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This work addresses the question of a pertinent macroscale model describing creeping, incompressible and single-phase ow of a Newtonian uid in an exuding, rigid and homogeneous porous medium. The macroscopic model is derived by upscaling the porescale Stokes equations considering a normal mass ux at the solid-uid interface. The upscaled mass equation shows that the average velocity is non-solenoidal. In addition, the macroscopic momentum equation involves a Darcy term with the classical permeability tensor accounting for macroscopic drag and a correction velocity vector which is a signature of the local uid displacements induced by the exuding phenomenon. This correction is the sum of a term accounting for the local exuding eect and a compensation term associated to the assumption of spatial periodicity. The rst term, as well as the permeability tensor, are obtained from the solution of the same unique and intrinsic closure problem, which corresponds to the one involved in classical Darcy's law. The upscaled model is validated by comparisons with pore-scale numerical simulations in several illustrative examples. The dierent congurations evidence the richness of the problem, despite the apparent simplicity of its formulation. The results of this work motivate further investigation about the inuence of internal ow sources in transport phenomena in porous media.

Introduction

Low Reynolds number incompressible ow of a single Newtonian uid in a rigid porous medium is governed, at the microscopic (pore) scale, by Stokes equations. In the absence of rarefaction eects and of any source or sink, they are supplemented with a zero-velocity condition at the solid-uid interface. Provided the medium can be regarded as statistically homogeneous at a scale much larger than the typical scale of its microstructure, the ow can be described, from a macroscopic point of view, by Darcy's law. This equation relates the local average of the uid velocity to the gradient of the average pressure via the intrinsic permeability tensor, which only depends on the geometry of the microstructure † Email address for correspondence: didier.lasseux@u-bordeaux.fr and accounts for the macroscopic drag on the solid phase. Darcy's law can be formally obtained as the macroscopic momentum equation using various theoretical upscaling methodologies, such as homogenization based on multiple scale expansions or the volume averaging theory (see e.g., [START_REF] Sanchez-Palencia | Non-Homogeneous Media and Vibration Theory[END_REF][START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF][START_REF] Mei | Some applications of the homogenization theory[END_REF][START_REF] Davit | Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare[END_REF]. As a result of the zero mass-ux condition at the solid-uid interface at the underlying pore scale, upscaling also yields a divergence-free average velocity as the macroscopic mass conservation equation. Subject to prescribed conditions at the external boundaries of the macroscopic domain, both equations can be used to solve the macroscopic problem.

In a variety of situations, however, the zero mass-ux condition at the solid-uid interface does not apply. This occurs, for example, when the uid is released from the solid into the pore space or absorbed from the pore space into the solid, due to many possible mechanisms illustrated in the following. It is then a common practice to account for the volume source in the macroscopic mass conservation equation, while using Darcy's law and the value of the intrinsic permeability, valid in the absence of source [START_REF] Lachaud | A generic local thermal equilibrium model for porous reactive materials submitted to high temperatures[END_REF][START_REF] Vu | Mass and heat transport models for analysis of the drying process in porous media: A review and numerical implementation[END_REF]. However, the zero velocity at the solid-uid interface is a key feature in the derivation of the classical form of Darcy's law. There is, a priori, no argument supporting that this equation remains unchanged if non-zero uxes take place at the interface and, even if a Darcy term remains, the modication or not of the permeability must be carefully addressed. Therefore, it is of interest to determine if such a heuristic formulation is reliable or not. For example, in the presence of interfacial slip, it has been reported that Darcy's law is applicable at the cost that the permeability tensor is no longer intrinsic as it depends on the Knudsen number, in agreement with the fact that the shear is modied by the existence of slip [START_REF] Lasseux | An improved macroscale model for gas slip ow in porous media[END_REF]. When a normal ux is present, one may expect that, if a Darcy term is preserved, the permeability remains intrinsic as in classical Darcy's law since the drag is unaltered. However, how the macroscopic momentum equation is aected by the normal inward or outward ow at the pore walls remains to be elucidated. Fundamentally, the problem under consideration raises the questions: i) Is the solenoidal nature of the macroscopic (average) velocity preserved? ii) Is the Darcy model (macroscopic momentum balance equation) heuristically used for exuding media in some reported works in the literature a physically sound one? iii) If a Darcy term persists in the macroscopic momentum equation, is the permeability still the intrinsic permeability? These questions are addressed in detail in the following sections. This is a very important problem, both from fundamental and potential applications points of view, which, to the best of our knowledge, has not been yet addressed in the literature. Derivation of a valid macroscopic model in such situations is therefore the purpose of the present work.

In the above description, and in some of the following examples, the solid phase is actually often a nanoporous material. Nevertheless, this nanoporous structure is generally too tight to actively participate to the ow within its volume at the scale of description of interest. Consequently, it can be considered as an apparent continuous solid material allowing uid transfer between its surface and the neighbouring macropores. An example is provided by the exploitation of tight gas reservoirs for which natural or induced fracturing is required to access the resource. The gas contained under high pressure in the nanoporous matrix is exuded at the fracture walls. Its ow towards the producing well through the fractures is described, in eld scale simulation models, by Darcy's law [START_REF] Olorode | High-resolution numerical modeling of complex and irregular fracture patterns in shale gas and tight gas reservoirs[END_REF][START_REF] Jiang | Numerical study of complex fracture geometries for unconventional gas reservoirs using a discrete fracture-matrix model[END_REF], with a permeability which is deduced from the fracture geometrical characteristics in the absence of surface sources [START_REF] Mourzenko | Conductivity and transmissivity of a single fracture[END_REF].

Drying or pyrolytic processes also induce interfacial sources, with water vapor or pyrolytic gases produced in the solid and exuded into the pore space. Water can be initially chemically bonded or conned in liquid state in nanopores. Pyrolytic gases can result from thermal decomposition of biomass or organic compounds, such as kerogen trapped in the nanopores of oil shales. In the latter case, a largely predominant inert mineral matrix prevents the solid from deforming [START_REF] Elayeb | Smoldering combustion in oil shales: Inuence of calcination and pyrolytic reactions[END_REF]). Darcy's law and the usual intrinsic permeability are universally used in the macroscopic modelling of such situations, see e.g. [START_REF] Erriguible | Simulation of convective drying of a porous medium with boundary conditions provided by CFD[END_REF][START_REF] Warning | A multiphase porous medium transport model with distributed sublimation front to simulate vacuum freeze drying[END_REF] for drying, [START_REF] Shepel | Vapor convection in gypsum plasterboard exposed to re: Numerical simulation and validation[END_REF] for plaster dehydration, [START_REF] Di Blasi | Numerical simulation of cellulose pyrolysis[END_REF][START_REF] Larfeldt | Modelling and measurements of the pyrolysis of large wood particles[END_REF][START_REF] Bryden | Modeling thermally thick pyrolysis of wood[END_REF][START_REF] Mahmoudi | Detailed numerical modeling of pyrolysis in a heterogeneous packed bed using XDEM[END_REF] for pyrolysis.

Chemical reactions can also give rise to non-zero velocities at the solid-uid interface.

Consider, for instance, a carbonaceous solid and the heterogeneous reactions O 2 + 2C → 2CO (oxidation) or CO 2 + C → 2CO (gasication). In both cases, a single mole of O 2 or CO 2 is consumed and two moles of CO are produced. This volume increase resulting from the net production of gas localized at the solid surface, can be accounted for by a normal velocity directed into the pores. Reactions between gaseous species can result in the same behaviour, if they require a catalyst contained in the solid, such as, for example, the methanation reaction CO 2 + 4H 2 → CH 4 + 2H 2 0, or the inverse process of steam reforming [START_REF] Rönsch | Review on methanation From fundamentals to current projects[END_REF]. By converting 5 moles of gas into 3 or conversely, it induces a velocity at the surface directed towards or from the solid, respectively.

