0 = 0, �uid is released from the upper wall and absorbed at the lower
wall at the same rate so that the net �ow is directed from the upper to the lower wall and
no overall �ow is directed towards AMβe. As a matter of fact, similar results are obtained
if, instead of equation (4.5), one imposes periodic boundary conditions at AMβe, which
complies with mass conservation in this case.
(ii) In Cases b and d, there is a net �uid source, with ϕ∗

0 > 0. Consequently, the �uid tends
to move from the channel centre towards AMβe. Notice that in Case d, the streamlines do
not follow a symmetric pattern: the velocity is larger near the left macroscopic boundary
than near the right one.

(iii) The results for Case c are equivalent to those shown in �gure 3b, except that the
maximum values are divided by a factor of two and they are not reported in this �gure
for the sake of brevity.
The predictions from the macroscopic model derived here are compared with these

PSNS for the above four cases. Comparisons are made in terms of the horizontal and
vertical components of the velocity vector, 〈v∗〉, and the intrinsic average pressure, 〈p∗〉β .
It should be noted that a straightforward consequence of the mass equation for these
geometries is that the pro�les of 〈v∗x〉 along x∗ are linear with a slope equal to ϕ∗

0,
a feature that was recovered in all the four cases with the PSNS and the macroscale
predictions.
A salient feature of the upscaling approach presented in section 3 is that it is necessary

to solve only one closure problem (see equations (3.14)) in order to compute the �eld of
D

∗, from which K∗ is obtained and the �eld of d∗
1, from which v∗

d can be deduced for
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a) i)

b) ii)

c) iii)

d) iv)

Figure 4. Fields of the closure variables corresponding to the wavy channel (a-d) and to the
shark-�n channel (i-iv). a) and i) D∗xx; b) and ii) D∗yx; c) and iii) d∗1x with isolines; d) and iv)
d∗1y with isolines. The �elds of D∗xy and D∗yy are zero and are not represented here.

any source distribution. The �elds of the closure variables are presented for both channel
geometries in �gure 4. In speci�c, the �elds of the xx and yx components of the closure
tensor D∗ are presented in �gures 4a, 4i and 4b, 4ii. Since the channels do not percolate
in the y-direction, the xy and yy components of D∗ are zero for both geometries (see
equations 3.19a). In addition, the �elds of the x and y components of the closure variable
vector d∗

1 are shown in �gures 4c, 4iii and 4d, 4iv. As expected, the �elds of d∗1y in �gures
4d and 4iv are in agreement with equation (3.19b). From the solution on D∗, it follows
that the components of the permeability tensor are K∗

yx = K∗
xy = K∗

yy = 0 for both
channels, while the only non-zero term is K∗

xx. Its values are reported in Table 1.

Under these circumstances, the equation resulting from the combination of the
macroscale mass and momentum equations reduces to

K∗
xx

d2〈p∗〉β
dx∗2

= −ϕ∗
0 (4.6a)
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which is subject to the following boundary conditions

at x∗ = x∗0, 〈p∗〉β = p∗0 (4.6b)

at x∗ = x∗L, 〈p∗〉β = p∗L (4.6c)

Here, p∗0 and p∗L are the values of the dimensionless intrinsic average pressure obtained
from the PSNS at the �rst and last unit cell, located at x∗0 = 0.5 and x∗L = 10.5,
respectively. The analytical solution of this boundary-value problem is

〈p∗〉β = p∗0 +
(p∗L − p∗0)(x∗ − x∗0)

(x∗L − x∗0)
− ϕ∗

0

2K∗
xx

[
x∗2 − x∗20 − (x∗L + x∗0)(x

∗ − x∗0)
]

(4.7)

From the above expression, it is easy to obtain

d〈p∗〉β
dx∗

=
(p∗L − p∗0)
(x∗L − x∗0)

− ϕ∗
0

2K∗
xx

[2x∗ − (x∗L + x∗0)] (4.8)

which is further used to compute the Darcy term.
The values of the two terms v∗

d and v∗
λ change for each case study as reported in Table

1. Nevertheless, some insight can be obtained from the results in �gure 4c. In this plot, it
is observed that d∗1x is antisymmetric around x∗ = 0.5 at both solid-�uid interfaces. This
means that the contributions from v∗dx should be zero for the wavy channel when v∗0 is
uniform at Aβσ. However, this is not true for the shark-�n channel. In this con�guration,
the contributions from both d∗1x and d

