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UPPER BOUNDS ON THE ONE-ARM EXPONENT FOR

DEPENDENT PERCOLATION MODELS

VIVEK DEWAN1 AND STEPHEN MUIRHEAD2

Abstract. We prove upper bounds on the one-arm exponent η1 for dependent percolation
models; while our main interest is level set percolation of smooth Gaussian fields, the arguments
apply to other models in the Bernoulli percolation universality class, including Poisson-Voronoi
and Poisson-Boolean percolation. More precisely, in dimension d = 2 we prove η1 ≤ 1/3 for
Gaussian fields with rapid correlation decay (e.g. the Bargmann-Fock field), and in general
dimensions we prove η1 ≤ d/3 for finite-range fields and η1 ≤ d − 2 for fields with rapid
correlation decay. Although these results are classical for Bernoulli percolation (indeed they are
best-known in general), existing proofs do not extend to dependent percolation models, and we
develop a new approach based on exploration and relative entropy arguments. We also establish
a new Russo-type inequality for smooth Gaussian fields which we use to prove the sharpness of
the phase transition for finite-range fields.

1. Introduction

The critical phase of percolation models is believed (see, e.g., [23, Chapter 9]) to be described
by critical exponents which govern the power-law behaviour of macroscopic observables at, or
near, criticality. In this paper we consider the one-arm exponent ; we introduce this in the
classical setting of Bernoulli percolation, before generalising to a class of dependent percolation
models induced by the excursion sets of smooth Gaussian fields (‘Gaussian percolation’).

Fix a dimension d ≥ 2, consider the lattice Zd = (V, E), and declare each edge e ∈ E to be
‘open’ independently with probability p ∈ [0, 1]. The resulting law Pp of the open subset of E is

known as Bernoulli percolation on Zd with parameter p. Defining the connection event

{A←→ B} := {there exists a path of open edges that intersects A and B}

where A,B ⊂ V,1 and denoting by ΛR := [−R,R]d ⊂ V the box of size R, it is well known [23]
that there exists pc = pc(d) ∈ (0, 1), satisfying pc(2) = 1/2 and pc(d) < 1/2 for d ≥ 3, such that

θ(p) := Pp[0←→∞] := lim
R→∞

Pp[0←→ ∂ΛR] =

{
0 if p < pc,

> 0 if p > pc.

Although it is still open to prove θ(pc) = 0 for d ≥ 3, it has been shown that [11, 2]

(1.1) θ(p) ≥ c(p− pc)

for a constant c = c(d) and p > pc sufficiently close to pc; this is known as the mean-field lower
bound and is expected to be tight for dimensions d ≥ dc = 6 in which critical exponents take
their mean-field value.

At criticality p = pc it is believed that connection probabilities between scales obey a power
law, in the sense that there exists η1 > 0 such that, as R→∞ and for r = o(R),

(1.2) Ppc [Λr ←→ ∂ΛR] = (r/R)−η1+o(1).
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1We allow the path to be empty, so that {A←→ B} occurs if A ∩B 6= ∅.
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2 UPPER BOUNDS ON THE ONE-ARM EXPONENT

While the existence of the one-arm exponent η1 is not known rigorously, since we are interested
in upper bounds we define

(1.3) η1 := lim inf
R→∞

− logPpc [0←→ ∂ΛR]

logR
.

Clearly upper bounds on (1.3) imply upper bounds on the exponent in (1.2) assuming its ex-
istence. Note however that the choice of lim inf, rather than lim sup, in the definition of η1 is
deliberate and yields a priori weaker upper bounds (see however Remark 1.3).

The phenomenon of universality suggests that a wide class of dependent percolation models
behave similarly to Bernoulli percolation at, or near, criticality, and in particular η1 should be
identical inside this class. In this paper we consider the following class of dependent models.
Let f be a continuous stationary-ergodic centred Gaussian field on Rd, and for ` ∈ R write P`[·]
to denote P[f + ` ∈ · ] (abbreviating P = P0). Then the excursion sets {f + ` ≥ 0} := {x ∈ Rd :
f(x) + ` ≥ 0} induce a stationary ergodic percolation model on Rd via the connectivity relation

{A←→ B} := {there exists a path in {f ≥ 0} that intersects A and B}
for closed sets A,B ⊂ Rd. Recalling the box ΛR := [−R,R]d (now considered a subset of Rd),
by monotonicity there exists `c = `c(f) ∈ [−∞,∞] such that

θ(`) := P`[Λ1 ←→∞] := lim
R→∞

P`[Λ1 ←→ ∂ΛR] =

{
0 if ` < `c,

> 0 if ` > `c,

where the choice of {Λ1 ←→ ∂ΛR} rather than {0←→ ∂ΛR} is to avoid the possibility of local
obstructions (relevant only in the case that the FKG inequality is not available; see the comments
after (POS’)). Under general conditions it is known that `c = 0 if d = 2 and `c ∈ (−∞, 0] if d ≥ 3
(see [44, 38, 22, 42, 37] and [35, 36] respectively for sufficient conditions, which are implied by the
assumptions in this paper, namely Assumption 1.4 below). Similarly to for Bernoulli percolation,
for this class of models we define

(1.4) η1 := lim inf
R→∞

− logP`c [Λ1 ←→ ∂ΛR]

logR
.