Fluxes at the pore/solid interface can also result from phase changes. Interesting examples are provided by the water ice/vapour system, with sublimation/condensation at the solid surface. The equilibrium vapour pressure depends on the surface curvature as described by Kelvin's law, giving rise to the isothermal snow ageing metamorphism, with vapour migration from surface sources to surface sinks [START_REF] Flin | Full threedimensional modelling of curvature-dependent snow metamorphism: rst results and comparison with experimental tomographic data[END_REF][START_REF] Vetter | Simulating isothermal aging of snow[END_REF]. It also depends on temperature. Thus, in a bubble enclosed in an ice mass subject to a temperature gradient, a water vapour transfer takes place from a surface source by sublimation on the warm side to a surface sink by condensation on the cold side. This phenomenon, in turn, induces the slow migration of the bubble [START_REF] Shreve | Migration of air bubbles, vapor gures, and brine pockets in ice under a temperature gradient[END_REF][START_REF] Dadic | Migration of air bubbles in ice under a temperature gradient, with application to snowball earth[END_REF].

In many of the above examples, the solid geometry is subject to evolution, by either mass loss or gain inducing shrinkage or growth. However, the characteristic time associated to the deformation is usually very large compared to the one associated to the uid displacement, so that the ow problem can be treated with a quasi-steady approximation within a xed geometry. In the water ice/vapour system for instance, this can be explained by the very large solid/gas density contrast.

As a generic problem accounting for the above mentioned situations, the interest is focused in this work on the macroscopic description of ow in a porous material resulting from exuding at the solid-uid interface at the pore scale, i.e., from a non-zero velocity normal component at this interface. Exuding is meant here in a general sense including uid release from the surface into the pores or, conversely, absorption from the pore into the solid through the interface. The key question then arises whether Darcy's law is still a valid model at the macroscopic scale, keeping the hypotheses of a Newtonian uid and creeping incompressible ow conditions.

To address this issue, the article is organized as follows. In section 2, the pore-scale model is presented, the solution of which is illustrated in a simple case, showing that the classical Darcy's law fails and hence, highlighting the necessity of deriving a macroscopic model. Section 3 is dedicated to the upscaling of the pore-scale problem which yields macroscopic mass and momentum transport equations. The former involves a term accounting for the net mass that is released (or absorbed) through the solid-uid interface and the latter contains a correction term to Darcy's law. This term involves a local contribution of the exuding eect and a compensation for the periodicity assumption.

The model is validated in section 4 by comparisons with pore-scale numerical simulations in a variety of physical situations. Discussion and concluding remarks are provided in section 5.

Pore-scale model

In this section, the boundary value problem under consideration and an illustrative analytical solution in a simple case, justifying the analysis proposed in the following sections, are provided.

Pore-scale boundary value problem

Consider a rigid and homogeneous porous medium, V M , of typical size L and of external macroscopic boundary ∂V M , made of a solid rigid skeleton (σ-phase) and saturated by a single uid (β-phase) as sketched in gure 1a. The situation of interest is when the βphase is either released or absorbed at the solid-uid interface A βσ . For this process, the β-phase is considered as Newtonian and the ow is supposed to remain in the incompressible creeping regime.

Let V , of measure V and size r 0 , in which the region occupied by the β-phase is denoted by V β (of measure V β ), be a subdomain of V M (V ⊆ V M ) referred to as the averaging domain in the following (see gure 1a). At any point located at r = x + y within V β , x denoting the position of the centroid of V (see gure 1b), the uid pressure may be decomposed under the form p| r = p β r + p| r [START_REF] Gray | A derivation of the equations for multi-phase transport[END_REF]. Application of the gradient operator, leads to

∇p| r = ∇ p β r + ∇p| r (2.1)
In these relationships, ψ β r denotes the intrinsic average of ψ evaluated at r. The averaging operator at any point x is dened as

ψ β x = 1 V β V β (x) ψ dV (2.2)
while ψ represents the deviations of ψ with respect to its intrinsic average. In the course of the development, the supercial average dened as

ψ | x = 1 V V β (x) ψ dV = ε ψ β (2.3)
will also be used, ε being the porosity of the medium (ε = V β /V ), which is supposed to be constant. This is a reasonable assumption that is supported by the consideration of geometrical homogeneity of the porous medium.

As in the double scale homogenization technique, x may be understood as the macroscopic (or slow) variable, having a typical length-scale of variation L while y corresponds to the microscopic (or rapid) variable having a characteristic length of variation β , typical of the pore dimension (see gure 1b). As for any upscaling procedure, a separation of length-scales is assumed, expressed as β r 0

L. The gradient of the average pressure evaluated at r in equation (2.1) may be further considered using the following Taylor series expansion written in a generic form as

Ψ | r = Ψ | x + y • ∇ Ψ | x + 1 2 yy : ∇∇ Ψ | x + . . . (2.4)
Performing an order of magnitude estimate on the rst-order term in this expansion allows writing

Ψ | r = Ψ | x + O r 0 L ∆Ψ (2.5)
where ∆Ψ represents the characteristic variation of Ψ over the length-scale L. Since the order of magnitude of ∆Ψ can be at most as large as Ψ , and as a result of the separation of length scales, it seems reasonable to use the approximation Ψ | r Ψ | x . When Ψ represents an average quantity ψ β , and, denoting from now on ψ β

x ≡ ψ β , this readily implies

ψ β 0 (2.6)
When Ψ is taken to be ∇ p β and when the resulting approximation is introduced in equation (2.1), the ow problem under consideration can be written in V as

∇ • v = 0, in V β (2.7a ) 0 = - 1 µ ∇p + ∇ 2 v - 1 µ ∇ p β , in V β (2.7b) v = -v 0 n, at A βσ (2.7c)
In these equations, v is the velocity in the β-phase, whose dynamic viscosity, µ, is assumed to be constant. For the sake of simplicity, albeit keeping generality, no body force is considered in the analysis. In the exuding boundary condition at A βσ , (equation (2.7c)), v 0 denotes the rate of production (or consumption) of uid per unit interfacial area. It is supposed to be a position-dependent but known function of space, a priori, and n is the unit normal vector at A βσ directed from the β to the σ-phase.

Additional boundary conditions at the entrances and exits, A βe , of V must be prescribed in order to complete the problem statement. In a classical homogenization approach, one would certainly consider periodicity at A βe as this is the classical way of carrying out the upscaling, assuming locality [START_REF] Mei | Some applications of the homogenization theory[END_REF]. However, taking the supercial average of the mass balance equation (2.7a), applying the divergence theorem and making use of the boundary condition at A βσ , yields

1 V A βe n • v dA = ϕ 0 (2.8) with ϕ 0 = 1 V A βσ v 0 dA (2.9)
Clearly, periodicity on v at A βe is not physically admissible unless ϕ 0 = 0. Even if it will be further considered later in the development, the boundary condition at A βe is left unspecied at this point. The macroscopic boundary condition over V M shall nevertheless be denoted as

G (v, p) = 0, at A M βe
(2.10) A M βe denoting the portion of ∂V M intersecting the uid phase. Here again, G (v, p) must be compliant with the equivalent of equation (2.8) when the entire macroscopic domain is considered.