∗
1y are relevant because no particular antisymmetry

condition is observed. Furthermore, since the permeability is zero in the y-direction, it
follows that v∗sy should be the only relevant term in the predictions of 〈v∗y〉 in both channel
geometries.
Regarding the predictions of λ∗, its values are obtained from a combination of the

macroscale model and PSNS in a reduced macroscale domain. As mentioned in section
3.2, the pore-scale equations can be solved in a subdomain of VM containing either
three or �ve geometric unit cells in order to obtain the values of 〈v∗x〉 and 〈v∗y〉. These
values show periodic oscillations about a geometric unit cell. Once smoothed by a second
spatial average over a moving unit cell, as suggested by Barrère (1990), and substituted
into the macroscale momentum equations, they allow computing λ∗x and λ

∗
y. For the cases

described above, it was found that λ∗x is irrelevant, i.e., v
∗
λx = 0. However, the same is not

true for λ∗y (v
∗
λy 6= 0). Moreover, it was noted that a subdomain made of three unit cells

is su�cient as the same value of λ∗y was obtained on the central unit cell for a subdomain
made of �ve (or even more) unit cells.

4.1.1. Case a: wavy channel, ϕ∗
0 = 0

In this case, the macroscopic pressure is constant along the system and therefore, the
Darcy term plays no role in the prediction of 〈v∗〉. In addition, v∗

λ = 0 because ϕ∗
0 = 0

and, since v∗dx = 0, as already noted, 〈v∗x〉 = 0. Furthermore, the vertical component of
the macroscale velocity is completely determined by v∗dy (see value in Table 1) and, in
this case, it has the value of 〈v∗y〉 = −0.854. These macroscopic results were checked to
be in perfect agreement with those from the PSNS.

4.1.2. Case b: wavy channel, v∗0 = 1

In this case, the mean �ow goes from the centre of the system towards AMβe as shown in
�gure 3b. Hence, the macroscale velocity and pressure are x-dependent along the channel.
As shown in �gure 5, the macroscopic variables 〈p∗〉β and 〈v∗y〉 obtained from PSNS
exhibit an oscillatory behaviour, with a period corresponding to that of the geometrical
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Figure 5. Comparisons of the averaged results of the pore-scale numerical simulations (PSNS),

with the predictions from the upscaled model (UM) for a) 〈p∗〉β b) 〈v∗x〉, c) 〈v∗y〉. These results
correspond to Case b for �ow in a wavy channel, in which v∗0 = 1 at Aβσ.

unit cell. The PSNS pro�les can be subject to a double spatial smoothing as described
above in order to eliminate the spatial oscillations. These non-oscillatory results (referred
to as PSNS (smoothed) in �gure 5), are in excellent agreement with the predictions from
the upscaled model derived here. In this way, the macroscopic pressure follows a parabolic
pro�le, with its maximum located at the centre of the domain that is correctly described
by equation (4.7). The linear pro�le of the x-component of the macroscale velocity is in
agreement with the Darcy-term contribution. For the y-component of the macroscopic
velocity, the values of v∗dy and v∗λy reported in Table 1 lead to 〈v∗y〉 = −0.3. This value
matches the smoothed PSNS result as shown in �gure 5c. From this point on, the doubly-
smoothed PSNS results are no longer reported for the sake of brevity in presentation.

4.1.3. Case c: wavy channel, Janus-type con�guration

This case is of interest because v∗0 features a heterogeneous distribution along the
channel walls. Nevertheless, as expected, the global amount of exuded �uid in this case
is half that in Case b, i.e., ϕ∗

0 = 2.05. Results obtained from the PSNS are qualitatively
equivalent to those reported in �gure 3b and �gure 5, all values being only a�ected by
a coe�cient 1/2. In contrast to Case b, 〈v∗x〉 is shifted by v∗dx, which is non-zero in the
present case (see value in Table 1) due to the uneven source distribution. As indicated
in Table 1, v∗dy is half the value reported for Case b. In addition, the value of λ∗y was
found to remain unaltered in comparison to Case b, so that 〈v∗y〉 = −0.15, which is half
the value found in Case b. This is again in excellent agreement with the smoothed value
obtained from the PSNS and the same comment applies to the pro�les of 〈p∗〉β and 〈v∗x〉.
These results are not represented here for the sake of brevity in presentation.