Preliminary comments about the interpretation of Darcy's law

At this point of the analysis, it is pertinent to make a clear distinction between the supercial average of the pore-scale velocity (i.e., v ) and another denition of the seepage velocity (denoted q s in the following) that is typically found in the porous media literature. To this end, let v be expressed as follows:

v = 1 V V β ∇ • (vr) dV - 1 V V β (∇ • v)r dV (2.11)
The last term in the above equation is zero due to the solenoidal nature of the pore-scale velocity. Using the divergence theorem in the remaining term, it follows that

v = q s + 1 V A βσ n • (vr) dA (2.12) with q s = 1 V A βe n • vr dA (2.13)
In the above equations, q s is recognized in the porous media literature (see, for instance Adler 1992) as the ux or seepage velocity. This denition of the seepage velocity is intuitively appealing and corresponds to a quantity that is easily measurable in the laboratory, with an empirical origin dating back to H. Darcy's pioneering experiments.

In the classical Darcy's law, for which the velocity is zero at the solid-uid interface, the last term in equation (2.12) is zero and it results that v = q s = -1 µ K • ∇ p β so that v or q s may be indierently employed. However, in the case under study, v = -v 0 n at A βσ and equation (2.12) takes the form

v = q s - 1 V A βσ v 0 r dA (2.14)
Two important remarks must be made from the expressions of v and q s . First, it
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. Two-dimensional at channel made by a pair of plane parallel plates.

should be noted that q s , as given in equation (2.13), is ill-dened because it explicitly depends on the origin of the system of coordinates when there are net sources in the domain. Conversely, the average velocity, v , does not and, consequently, this is the appropriate denition of the macroscopic velocity that must be used in an upscaled equation. Second, the denition of v captures both the mean ow entering/leaving the porous medium (q s ) and the local uid displacements resulting from the interfacial sources and/or sinks. These local phenomena must be taken into account for a complete macroscopic description of the ow. The derivations presented in what follows are hence given in terms of v and not of q s , which are dierent in the case under consideration.

Solution for a two-dimensional at channel

Before developing the macroscopic model and in order to illustrate the specic features of the problem, it is instructive to investigate a simple case for which an analytical solution can be achieved. To this end, a two-dimensional periodic layered medium is considered.

Its unit cell contains a channel with aperture 2h as illustrated in gure 2. The surface sources are denoted v + 0 and v - 0 at y = h and y = -h, respectively, and are assumed to be independent of x, so that ϕ 0

= ε 2h v + 0 + v - 0 .
The analytical solution is derived imposing v x = 0 at x = 0 with the idea that this is a plane of horizontal symmetry resulting from the fact that the channel is open to the atmosphere at both ends along x. The dimensionless solution for the horizontal and vertical velocities, v * x and v * y , and pressure, p * , in the unit cell is obtained using 2h,

v ref = max v + 0 , v - 0 and µ v ref 2h
as the reference length, velocity and pressure, respectively. This solution is given by

v * x = 3 2 ϕ * 0 ε 1 -4y * 2 x * (2.15a ) v * y = - 3 2 ϕ * 0 ε 1 - 4 3 y * 2 y * - v + * 0 -v - * 0 2 (2.15b) p * = p * 1 + 6 ϕ * 0 ε y * 2 -x * 2
(2.15c)

p * 1 in equation (2.15c) being an arbitrary constant. If ϕ * 0 is positive, the pressure decreases with x * and from the walls to the channel mid-plane. The opposite applies if ϕ * 0 results in a net sink and p * remains constant if there is no net source or sink. Although v * x can be identied as a Poiseuille-like solution at each position x * , the ow remains two-dimensional. This contrast with respect to the classical ow induced by a pressure gradient along the channel may be better highlighted with the average expressions of v * x , v * y and p * given by

v * x β = - 1 12 ∂ p * β ∂x * (2.16a ) v * y β = - v + * 0 -v - * 0 2 (2.16b) p * β = p * 2 -6 ϕ * 0 ε x * 2 (2.16c) with ψ * β = 1/2 -1/2
ψ * dy and p * 2 = p * 1 + ϕ * 0 /(2ε). Equation (2.16a), once multiplied by ε, corresponds to the classical Darcy's law, involving the dimensionless permeability, ε/12, of the channel system in the x-direction. For the y-component of the velocity, no analogy is possible with a Darcy-like ow. Note that this term accounts for the local uid displacements and remains even if ϕ 0 = 0.

This simple example is a clear evidence that the upscaled model accounting for the presence of surface sources and/or sinks at the solid-uid interfaces can not be reduced, in general, to Darcy's law.

Upscaling

In this section, the derivation of a macroscopic model for the ow problem given in equations (2.7) is proposed. The macroscale mass equation is obtained following the classical volume averaging method [START_REF] Whitaker | The Method of Volume Averaging[END_REF]. However, for the derivation of the upscaled momentum equation, an approach inspired by the adjoint homogenization method recently proposed by Bottaro ( 2019) is used.

Mass balance equation

In order to derive the macroscopic mass equation, it is convenient to recall the result given in equation (2.8) and use the relationship reported by [START_REF] Slattery | General balance equation for a phase interface[END_REF],

1 V A βe n • v dA = ∇ • v (3.1)
in order to obtain

∇ • v = ϕ 0 (3.2)
ϕ 0 being given in equation (2.9). It should be noticed that, except when ϕ 0 = 0, this result contrasts with the macroscopic mass balance equation obtained while deriving the classical Darcy's law with a zero velocity at A βσ [START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF][START_REF] Whitaker | The Method of Volume Averaging[END_REF] or when a slip ow boundary condition is considered [START_REF] Lasseux | An improved macroscale model for gas slip ow in porous media[END_REF]. In other words, a consequence of the conservation of mass within the averaging domain is that v has a non-solenoidal character, despite the fact that the ow is incompressible at the underlying pore-scale.

This non-solenoidal nature of the average velocity is an important modication to the classical Darcy model as it accounts for the mass entering/exiting the system through the solid-uid interface. At this point, the macroscopic model must be complemented with the momentum balance equation as proposed in the following paragraphs.

Momentum equation

An ecient and simple way to derive a macroscopic form of the momentum equation, is to make use of the adjoint method proposed by [START_REF] Bottaro | Flow over natural or engineered surfaces: an adjoint homogenization perspective[END_REF]. To this purpose, an adjoint problem can be conveniently dened with the minimum requirements as follows

∇ • D = 0, in V β (3.3a ) 0 = -∇d + ∇ 2 D + I, in V β (3.3b) D = 0, at A βσ (3.3c)
Again, boundary conditions for D and d at A βe are necessary for this problem to be well-posed. However, they are not specied here as they are not required at this point of the development.

The derivation is carried out by adding the product of equation (2.7a) by d to equation

(2.7b) pre-multiplied by D T . Forming the supercial average of the result leads to d∇

• v + D T • -1 µ ∇p + ∇ 2 v = 1 µ D T • ∇ p β (3.4)
The three terms on the left-hand side of the above equation can be respectively rewritten 

as d∇ • v = ∇ • (vd) -v • ∇d (3.5a ) - 1 µ D T • ∇p = -1 µ ∇ • (pD) (3.5b) D T • ∇ 2 v = v • ∇ 2 D + ∇ • ∇v • D -v • (∇D) T 1 (3.5c) Equation (3.5b) is
v = - 1 µ D T • ∇ p β + ∇ • v • Id -(∇D) T 1 + -1 µ pI + ∇v • D (3.6)
This last expression can be reformulated using the divergence theorem together with the boundary conditions for v and D at A βσ given in equations (2.7c) and (3.3c) in order to

obtain v = - 1 µ D T • ∇ p β -1 V A βσ v 0 (d -nn : ∇D) dA + 1 V A βe n • - 1 µ pI + ∇v • D dA -1 V A βe n • v • -Id + (∇D) T 1 dA (3.7)
Here, the fact that nn : ∇D T 1 = nn : ∇D was taken into account as a result of the symmetry property of the tensor nn. It must be noted that equation (3.7) is valid whatever the boundary conditions at A βe are imposed for both the physical (equations (2.7)) and adjoint (equations (3.3)) problems and that the only approximation is the one associated to equation (2.5).