4.1.4. Case d: Shark-�n channel, v∗0 = 1

The last channel case considered here corresponds to the shark-�n con�guration with
v∗0 = 1 throughout Aβσ. In contrast to Case b, now v∗dx is non-zero due to the non-
symmetric geometry. Furthermore, taking the values of v∗dy and v

∗
λy reported in Table 1,

〈v∗y〉 = 0.725, which, again, exactly coincides with the PSNS result as shown in �gure

6c. In the same �gure, it is evident that 〈p∗〉β and 〈v∗x〉 are also in agreement with the
PSNS results. Contrary to the previous cases, 〈p∗〉β and 〈v∗y〉 are not evenly distributed at
the macroscopic boundaries and, interestingly, they exhibit less-pronounced oscillations
along the domain than those observed in �gures 5a and 5c. Finally, 〈v∗x〉 follows a linear
pro�le, which is not entirely described by the Darcy term since it is shifted by v∗dx 6= 0.
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Figure 6. Comparisons of the averaged results of the pore-scale numerical simulations (PSNS),

with the predictions from the upscaled model (UM) for a) 〈p∗〉β b) 〈v∗x〉, c) 〈v∗y〉. These results
correspond to Case d for �ow in a shark-�n channel, in which v∗0 = 1 at Aβσ.
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θ
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Figure 7. Representation of a model porous medium of characteristic length L, made of an
array of periodic unit cells of length `cell. The solid phase is modeled as a circular obstacle of
diameter `σ.

4.2. Flow in porous media

A second set of numerical experiments was performed in simple two-dimensional model
porous media constructed by an x and y repetition of a periodic unit cell with isotropic
and anisotropic geometries for the solid phase. Two types of distributions are considered
for v∗0 in the isotropic geometry:
Case a a sine-like exuding condition for which ϕ∗

0 = 0;
Case b Janus exuding grains, which refers to a single object featuring two-sided con-
trasted properties, namely v∗0 = 1 and v∗0 = 0 on each half-part of the grain surface.
The last v∗0 distribution is also applied in the anisotropic geometry.

4.2.1. Isotropic geometry

Consider a porous medium made up of an array of periodic unit cells in which the solid
phase is modelled as a circular obstacle as shown in �gure 7. The macroscopic domain
is modelled as a square of side length L = N`cell, with N = 11, although similar results
were observed for larger values of N . The porosity is taken equal to 0.8.

Case a: Sine-like exuding condition

As a �rst case study, consider a situation in which v∗0 obeys the following sinusoidal
function

v∗0 =
2(y∗ − y∗0)

`∗σ
= sin(θ), at Aβσ (4.9)

where θ is the inclination of the position vector of a point on Aβσ on the horizontal axis
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Figure 8. Dimensionless pore-scale �elds of a) v∗x = sin(θ) cos(θ) and v∗y = sin2(θ) at the
solid-�uid interface corresponding to the sinusoidal distribution of v∗0 , b) v

∗
x and c) v∗y .

(see �gure 7). In addition, y∗0 is the dimensionless y-coordinate of the centroid of each
solid inclusion, whereas `∗σ is the dimensionless diameter of the inclusion. In this way,
v∗0 is position-dependent at Aβσ, albeit periodic. Furthermore, the boundary condition
given in equation (4.9) leads to ϕ∗

0 = 0. This means that, in this case, it is physically
acceptable to impose periodic boundary conditions at AMβe instead of equation (4.5)
without compromising conservation of mass. Hence, it is not necessary to solve the pore-
scale problem in VM made of the N ×N unit cells; it su�ces to carry out the solution
in only one geometrical unit cell.
The pore-scale velocity �elds are presented in �gure 8 both at Aβσ (�gure 8a) and in the

unit cell domain (�gures 8b and 8c), as a result of the PSNS. The pressure �elds are not
reported in this �gure as they are uniformly zero. Both components of the velocity exhibit
an oscillatory behaviour at Aβσ; however, v

∗
x has cancelling amplitudes and v∗y > 0.

Consequently, it is not surprising that 〈v∗x〉 = 0; in addition, 〈v∗y〉 = 0.404.
Focusing now on the upscaled model, the closure problem was solved in the periodic

unit cell sketched in �gure 7. The resulting �elds of the closure variables are represented
in �gure 9. Clearly, the diagonal components of tensor D∗ are x and y-symmetric �elds,
whereas the o�-diagonal components are antisymmetric. As a consequence, K∗ is a
spherical tensor, i.e., K∗ = K∗

I and the value of K∗ is reported in Table 1.
Regarding the �elds of the closure vector d∗

1, the results for the x- and y-components
are represented in �gures 9e and 9f showing that d1x and d1y are antisymmetric about
the vertical and horizontal directions, respectively. It is worth recalling that these results
are intrinsic to the geometry i.e., they are independent of v∗0 . In addition, since there is
no macroscopic pressure gradient in any direction, it follows that the Darcy term in the
macroscale momentum equation (3.20b) is zero, thus simplifying the model to 〈v∗〉 = v∗

s.
Finally, since ϕ∗

0 = 0 in this case, v∗
λ = 0 and v∗

s = v∗
d. With the values reported in Table

1, this leads to a perfect match with the PSNS data.

Case b: Janus exuding grains

The second case study deals with a Janus-type con�guration for v∗0 , such that

v∗0 =

{
1 when 0 < θ < π/2 and 3π/2 < θ < 2π

0 when π/2 < θ < 3π/2
(4.10)

Solving the governing equations at the pore-scale subject to the macroscopic boundary
condition provided in equation (4.5) gives rise to the velocity and pressure �elds reported
in �gure 10. The �eld of v∗x is y-symmetric but not x-symmetric, whereas the �eld of v∗y
is x-symmetric and y-antisymmetric. The pressure �eld is x and y-symmetric with a
maximum value located at the centre of the domain.
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Figure 9. Fields of the closure variables a) D∗xx, b) D
∗
yx, c) D

∗
xy, d) D

∗
yy, e) d

∗
1x, f) d

∗
1y in the

periodic unit cell sketched in �gure 7 for a porosity value of 0.8.
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Figure 10. Fields of a) v∗x, b) v
∗
y , c) p

∗ obtained from pore-scale numerical simulations
considering the Janus exuding grains.

These observations suggest that the solution of the governing macroscale pressure
di�erential equation

∇∗2〈p∗〉β = − ϕ
∗
0

K∗ (4.11a)

can be performed in one quarter of the macroscopic domain. Notice that, in the above
equation, the isotropic nature of the permeability tensor was taken into account. Locating
the coordinate axes origin at the macroscopic domain centre, the solution of equation
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Figure 11. Comparison of the macroscopic velocity (a, b and c) and pressure (d) pro�les
obtained from the upscaled model (UM) and pore-scale numerical simulations (PSNS) for the
Janus exuding grains. In b), the horizontal averaged velocity results from PSNS are compared
with those from Darcy's law.

(4.11a) is subject to the following set of boundary conditions

at x∗ = 0,
∂〈p∗〉β
∂x∗

= 0 (4.11b)

at y∗ = 0,
∂〈p∗〉β
∂y∗

= 0 (4.11c)

at x∗ = x∗L, 〈p∗〉β = p∗Lx(y
∗) (4.11d)

at y∗ = y∗L, 〈p∗〉β = p∗Ly(x
∗) (4.11e)

The �rst two boundary conditions follow from the macroscale pressure-�eld symmetries.
As in the analysis of the corrugated channels, x∗L and y∗L locate the positions of the last
centroids of the unit cells where the PSNS data were collected (i.e., x∗ = y∗ = 5). Hence,
the functions p∗Lx(y

∗) and p∗Ly(x
∗) are extracted from the PSNS.