To make further progress towards a closed form of this macroscopic momentum equation, it is now assumed that the porous structure can be assimilated to a periodic one and that v 0 is also periodic. Under theses circumstances, V is selected as the smallest periodic unit cell satisfying these properties. Moreover, periodic boundary conditions on D and d can be considered for the adjoint problem as this does not imply any physical or mathematical contradiction. This choice is retained in the remainder of the development.

Nevertheless, appropriate boundary conditions at A βe for the physical problem are still required, keeping in mind that periodicity on v is incompatible with equation (2.8) when ϕ 0 = 0. To handle this situation, it is proposed, as an ansatz, to consider periodic boundary conditions for both v and p at A βe and then, compensate for this assumption as it is explained below. For the moment, it suces to note that, on the basis of periodic boundary conditions for both the physical and adjoint problems, equation (3.7) reduces

to v = - 1 µ D T • ∇ p β -1 V A βσ v 0 d dA + 1 V A βσ v 0 nn : ∇D dA (3.8)
An additional simplication can be made regarding the last term in the above expression of v . Taking into account the fact that v is a solenoidal eld allows writing

D T • ∇ • (∇v) T = ∇ • (∇v) T • D -v • ∇D = 0 (3.9)
Applying the divergence theorem to the term in the middle of this equation (3.9) leads to

1 V A βσ v 0 nn : ∇D dA + 1 V A βe n • (∇v) T • D dA -1 V A βe n • (v • ∇D) dA = 0 (3.10)
When periodic boundary conditions for both v and D are considered, the two last terms on the left hand side of this last relationship are zero, which means that

1 V A βσ v 0 nn : ∇D dA = 0 (3.11) This allows simplifying equation (3.8) to v = - 1 µ D T • ∇ p β -1 V A βσ v 0 d dA (3.12)
It must be kept in mind that this form is an approximation of v , as a result of the application of periodic boundary conditions for v at A βe . Moreover, at this stage of the derivations, an important point remains to be carefully addressed. Indeed, the adjoint problem for D and d given in equations (3.3), complemented with periodic boundary conditions, remains ill-posed as d can only be determined to within an arbitrary additive constant, and this leaves the expression of v undetermined due to the last integral term on the right hand side of equation (3.12). When v 0 is uniformly zero, i.e., when the problem reduces to the derivation of Darcy's law, it can be shown that an additional constraint can be imposed on d by setting d β equal to an arbitrary constant for the adjoint problem to be well-posed. This is due to the fact that, in this particular case, the closed macroscopic momentum equation only involves D and that the eld of D is insensitive to any additive constant superimposed to the eld of d. Indeed, the only source of the physical problem originates from the gradient of the average pressure reected in the source term I in equation (3.3b). However, when a non-zero exuding ux is present, d must be uniquely dened in equation (3.12) to obtain a closed expression for v . This feature results from the fact that periodic boundary conditions have been considered for v, while the solution for v depends on both the internal surface source or sink, v 0 , and the macroscopic boundary conditions. To circumvent this diculty, it is convenient to consider the decomposition of d under its intrinsic average λ = d β and deviation

d 1 = d as d = λ + d 1 (3.13)
Keeping in mind that, within the periodic unit cell, V , d 1 β = 0 (see equation (2.6) with ψ = d 1 ) and that λ can be considered as a constant (see equation (2.5) with Ψ = λ together with the ensuing approximation), the adjoint problem for d 1 and D can be written as

∇ • D = 0, in V β (3.14a ) 0 = -∇d 1 + ∇ 2 D + I, in V β (3.14b) D = 0 at A βσ (3.14c) ψ(r + l i ) = ψ(r), i = 1, 2, 3; ψ = d 1 , D (3.14d ) d 1 β = 0 (3.14e )
where l i are the periodic lattice vectors of V . This problem exactly corresponds to the closure problem (D and d 1 being the closure variables) involved in the derivation of the classical Darcy's law from which the intrinsic permeability tensor K is given by [START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF][START_REF] Whitaker | The Method of Volume Averaging[END_REF][START_REF] Mei | Some applications of the homogenization theory[END_REF] 

v = - 1 µ K • ∇ p β + v s (3.16)
where the vector v s , denoting the correction velocity to Darcy's law due to the surface source or sink, v 0 , is dened as

v s = - 1 V A βσ v 0 d 1 dA v d -λϕ 0 v λ (3.17)
It should be noted that both K and v d are obtained from the same closure (adjoint)

problem that is intrinsic to the structure under consideration and it corresponds to the same closure problem yielding K in the classical Darcy's law. This is novel in the volume averaging method, where it is usually required to produce a distinct closure problem for each source in the pore-scale model. In addition, it should be noted that v d , like K, is independent of the uid viscosity, but, unlike K, it is unmodied in a homothetic change of scale of the microstructure.

To clarify the physical meaning of the terms involved in the macroscopic momentum equation (3.16), it is instructive to rewrite it in the following alternative form

-K µ • ∇ p β = -K µ • 1 V β A βσ n • T dA = v 1 = v -v s (3.18)
where T is the total stress tensor (T = -pI + µ ∇v + ∇v T ). In this formulation, v 1 , which identies as the Darcy term, corresponds to the average contribution of the microscale ow eld that induces a force on the solid phase (which translates into the macroscopic pressure gradient). Conversely, v s is the contribution that does not induce such a force but is nevertheless not zero due to the local uid displacements.

In the expression of v s , the rst term (i.e., v d ) accounts for the local eect of v 0 whereas the second term (i.e., v λ ) is a compensation of the eect of the periodic boundary condition applied to v at the level of the unit cell. The idea here is that λ can be computed from equation (3.16) with v obtained from solving the pore-scale ow problem in a domain potentially signicantly smaller than V M with the same macroscopic boundary condition (see equation (2.10)). If such reduction is not possible, then it should be evaluated from a ow solution over the entire domain. Nevertheless, as illustrated in section 4 below, λ has no signicant contribution in many circumstances, even if it can be crucial in some very specic cases. The correction term v λ in v s does not even exist when ϕ 0 = 0 and this is consistent with the fact that, in that case, periodic boundary conditions for v at A βe are physically admissible.

A particular feature of v d must be pointed out when the structure is non-percolating in a direction, e k , of space. In such circumstances, the projection of the closure problem on e k admits the unique solution

D • e k = 0 (3.19a )
and consequently

d 1 • e k = (r -r G ) • e k (3.19b)
r G being the barycentre of V β . From equation (3.19b), it appears that v d • e k is the rst moment of v 0 in the e k direction. Hence, an average velocity may be induced in a nonpercolating direction of the medium in the absence of a macroscopic pressure gradient, as already noted in the case of the at channel (see equation (2.16b)). This is further illustrated in section 4.

The fact that the correction to Darcy's law given in equation (3.16) is a vector implies that, for situations in which the microstructure and the distribution of v 0 are both isotropic, v s should be 0 due to the absence of a privileged direction. Isotropy can also result from statistical reasons, such as the averaging of the randomness in real media. In addition, v d may also be evanescent because of an uncorrelated combination of d 1 and v 0 . In other words, v s plays a role only if there is some spatial alignment in the local geometrical and/or uid exuding distribution properties, in particular, when v 0 presents some kind of polarization between releasing and absorbing interfaces. Moreover, an order of magnitude estimate can be performed on v d and v λ as reported in Appendix A. It shows that both v d and v λ are, at most, of order v 0 .

As a summary, the upscaled (or macroscopic) model describing ow in porous media of a Newtonian uid in the creeping incompressible regime, induced by a rigid and homogeneous exuding solid matrix, is given by

∇ • v = ϕ 0 (3.20a ) v = -K µ • ∇ p β + v s (3.20b)
in which ϕ 0 and v s are given by equations (2.9) and (3.17), respectively, and this represents the salient result of this work. Clearly, the macroscopic momentum equation (3.20b) diers from Darcy's law by the correction term v s , while v is not a divergencefree eld, except when ϕ 0 = 0.

Results

The purpose of this section is to assess the validity of the macroscale model derived in section 3 for a variety of situations. Firstly, ow in two geometries of corrugated two-dimensional channels is considered for three congurations of v 0 at the solid-uid interface. Secondly, ow in both isotropic and anisotropic two-dimensional model porous media is analysed. Finally, the case of exuding within spherical bubbles is investigated, a situation which may be thought of as a simple representation of the migration of water vapor bubbles in ice.

In all the situations studied here, the reference macroscale velocity and pressure results are those obtained from averaging the numerical solution of the governing ow equations at the pore-scale carried out in V M . The pore-scale numerical simulation (PSNS) of the ow problem, as well as the solutions of the closure problem given in equation (3.14) and of the upscaled model are carried out using the nite element solver Comsol Multiphysics 5.5. The smoothed aggregation algebraic multigrid solver was chosen for the uid ow variables considering preconditioning. In addition, typical tests of convergence in terms of the relative tolerance and number of mesh elements were performed so that the results presented here are independent of these numerical degrees of freedom.

For the developments reported below, it is convenient to introduce the following dimensionless variables and parameters 

r * = r cell ; v * = v v ref ; v * 0 = v 0 v ref p * = p cell µv ref ; ϕ * 0 = ϕ 0 cell v ref ; K * = K 2 cell ; λ * = λ cell ; d * 1 = d 1 cell ; D * = D 2 
v * x = - ε 12 ∂ p * β ∂x * (4.3a ) v * y = - ε(v + * 0 -v - * 0 ) 2 (4.3b)
Combining the macroscopic mass and momentum equations (3.20), leads to the following average dimensionless pressure equation

- ε 12 
∂ 2 p * β ∂x * 2 = ϕ * 0 = ε v + * 0 + v - * 0 (4.4a )
The solution of this equation is obtained by considering that v * x = 0 (i.e. ∂ p * β /∂x * = 0) at x * = 0 and it can be written as

p * β = p * 2 -6 ϕ * 0 ε x * 2 (4.4b)
with p * 2 being an arbitrary constant. The results given in equations (4.3) and (4.4b) coincide with those obtained from the ow solution (see equations (2.16)). In particular, v * λ is zero and the result from the macroscopic model is exact in that case. is not reported for the sake of brevity.

Flow in corrugated channels

In this section, two types of two-dimensional channels, for which the macroscopic domain, V M , is composed of the N -repetition (N = 11 here) along x of a geometrical periodic unit cell, are considered. This geometry may be viewed as a simple model to study ow in exuding fractures (cf., [START_REF] Rasoulzadeh | Semi-analytical models of mineral dissolution in rough fractures with permeable walls[END_REF]. For the rst channel geometry, namely the wavy channel, the lower wall at y * = 0 is at, while the upper wall follows the oscillatory function y * = 0.35 + 0.25 cos(2πx * ). The developed dimensionless length of the upper wall is denoted by A * upper . The second type of geometry, referred to as the shark-n channel, is such that the lower wall is corrugated and not symmetric.

It presents a positive undulation over the baseline y * = 0 while the upper wall is at, positioned at y * = 1. In the following numerical evaluations, the dimensionless height of the unit cell is taken equal to the maximum dimensionless channel aperture, i.e., 0.6 and 1 for the wavy and shark-n channels respectively. The interest is to examine the following four congurations:

Case a v * 0 = 1 at the upper wall and v * 0 = -A * upper at the lower wall in the wavy channel, so that ϕ * 0 = 0;

Case b v * 0 = 1 at A βσ in the wavy channel;

Case c A Janus-type † conguration for which v * 0 = 1 at the solid-uid interfaces located in the right half and v * 0 = 0 in the left half of each geometrical unit cell in the wavy channel;

Case d v * 0 = 1 at A βσ in the shark-n channel. To complete the problem statement, the following form of G * (v * , p * ) for the condition at the macroscopic boundaries, A M βe , (see equation (2.10)) is imposed for all the pore- † named after the ancient Roman two-faced sculpture. 

G * (v * , p * ) = n • -p * I + ∇ * v * + (∇ * v * ) T = 0 (4.5)
with n being the unit normal vector at A M βe pointing out of the β-phase. The PSNS were performed considering a channel composed of eleven geometrical unit cells and it was veried that similar results were obtained considering larger values of N . In all the simulations, the coordinate axes origin is located at the lower left corner of the system.

The pore-scale streamlines for the three cases listed above are presented in gure 3.

Regarding these results the following comments are in order:

(i) In Case a, the streamlines appear to be periodic from one geometric unit cell to another. Since ϕ * 0 = 0, uid is released from the upper wall and absorbed at the lower wall at the same rate so that the net ow is directed from the upper to the lower wall and no overall ow is directed towards A M βe . As a matter of fact, similar results are obtained if, instead of equation (4.5), one imposes periodic boundary conditions at A M βe , which complies with mass conservation in this case.

(ii) In Cases b and d, there is a net uid source, with ϕ * 0 > 0. Consequently, the uid tends to move from the channel centre towards A M βe . Notice that in Case d, the streamlines do not follow a symmetric pattern: the velocity is larger near the left macroscopic boundary than near the right one.

(iii) The results for Case c are equivalent to those shown in gure 3b, except that the maximum values are divided by a factor of two and they are not reported in this gure for the sake of brevity.

The predictions from the macroscopic model derived here are compared with these PSNS for the above four cases. Comparisons are made in terms of the horizontal and vertical components of the velocity vector, v * , and the intrinsic average pressure, p * β .

It should be noted that a straightforward consequence of the mass equation for these geometries is that the proles of v *

x along x * are linear with a slope equal to ϕ * 0 , a feature that was recovered in all the four cases with the PSNS and the macroscale predictions.

A salient feature of the upscaling approach presented in section 3 is that it is necessary 1. Under these circumstances, the equation resulting from the combination of the macroscale mass and momentum equations reduces to

K * xx d 2 p * β dx * 2 = -ϕ * 0 (4.6a )
which is subject to the following boundary conditions

at x * = x * 0 , p * β = p * 0 (4.6b) at x * = x * L , p * β = p * L (4.6c)
Here, p * 0 and p * L are the values of the dimensionless intrinsic average pressure obtained from the PSNS at the rst and last unit cell, located at x * 0 = 0.5 and x * L = 10.5, respectively. The analytical solution of this boundary-value problem is

p * β = p * 0 + (p * L -p * 0 )(x * -x * 0 ) (x * L -x * 0 ) - ϕ * 0 2K * xx x * 2 -x * 2 0 -(x * L + x * 0 )(x * -x * 0 ) (4.7)
From the above expression, it is easy to obtain

d p * β dx * = (p * L -p * 0 ) (x * L -x * 0 ) - ϕ * 0 2K * xx [2x * -(x * L + x * 0 )] (4.8)
which is further used to compute the Darcy term.

The values of the two terms v * d and v * λ change for each case study as reported in Table 1. Nevertheless, some insight can be obtained from the results in gure 4c. In this plot, it is observed that d * 1x is antisymmetric around x * = 0.5 at both solid-uid interfaces. This means that the contributions from v * dx should be zero for the wavy channel when v * 0 is uniform at A βσ . However, this is not true for the shark-n channel. In this conguration, the contributions from both d * 1x and d * 1y are relevant because no particular antisymmetry condition is observed. Furthermore, since the permeability is zero in the y-direction, it follows that v * sy should be the only relevant term in the predictions of v * y in both channel geometries.