Due to the y-antisymmetry of d∗1y exhibited in �gure 9f, it follows that v∗dy = 0. With
the data reported in Table 1 for v∗dx and ϕ

∗
0, it is possible to carry out the upscaled model

solution and compute the pro�les of the macroscale velocity and pressure. These results
are reported in �gure 11 and they are compared with those arising from the average PSNS
data for various values of y∗. The simulations from the upscaled model are found to be
in good agreement with the PSNS without requiring the computation of v∗

λ. In order to
appreciate the relevance of v∗

d, the predictions of 〈v∗x〉, only considering the Darcy term,
are compared with the PSNS results in �gure 11b, showing a clear discrepancy. The two
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Figure 12. Periodic unit cell used to construct the anisotropic porous medium. The
boundaries at which v∗0 is set to one are shaded in blue.

sets of curves di�er by a constant vertical shift, corresponding to v∗dx. It should be noted
that the magnitude of the macroscopic pressure gradient builds up while moving away
from the centre of the domain, thus increasing 〈v∗x〉. Consequently, since v∗

d is a constant
vector, its relative contribution decreases when the Darcy term becomes dominant.
When considering the results on 〈v∗y〉 and 〈p∗〉β represented in �gure 11c and 11d,

respectively, it is observed that the averaged PSNS results follow an oscillatory behaviour,
more prominent for 〈v∗y〉. Nevertheless, the predictions from the upscaled model are in
excellent agreement with the PSNS results once doubly-smoothed for all the values of y∗

considered here.

4.2.2. Anisotropic geometry

To conclude this section, consider now �ow in an anisotropic medium with porosity
ε = 0.621, constructed by a N ×N repetition in the x and y directions (N = 11 in the
present case) of the periodic unit cell shown in �gure 12. For this case, v∗0 = 1 at the
blue shaded part of Aβσ shown in this �gure, while v∗0 = 0 at the remaining part of the
solid-�uid interfaces. This arrangement is referred to as a vertical Janus con�guration
in the following paragraphs. Imposing the boundary condition given in equation (4.5) at
AMβe, and carrying out PSNS, yields the velocity and pressure �elds shown in �gure 13.
The numerical results are somewhat similar to those presented in �gure 11 in the sense
that the �uid tends to move from the centre towards the macroscopic boundaries.
The �elds of all the closure variables, obtained after solving the closure problem in

the geometric unit cell shown in �gure 12, are represented in �gure 14. Clearly, no
symmetric or antisymmetric property is observed. From this solution, the components of
the permeability tensor, which is now a full matrix, can be computed and the results are
reported in Table 1 along with the values of ϕ∗

0, v
∗
dx and v∗dy.

Since no symmetry properties are applicable to the pressure, the upscaled model must
be solved in the entire macroscopic domain, VM . Locating the origin of the coordinate
axes at the system centre, the macroscale pressure solves the following boundary-value
problem

K
∗ : ∇∗∇∗〈p∗〉β = −ϕ∗

0 (4.12a)

at x∗ = −x∗L, 〈p∗〉β = p∗0x(y
∗) (4.12b)

at x∗ = x∗L, 〈p∗〉β = p∗Lx(y
∗) (4.12c)

at y∗ = −y∗L, 〈p∗〉β = p∗0y(x
∗) (4.12d)

at y∗ = y∗L, 〈p∗〉β = p∗Ly(x
∗) (4.12e)
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a) b) c)

Figure 13. Pore-scale �elds of a) v∗x, b) v
∗
y and c) p∗ obtained from the vertical Janus

con�guration in the anisotropic geometry.
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Figure 14. Fields of the closure variables a) D∗xx, b) D
∗
yx, c) D

∗
xy, d) D

∗
yy, e) d

∗
x, f) d

∗
y for the

anisotropic geometry.