Regarding the predictions of λ * , its values are obtained from a combination of the macroscale model and PSNS in a reduced macroscale domain. As mentioned in section 3.2, the pore-scale equations can be solved in a subdomain of V M containing either three or ve geometric unit cells in order to obtain the values of v * x and v * y . These values show periodic oscillations about a geometric unit cell. Once smoothed by a second spatial average over a moving unit cell, as suggested by [START_REF] Barrère | Modélisation des écoulement de Stokes et de Navier-Stokes en milieu poreux[END_REF], and substituted into the macroscale momentum equations, they allow computing λ * x and λ * y . For the cases described above, it was found that λ *

x is irrelevant, i.e., v * λx = 0. However, the same is not true for λ * y (v * λy = 0). Moreover, it was noted that a subdomain made of three unit cells is sucient as the same value of λ * y was obtained on the central unit cell for a subdomain made of ve (or even more) unit cells. 4.1.1. Case a: wavy channel, ϕ * 0 = 0 In this case, the macroscopic pressure is constant along the system and therefore, the Darcy term plays no role in the prediction of v * . In addition, v * λ = 0 because ϕ * 0 = 0 and, since v * dx = 0, as already noted, v * x = 0. Furthermore, the vertical component of the macroscale velocity is completely determined by v * dy (see value in Table 1) and, in this case, it has the value of v * y = -0.854. These macroscopic results were checked to be in perfect agreement with those from the PSNS.

4.1.2. Case b: wavy channel, v * 0 = 1 In this case, the mean ow goes from the centre of the system towards A M βe as shown in gure 3b. Hence, the macroscale velocity and pressure are x-dependent along the channel. As shown in gure 5, the macroscopic variables p * β and v * y obtained from PSNS exhibit an oscillatory behaviour, with a period corresponding to that of the geometrical unit cell. The PSNS proles can be subject to a double spatial smoothing as described above in order to eliminate the spatial oscillations. These non-oscillatory results (referred to as PSNS (smoothed) in gure 5), are in excellent agreement with the predictions from the upscaled model derived here. In this way, the macroscopic pressure follows a parabolic prole, with its maximum located at the centre of the domain that is correctly described by equation (4.7). The linear prole of the x-component of the macroscale velocity is in agreement with the Darcy-term contribution. For the y-component of the macroscopic velocity, the values of v * dy and v * λy reported in Table 1 lead to v * y = -0.3. This value matches the smoothed PSNS result as shown in gure 5c. From this point on, the doublysmoothed PSNS results are no longer reported for the sake of brevity in presentation.

Case c: wavy channel, Janus-type conguration

This case is of interest because v * 0 features a heterogeneous distribution along the channel walls. Nevertheless, as expected, the global amount of exuded uid in this case is half that in Case b, i.e., ϕ * 0 = 2.05. Results obtained from the PSNS are qualitatively equivalent to those reported in gure 3b and gure 5, all values being only aected by a coecient 1/2. In contrast to Case b, v * x is shifted by v * dx , which is non-zero in the present case (see value in Table 1) due to the uneven source distribution. As indicated in Table 1, v * dy is half the value reported for Case b. In addition, the value of λ * y was found to remain unaltered in comparison to Case b, so that v * y = -0.15, which is half the value found in Case b. This is again in excellent agreement with the smoothed value obtained from the PSNS and the same comment applies to the proles of p * β and v *

x .

These results are not represented here for the sake of brevity in presentation. The last channel case considered here corresponds to the shark-n conguration with v * 0 = 1 throughout A βσ . In contrast to Case b, now v * dx is non-zero due to the non- symmetric geometry. Furthermore, taking the values of v * dy and v * λy reported in Table 1, v * y = 0.725, which, again, exactly coincides with the PSNS result as shown in gure 6c. In the same gure, it is evident that p * β and v *

x are also in agreement with the PSNS results. Contrary to the previous cases, p * β and v * y are not evenly distributed at the macroscopic boundaries and, interestingly, they exhibit less-pronounced oscillations along the domain than those observed in gures 5a and 5c. Finally, v *

x follows a linear prole, which is not entirely described by the Darcy term since it is shifted by v * dx = 0. Case a a sine-like exuding condition for which ϕ * 0 = 0;

Case b Janus exuding grains, which refers to a single object featuring two-sided contrasted properties, namely v * 0 = 1 and v * 0 = 0 on each half-part of the grain surface. The last v * 0 distribution is also applied in the anisotropic geometry.

Isotropic geometry

Consider a porous medium made up of an array of periodic unit cells in which the solid phase is modelled as a circular obstacle as shown in gure 7. The macroscopic domain is modelled as a square of side length L = N cell , with N = 11, although similar results were observed for larger values of N . The porosity is taken equal to 0.8.

Case a: Sine-like exuding condition

As a rst case study, consider a situation in which v * 0 obeys the following sinusoidal function

v * 0 = 2(y * -y * 0 ) * σ = sin(θ), at A βσ (4.9)
where θ is the inclination of the position vector of a point on A βσ on the horizontal axis (see gure 7). In addition, y * 0 is the dimensionless y-coordinate of the centroid of each solid inclusion, whereas * σ is the dimensionless diameter of the inclusion. In this way, v * 0 is position-dependent at A βσ , albeit periodic. Furthermore, the boundary condition given in equation (4.9) leads to ϕ * 0 = 0. This means that, in this case, it is physically acceptable to impose periodic boundary conditions at A M βe instead of equation (4.5) without compromising conservation of mass. Hence, it is not necessary to solve the porescale problem in V M made of the N × N unit cells; it suces to carry out the solution in only one geometrical unit cell.

The pore-scale velocity elds are presented in gure 8 both at A βσ (gure 8a) and in the unit cell domain (gures 8b and 8c), as a result of the PSNS. The pressure elds are not reported in this gure as they are uniformly zero. Both components of the velocity exhibit an oscillatory behaviour at A βσ ; however, v *

x has cancelling amplitudes and v * y 0. Consequently, it is not surprising that v * x = 0; in addition, v * y = 0.404.

Focusing now on the upscaled model, the closure problem was solved in the periodic unit cell sketched gure 7. The resulting elds of the closure variables are represented in gure 9. Clearly, the diagonal components of tensor D * are x and y-symmetric elds, whereas the o-diagonal components are antisymmetric. As a consequence, K * is a spherical tensor, i.e., K * = K * I value of K * is reported in Table 1.

Regarding the elds of the closure vector d * 1 , the results for the xand y-components are represented in gures 9e and 9f showing that d 1x and d 1y are antisymmetric about the vertical and horizontal directions, respectively. It is worth recalling that these results are intrinsic to the geometry i.e., they are independent of v * 0 . In addition, since there is no macroscopic pressure gradient in any direction, it follows that the Darcy term in the macroscale momentum equation (3.20b) is zero, thus simplifying the model to v

* = v * s . Finally, since ϕ * 0 = 0 in this case, v * λ = 0 and v * s = v * d .
With the values reported in Table 1, this leads to a perfect match with the PSNS data.

Case b: Janus exuding grains

The second case study deals with a Janus-type conguration for v * 0 , such that v * 0 = 1 when 0 < θ < π/2 and 3π/2 < θ < 2π 0 when π/2 < θ < 3π/2 (4.10)

Solving the governing equations at the pore-scale subject to the macroscopic boundary condition provided in equation (4.5) gives rise to the velocity and pressure elds reported in gure 10. The eld of v * x is y-symmetric but not x-symmetric, whereas the eld of v * y is x-symmetric and y-antisymmetric. The pressure eld is x and y-symmetric with a maximum value located at the centre of the domain. The rst two boundary conditions follow from the macroscale pressure-eld symmetries.