As in the previous case, x∗L = y∗L = 5, while p∗0i and p∗Li (i = x, y) are functions of
position that are obtained from the PSNS. Despite the fact that this problem was solved
in the entire domain, the comparisons with the PSNS data are reported in �gure 15 for
only one quarter of VM for the sake of brevity in presentation. The macroscale velocity
and pressure pro�les barely change for y∗ = 0, 1 and 2 and for this reason, the results
corresponding to y∗ = 1 and y∗ = 2 are not reported in this �gure. These results are in
excellent agreement with the predictions from the upscaled model without considering
the contribution from v∗

λ. Note that, as in Case a for the isotropic porous medium, the
relative importance of v∗

d with respect to the 〈v∗〉 decreases while moving away from the
centre of the domain.
Finally, it is worth considering another distribution of v∗0 in the same porous medium,

which can be viewed as a horizontal Janus exuding pattern. As for the vertical Janus
distribution of v∗0 , an excellent agreement is found between the averaged PSNS results
and the solution of the upscaled model, without taking v∗

λ into account that is again
irrelevant in that case. The values of ϕ∗

0 and v∗
d are given in Table 1. Most interestingly,

if the contribution from v∗
s is neglected and if the results are normalized by ϕ∗

0, then the
macroscale velocity and pressure pro�les from the vertical Janus match those from the
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Figure 15. Comparison of the macroscopic velocity (a and b) and pressure (c) obtained from
the upscaled model (UM) and the pore-scale numerical simulations (PSNS) for the vertical Janus
con�guration in the anisotropic medium.

horizontal Janus. This is expected, since when the net volume sources and outer boundary
conditions are identical, the macroscopic model (3.20) predicts that the velocity �elds
di�er only by the value of v∗

s associated with a particular distribution of the interfacial
sources. This is a relevant result, that may be of interest in practical situations in which
one may only account for ϕ∗

0 at the macroscale.

4.3. Migration of water vapor bubbles in ice

To conclude this section, an extension of this work to the migration of water vapour
bubbles in ice is brie�y discussed. To this end, consider an ice mass containing a dilute
population of spherical bubbles. For simplicity, assume that the bubbles contain pure
water vapour, so that internal mass transfer does not involve di�usion. Each bubble is
supposed to be in global equilibrium, i.e., its internal pressure is equal to the saturation
pressure at the temperature of the surrounding ice and its volume is constant. Any
deviation would result in a net ice sublimation or vapor condensation rate, with pressure
and volume variations, until an equilibrium state is reached ultimately.
Despite the global equilibrium, an overall temperature gradient can exist in the

ice mass, as occurs in glaciers or polar ice caps (Mellor 1960). The resulting slight
temperature di�erence across the bubble causes sublimation to take place at the warm
part of its surface, and condensation on the opposite cold side. This, in turn, induces a
migration of the bubble in the direction of increasing temperature. Under a quasi-steady
approximation, it is reasonable to neglect interfacial displacement, so that, the transfers
at a bubble boundary correspond to

v∗0 =
ρi
ρv
n ·
(

3ki
ρiLsvref

∇T
)

︸ ︷︷ ︸
v
∗
B

, at Aβσ (4.13)

Here ρi and ρv denote the densities of ice and water vapour, respectively. In addition,
ki is the ice thermal conductivity, Ls is the latent heat of sublimation and ∇T is the
overall temperature gradient. Finally, the term between parenthesis in the above equation
corresponds to the dimensionless bubble velocity, v∗

B . Its expression results from an
energy balance, and shows that it does not depend on the bubble size (Shreve 1967). The
source distribution in equation (4.13) results in ϕ∗

0 = 0, in agreement with the global
equilibrium hypothesis.
A simple way to derive an expression for the macroscopic vapor velocity, without

actually solving the �ow problem, is by noticing that v∗ = ∇∗ · (v∗r∗) and applying the
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Table 2. Summary of the macroscopic velocity features in the di�erent case studies. The
values of v∗dx, v

∗
dy and v∗λy are reported in Table 1.

Case ϕ∗0 〈v∗x〉 〈v∗y〉

Flat channel ε
(
v+∗0 + v−∗0

)
Darcy† v∗dy

Wavy channel Case a 0 0 v∗dy
Wavy channel Case b 4.11 Darcy v∗dy + v∗λy
Wavy channel Case c 2.05 Darcy+v∗dx v∗dy + v∗λy
Shark-�n channel Case d 3.04 Darcy+v∗dx v∗dy + v∗λy
Isotropic porous medium Case a 0 0 v∗dy
Isotropic porous medium Case b 0.793 Darcy+v∗dx Darcy
Anisotropic porous medium

4.92 Darcy+v∗dx Darcy+v∗dyvertical Janus
Anisotropic porous medium

4.81 Darcy+v∗dx Darcy+v∗dyhorizontal Janus
Bubble 0 v

∗
d // ∇T

†The term Darcy denotes the projection of −K∗ · ∇∗〈p∗〉β on the corresponding direction.

intrinsic averaging operator together with the divergence theorem to obtain

〈v∗〉β = − 1

V ∗
β

∫
Aβσ

v∗0r
∗ dA∗ = − ρi

ρv
v∗
B (4.14)

The last equality results from substitution of v∗0 from equation (4.13) in the integral. In
fact, this interfacial integral can be identi�ed as the source dipole. For instance, if the
source and sinks were concentrated at two points, it would reduce to a usual point-source
dipole (Pozrikidis 2003; Spagnolie & Lauga 2012).

Since the pore space in the ice is made of disconnected cavities, its permeability
coe�cient is zero, hence the Darcy-term in equation (3.16) vanishes and the macroscopic
velocity reduces to 〈v∗〉 = v∗

s = v∗
d because ϕ

∗
0 = 0. In this way, the closure problem given

in equations (3.14) can be solved in a unit cell containing a single bubble. It is readily
apparent that D∗ = 0 (and therefore K∗ = 0) and d∗

1 = r∗ − r∗G as mentioned in section
3.2 (see equations (3.19)). Substitution of this result, along with the expression of v∗0
given in equation (4.13), into equation (3.17), taking into account the fact that ϕ∗

0 = 0,
leads to an expression for 〈v∗〉, which, when divided by the porosity, allows recovering
the result given in equation (4.14). This can be straightforwardly extended to periodic
media where the unit cell contains any number of bubbles, possibly with di�erent sizes.
Thus, the upscaled model established in the previous section accommodates this peculiar
situation of a non-percolating porous medium, and predicts the correct mean gas velocity.

To summarise the di�erent situations investigated with the above examples, the
features of the macroscopic velocity components are reported in Table 2, highlighting
the richness of the problem. Note that the Darcy model is applicable in the minority of
the cases studied here. When ϕ∗

0 = 0, there is no Darcy-term in the macroscale model.
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5. Discussion and conclusions

In this work, a macroscale model describing incompressible, Newtonian and creep-
ing �ow in exuding rigid and homogeneous porous media was derived. The governing
transport equations at the pore-scale correspond to the ones involved in the derivation
of Darcy's law with the di�erence that a normal mass �ux is present at the solid-�uid
interface. Despite the apparent simplicity of this problem, this physical situation is quite
rich. Indeed, mass conservation prevents, in general, the simpli�cation of the problem to a
single periodic unit cell. Therefore, the use of periodic boundary conditions in the course
of the upscaling process must be treated with caution. Nevertheless, a common practice in
the literature is to use the classical Darcy's law at the macroscopic level, which raises the
question about the pertinence of such an equation and/or whether or not the permeability
tensor can remain intrinsic. The upscaling of the governing pore-scale equations developed
in this work contrasts to the Darcy model in two respects. First, the macroscopic velocity
�eld is non-solenoidal. The non-solenoidal nature of the average velocity (despite the fact
that the �ow is incompressible) is a relevant modi�cation to the classical Darcy model,
albeit not the only one, as it accounts for the mass entering/exiting the system through
the solid-�uid interface. Second, the macroscale momentum equation involves the classical
Darcy term (with the intrinsic permeability) and a correction term. The correction term,
vs, in the macroscopic momentum equation is the sum of a contribution, vd, due to the
local e�ect of v0 and a term, vλ, that compensates for the periodicity assumption. The
magnitude of both vd and vλ were found to be, at most, of the order of v0. Since vs is
a vector, the correction only applies in one spatial direction. This can only occur if the
system features privileged directions that result from geometrical and/or v0 distribution
anisotropy. A salient feature of the model derived here is that a unique intrinsic closure
problem, exactly corresponding to the one involved in the classical Darcy case, is required
to predict both the intrinsic permeability tensor and vd. The correction term, vs, accounts
for the local �uid displacement induced by the exuding phenomenon at the solid-�uid
interfaces. This e�ect is not captured by the Darcy term, which only accounts for the
macroscopic drag. This correction term, vs, identi�es as the average of a contribution to
the �ow �eld which does not induce any macroscopic force on the solid skeleton of the
porous material.