As in the analysis of the corrugated channels, x * L and y * L locate the positions of the last centroids of the unit cells where the PSNS data were collected (i.e., x * = y * = 5). A M βe , and carrying out PSNS, yields the velocity and pressure elds shown in gure 13.

The numerical results are somewhat similar to those presented in gure 11 in the sense that the uid tends to move from the centre towards the macroscopic boundaries.

The elds of all the closure variables, obtained after solving the closure problem in the geometric unit cell shown in gure 12, are represented in gure 14. Clearly, no symmetric or antisymmetric property is observed. From this solution, the components of the permeability tensor, which is now a full matrix, can be computed and the results are reported in Table 1 along with the values of ϕ * 0 , v * dx and v * dy .

Since no symmetry properties are applicable to the pressure, the upscaled model must horizontal Janus. This is expected, since when the net volume sources and outer boundary conditions are identical, the macroscopic model (3.20) predicts that the velocity elds dier only by the value of v * s associated with a particular distribution of the interfacial sources. This is a relevant result, that may be of interest in practical situations in which one may only account for ϕ * 0 at the macroscale.

Migration of water vapor bubbles in ice

To conclude this section, an extension of this work to the migration of water vapour bubbles in ice is briey discussed. To this end, consider an ice mass containing a dilute population of spherical bubbles. For simplicity, assume that the bubbles contain pure water vapour, so that internal mass transfer does not involve diusion. Each bubble is supposed to be in global equilibrium, i.e., its internal pressure is equal to the saturation pressure at the temperature of the surrounding ice and its volume is constant. Any deviation would result in a net ice sublimation or vapor condensation rate, with pressure and volume variations, until an equilibrium state is reached ultimately.

Despite the global equilibrium, an overall temperature gradient can exist in the ice mass, as occurs in glaciers or polar ice caps [START_REF] Mellor | Temperature gradients in the Antarctic ice sheet[END_REF]. The resulting slight temperature dierence across the bubble causes sublimation to take place at the warm part of its surface, and condensation on the opposite cold side. This, in turn, induces a migration of the bubble in the direction of increasing temperature. Under a quasi-steady approximation, it is reasonable to neglect interfacial displacement, so that, the transfers at a bubble boundary correspond to

v * 0 = ρ i ρ v n • 3k i ρ i L s v ref ∇T v * B , at A βσ (4.13)
Here ρ i and ρ v denote the densities of ice and water vapour, respectively. In addition, k i is the ice thermal conductivity, L s is the latent heat of sublimation and ∇T is the overall temperature gradient. Finally, the term between parenthesis in the above equation corresponds to the dimensionless bubble velocity, v * B . Its expression results from an energy balance, and shows that it does not depend on the bubble size [START_REF] Shreve | Migration of air bubbles, vapor gures, and brine pockets in ice under a temperature gradient[END_REF]). The source distribution in equation (4.13) results in ϕ * 0 = 0, in agreement with the global equilibrium hypothesis.

A simple way to derive an expression for the macroscopic vapor velocity, without actually solving the ow problem, is by noticing that v * = ∇ * • (v * r * ) and applying the 

v * β = - 1 V * β A βσ v * 0 r * dA * = - ρ i ρ v v * B (4.14)
The last equality results from substitution of v * 0 from equation (4.13) in the integral. In fact, this interfacial integral can be identied as the source dipole. For instance, if the source and sinks were concentrated at two points, it would reduce to a usual point-source dipole [START_REF] Pozrikidis | Computation of the pressure inside bubbles and pores in Stokes ow[END_REF][START_REF] Spagnolie | Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-eld approximations[END_REF].

Since the pore space in the ice is made of disconnected cavities, its permeability coecient is zero, hence the Darcy-term in equation ( 3 given in equation (4.13), into equation (3.17), taking into account the fact that ϕ * 0 = 0, leads to an expression for v * , which, when divided by the porosity, allows recovering the result given in equation (4.14). This can be straightforwardly extended to periodic media where the unit cell contains any number of bubbles, possibly with dierent sizes.

Thus, the upscaled model established in the previous section accommodates this peculiar situation of a non-percolating porous medium, and predicts the correct mean gas velocity.

To summarise the dierent situations investigated with the above examples, the features of the macroscopic velocity components are reported in Table 2, highlighting the richness of the problem. Note that the Darcy model is applicable in the minority of the cases studied here. When ϕ * 0 = 0, there is no Darcy-term in the macroscale model.

Discussion and conclusions

In this work, a macroscale model describing incompressible, Newtonian and creeping ow in exuding rigid and homogeneous porous media was derived. The governing transport equations at the pore-scale correspond to the ones involved in the derivation of Darcy's law with the dierence that a normal mass ux is present at the solid-uid interface. Despite the apparent simplicity of this problem, this physical situation is quite rich. Indeed, mass conservation prevents, in general, the simplication of the problem to a single periodic unit cell. Therefore, the use of periodic boundary conditions in the course of the upscaling process must be treated with caution. Nevertheless, a common practice in the literature is to use the classical Darcy's law at the macroscopic level, which raises the question about the pertinence of such an equation and/or whether or not the permeability tensor can remain intrinsic. The upscaling of the governing pore-scale equations developed in this work contrasts to the Darcy model in two respects. First, the macroscopic velocity eld is non-solenoidal. The non-solenoidal nature of the average velocity (despite the fact that the ow is incompressible) is a relevant modication to the classical Darcy model, albeit not the only one, as it accounts for the mass entering/exiting the system through the solid-uid interface. Second, the macroscale momentum equation involves the classical Darcy term (with the intrinsic permeability) and a correction term. The correction term, v s , in the macroscopic momentum equation is the sum of a contribution, v d , due to the local eect of v 0 and a term, v λ , that compensates for the periodicity assumption. The magnitude of both v d and v λ were found to be, at most, of the order of v 0 . Since v s is a vector, the correction only applies in one spatial direction. This can only occur if the system features privileged directions that result from geometrical and/or v 0 distribution anisotropy. A salient feature of the model derived here is that a unique intrinsic closure problem, exactly corresponding to the one involved in the classical Darcy case, is required to predict both the intrinsic permeability tensor and v d . The correction term, v s , accounts for the local uid displacement induced by the exuding phenomenon at the solid-uid interfaces. This eect is not captured by the Darcy term, which only accounts for the macroscopic drag. This correction term, v s , identies as the average of a contribution to the ow eld which does not induce any macroscopic force on the solid skeleton of the porous material.

The performance of the upscaled model was validated in a variety of physical situations ranging from ow in at and corrugated channels to isotropic and anisotropic porous media. For channels, the component along the channel-axis of the correction term in the macroscopic momentum equation results from a complex interplay of the distribution of v 0 and the walls geometry. This component is zero in the case of the plane channel (it can be shown that this result holds whatever v 0 ) or in the sine-channel when v 0 is uniform. In more complex cases, a correction is needed in the axial direction and it can only be obtained from the solution of the adjoint problem. The dierent channel examples illustrate the pertinence of the correction in various ow situations; a detailed analysis on the role played by the topology and v 0 distribution is out of the scope of this work.

The macroscale model solution requires physically sound boundary conditions at the macroscopic boundaries. In this work, they were obtained by tting data from the porescale numerical simulations at the macroscopic boundaries. Certainly, it is tempting to impose heuristic boundary conditions, such as p β = 0 at A M βe . However, it was veried that using this approach leads to relative percent errors larger than 10%, especially near the macroscopic boundaries. In contrast, the approach used here leads to an error below 1%. Certainly, this issue requires further analysis since the derivation of macroscopic boundary conditions is still a developing research subject not specic to the exuding problem investigated here. However, this is beyond the scope of the current work.

For the cases in which ϕ 0 = 0 (plane channel when ϕ 0 = 0, wavy channel Case a, isotropic porous medium Case a, and bubbles in ice), periodicity is physically justied and the macroscopic model is exact to within the approximation associated to the classical length-scale constraint. Since no macroscopic pressure gradient is present, it follows that a Darcy-type model is incapable of predicting the constant velocity. This result is accurately predicted by v d with v λ = 0.

When the distribution of v 0 is such that ϕ 0 = 0, many dierent situations can occur. The pertinence of the constant correction term v d with respect to the Darcy term is particular to each application. Moreover, the correction term v λ was found to be generally irrelevant for the cases studied here. The exception is in the corrugated channel cases, for which v λ plays a role in the non-percolating direction of the channel.

The above indicates that a Darcy-type model may be pertinent whenever the pressure gradient spatially develops so that the Darcy term overcomes the contribution from v s .

Nevertheless, it should be noticed that, even if a Darcy model would provide acceptable predictions of the macroscopic velocity, in some particular situations, v s may not be neglected (see Table 2). Indeed, it can trigger some mechanisms, like instability for instance, if ow is coupled to another non-linear phenomenon, which may be overlooked if a pure Darcy model is employed.

As a matter of perspective, the combination of the upscaled model from this work with species and/or heat transport models can be used to predict an ample variety of transport processes in porous media involving internal ow sources, such as mineral dissolution in rough fractures as recently studied by [START_REF] Rasoulzadeh | Semi-analytical models of mineral dissolution in rough fractures with permeable walls[END_REF]. Finally, the results from this work should also call for complementary experimental investigation.

  Figure 1. a) Schematic representation of a porous medium saturated with a single uid phase along with the averaging domain and characteristic lengths. b) Position vectors associated to the averaging volume.
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 3 Figure 3. Pore-scale streamlines corresponding to a) Case a, b) Case b and c) Case d. Case c
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 5 Figure 5. Comparisons of the averaged results of the pore-scale numerical simulations (PSNS), with the predictions from the upscaled model (UM) for a) p * β b) v * x , c) v * y . These results
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 67 Figure 6. Comparisons of the averaged results of the pore-scale numerical simulations (PSNS), with the predictions from the upscaled model (UM) for a) p * β b) v * x , c) v * y . These results correspond to Case d for ow in a shark-n channel, in which v * 0 = 1 at A βσ .L

Figure 8 .

 8 Figure 8. Dimensionless pore-scale elds of a) v * x = sin(θ) cos(θ) and v * y = sin 2 (θ) at the solid-uid interface corresponding to the sinusoidal distribution of v * 0 , b) v * x and c) v * y .

Figure 9 .Figure 10 .Figure 11 .(

 91011 Figure 9. Fields of the closure variables a) D * xx , b) D * yx , c) D * xy , d) D * yy , e) d * 1x , f ) d * 1y in the periodic unit cell sketched in gure 7 for a porosity value of 0.8.

Figure 12 .

 12 Figure 12. Periodic unit cell used to construct the anisotropic porous medium. The boundaries at which v * 0 is set to one are shaded in blue.

Figure 14 .

 14 Figure 13. Pore-scale elds of a) v * x , b) v * y and c) p * obtained from the vertical Janus conguration in the anisotropic geometry.

Figure 15 .

 15 Figure 15. Comparison of the macroscopic velocity (a and b) and pressure (c) obtained from the upscaled model (UM) and the pore-scale numerical simulations (PSNS) for the vertical Janus conguration in the anisotropic medium.

  .16) vanishes and the macroscopic velocity reduces to v * = v * s = v * d because ϕ * 0 = 0. In this way, the closure problem given in equations (3.14) can be solved in a unit cell containing a single bubble. It is readily apparent that D * = 0 (and therefore K * = 0) and d * 1 = r * -r * G as mentioned in section 3.2 (see equations (3.19)). Substitution of this result, along with the expression of v * 0

Table 1 .

 1 Values of the permeability (K * ) and the components of v * s for all the numerical simulation cases. Note that v * λx was found to be irrelevant in all cases.

	Case		K *		ϕ * 0	v * dx	v * dy	v * λy
	Wavy channel Case a Wavy channel Case b Wavy channel Case c Shark-n channel Case d	6.14 0 0 0 1.18 0 0 0	×10 -4 × 10 -2	0 4.11 2.05 0.401 0.024 -0.174 0 0.854 0 0 0.048 -0.349 3.04 0.143 0.211 0.514
	Isotropic porous medium Case a Isotropic porous medium Case b	1.94 0	0 1.94	×10 -2	0 0.793 0.283 0	0.404 0	0 0
	Anisotropic porous medium vertical Janus Anisotropic porous medium horizontal Janus	31.10 3.31 3.31 1.72	×10 -5	4.92 0.039 0.346 4.81 0.384 0.137	0 0
	scale numerical simulations						

  Hence, the functions p * Lx (y * ) and p * Ly (x * ) are extracted from the PSNS. Due to the y-antisymmetry of d * 1y exhibited in gure 9f, it follows that v * dy = 0. With the data reported in Table 1 for v * dx and ϕ * 0 , it is possible to carry out the upscaled model solution and compute the proles of the macroscale velocity and pressure. These results are reported in gure 11 and they are compared with those arising from the average PSNS data for various values of y * . The simulations from the upscaled model are found to be in good agreement with the PSNS without requiring the computation of v *

	appreciate the relevance of v * d , the predictions of v	λ . In order to

*

x , only considering the Darcy term, are compared with the PSNS results in gure 11b, showing a clear discrepancy. The two

Table

  

Table 2 .

 2 Summary of the macroscopic velocity features in the dierent case studies. The values of v * dx , v * dy and v * λy are reported in Table 1.

	Case	ϕ * 0	v * x		v * y	
	Flat channel Wavy channel Case a Wavy channel Case b Wavy channel Case c Shark-n channel Case d Isotropic porous medium Case a Isotropic porous medium Case b	ε v + * 0 + v - * 0 0 4.11 2.05 3.04 0 0.793	Darcy † 0 Darcy Darcy+v Darcy+v 0 Darcy+v	* dx * dx * dx	v * dy v * dy dy + v * v * λy v * dy + v * λy v * dy + v * λy v * dy Darcy
	Anisotropic porous medium vertical Janus	4.92	Darcy+v	* dx	Darcy+v	* dy
	Anisotropic porous medium horizontal Janus	4.81	Darcy+v	* dx	Darcy+v	* dy
	Bubble	0		v *		

d // ∇T † The term Darcy denotes the projection of -K * • ∇ * p * β on the corresponding direction.

intrinsic averaging operator together with the divergence theorem to obtain
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Appendix A. Order of magnitude estimates

The purpose of this appendix is to provide order of magnitude estimates for the correction vectors v d and v λ . To this end, it is convenient to commence the analysis by examining the boundary-value problem given in equations (3.3), which are subject to homogeneous boundary conditions at A βe . This means that this problem is driven by the unitary volume source in equation (3.3b). From this observation, the following order of magnitude estimate can be made

Since λ = d β , it follows that λ = O( β ), with the idea that this represents an upper bound. Directing the attention to the closure problem dened in equations (3.14), a similar analysis leads to the estimate

Exuding porous media: Deviations from Darcy's law 29 Taking these results into account, the order of magnitude estimates for v d and v λ are

which are again upper bounds. With these results, it immediately follows that v s = O(v 0 ) and this concludes the derivations.
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