The performance of the upscaled model was validated in a variety of physical situations
ranging from �ow in �at and corrugated channels to isotropic and anisotropic porous
media. For channels, the component along the channel-axis of the correction term in the
macroscopic momentum equation results from a complex interplay of the distribution
of v0 and the walls geometry. This component is zero in the case of the plane channel
(it can be shown that this result holds whatever v0) or in the sine-channel when v0 is
uniform. In more complex cases, a correction is needed in the axial direction and it can
only be obtained from the solution of the adjoint problem. The di�erent channel examples
illustrate the pertinence of the correction in various �ow situations; a detailed analysis
on the role played by the topology and v0 distribution is out of the scope of this work.

The macroscale model solution requires physically sound boundary conditions at the
macroscopic boundaries. In this work, they were obtained by �tting data from the pore-
scale numerical simulations at the macroscopic boundaries. Certainly, it is tempting to
impose heuristic boundary conditions, such as 〈p〉β = 0 at AMβe. However, it was veri�ed
that using this approach leads to relative percent errors larger than 10%, especially near
the macroscopic boundaries. In contrast, the approach used here leads to an error below
1%. Certainly, this issue requires further analysis since the derivation of macroscopic
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boundary conditions is still a developing research subject not speci�c to the exuding
problem investigated here. However, this is beyond the scope of the current work.
For the cases in which ϕ0 = 0 (plane channel when ϕ0 = 0, wavy channel Case a,

isotropic porous medium Case a, and bubbles in ice), periodicity is physically justi�ed
and the macroscopic model is exact to within the approximation associated to the classical
length-scale constraint. Since no macroscopic pressure gradient is present, it follows that a
Darcy-type model is incapable of predicting the constant velocity. This result is accurately
predicted by vd with vλ = 0.
When the distribution of v0 is such that ϕ0 6= 0, many di�erent situations can occur.

The pertinence of the constant correction term vd with respect to the Darcy term is
particular to each application. Moreover, the correction term vλ was found to be generally
irrelevant for the cases studied here. The exception is in the corrugated channel cases,
for which vλ plays a role in the non-percolating direction of the channel.
The above indicates that a Darcy-type model may be pertinent whenever the pressure

gradient spatially develops so that the Darcy term overcomes the contribution from vs.
Nevertheless, it should be noticed that, even if a Darcy model would provide acceptable
predictions of the macroscopic velocity, in some particular situations, vs may not be
neglected (see Table 2). Indeed, it can trigger some mechanisms, like instability for
instance, if �ow is coupled to another non-linear phenomenon, which may be overlooked
if a pure Darcy model is employed.
As a matter of perspective, the combination of the upscaled model from this work with

species and/or heat transport models can be used to predict an ample variety of transport
processes in porous media involving internal �ow sources, such as mineral dissolution in
rough fractures as recently studied by Rasoulzadeh et al. (2020). Finally, the results from
this work should also call for complementary experimental investigation.
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Appendix A. Order of magnitude estimates

The purpose of this appendix is to provide order of magnitude estimates for the
correction vectors vd and vλ. To this end, it is convenient to commence the analysis
by examining the boundary-value problem given in equations (3.3), which are subject
to homogeneous boundary conditions at Aβe. This means that this problem is driven by
the unitary volume source in equation (3.3b). From this observation, the following order
of magnitude estimate can be made

d = O(`β) (A 1)

Since λ = 〈d〉β , it follows that λ = O(`β), with the idea that this represents an upper
bound. Directing the attention to the closure problem de�ned in equations (3.14), a
similar analysis leads to the estimate

d1 = O(`β) (A 2)
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Taking these results into account, the order of magnitude estimates for vd and vλ are
derived

vd = −
1

V

∫
Aβσ

v0d1 dA = O (v0) (A 3a)

vλ = −λϕ0 = O (v0) (A 3b)

which are again upper bounds. With these results, it immediately follows that vs = O(v0)
and this concludes the derivations.
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