In this case the mean-field lower bound (1.1) has not yet been established; indeed in this paper
we prove it for Gaussian fields with finite-range dependence.

1.1. Upper bounds on the one-arm exponent. We now present our main results, which
are upper bounds on η1. We begin with Bernoulli percolation; although the results are not new
in this case, they are illustrative for general models.

Theorem 1.1. For Bernoulli percolation on Zd,

η1 ≤

{
1/3 d = 2,

d/3 d ≥ 3.

Remark 1.2. If d = 2, the bound η1 ≤ 1/3 was first given in [29]2 which established that

Ppc [0 ←→ ∂ΛR] ≥ cR−1/3. Recently this was improved to ≥ cR−1/6 [14], giving η1 ≤ 1/6. It is
believed that η1 = 5/48, but this is known rigorously only for very specific models [47].

In general dimension the hyperscaling inequality η1 ≤ d/(1 + δ) has been established rigor-
ously [9], where δ is the critical exponent governing the volume of critical clusters. In light of
the mean-field bound δ ≥ 2 [2], this implies η1 ≤ d/3.3 In high dimension d ≥ 11 it is known
that η1 takes its mean-field value η1 = 2 [31, 20], see also Corollary 1.2 below. It is believed that

η1 =

{
0.48 . . . d = 3, 0.95 . . . d = 4,

1.5 . . . d = 5, 2 d ≥ dc = 6.

2In the paper the argument is attributed to van den Berg.
3Although [9] assumes the existence of the exponent δ, one can extract the unconditional bound η1 ≤ d/3 from

the proof.
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In particular, the bound η1 ≤ d/3 is expected to be tight at the upper-critical dimension dc = 6
(indeed, it implies dc ≥ 6 since it shows that η1 = 2 cannot occur for d ≤ 5).

As for lower bounds on η1, in d = 2 one can use RSW estimates to prove that η1 > ε (which
can be quantified, but is small), however if d ∈ {3, 4, 5, 6} it is still wide open to prove η1 > 0
(there are partial results in intermediate dimensions, e.g. for spread-out models).

Remark 1.3. For the bound η1 ≤ 1/3 in d = 2, we could replace the liminf in the definition of η1

in (1.3) with limsup, since the argument yields Ppc [0←→ ∂ΛR] ≥ cR−1/3, see (2.9). In fact, the

argument gives the stronger bound Ppc [A2(R)] ≥ cR−2/3, where A2(R) is the (polychromatic)
two-arm event ; see Section 2 for the definition and more details.

Similarly, if d ≥ 3 one can modify our argument to give Ppc [0←→ ∂ΛR] ≥ cR−d/3 by working
under an (unproven) assumption that critical ‘box-crossing’ probabilities do not converge to 1,
which to our knowledge is a new inference; see Remark 2.6 for details. Note that this assumption
is expected to be true if d < dc = 6, but likely not if d ≥ 6.

Previous proofs of Theorem 1.1 rely heavily on specific properties of Bernoulli percolation
(such as the BK inequality, used to prove δ ≥ 2, and in the case of the stronger bound η1 ≤ 1/6
if d = 2, on the ‘parafermionic observable’), and hence do not extend easily to dependent
percolation models. On the contrary, we give a new proof of Theorem 1.1 that extends naturally
to a wide class of dependent models; our next result illustrates this for Gaussian percolation.

Let us begin by stating some assumptions. Recall that f is a continuous stationary-ergodic
centred Gaussian field. We will always assume that f has a spatial moving average representation
f = q ? W , where q ∈ L2(Rd) 6= 0 is Hermitian (i.e. q(x) = q(−x)), W is the white noise
on Rd, and ? denotes convolution; a sufficient condition is that the covariance kernel K(·) :=
E[f(0)f(·)] = (q ? q)(·) is in L1(Rd), since then we may define q := F [

√
ρ], where F dentotes the

Fourier transform and ρ = F [K] ∈ C0(Rd) is the spectral density of the field.

For our main results we will further assume that q satisfies the following basic properties:

Assumption 1.4 (Basic assumptions on the Gaussian field).

(a) (Regularity) q is three-times differentiable and each of these derivatives is in L2(Rd).
(b) (Decay of correlations, with parameter β > d) There exists a c > 0 such that, for all x ∈ Rd,

max{|q(x)|, |∇q(x)|} ≤ c|x|−β.
(c) (Symmetry) q is symmetric under negation and permutation of the coordinate axes.

Let us explain some consequences of Assumption 1.4. The regularity condition implies that
K = q ? q ∈ C6(Rd), and hence f is C2-smooth almost surely (see [1, Theorem 1.4.1]). The
decay condition implies that q ∈ L1(Rd) and so also K ∈ L1(Rd), which ensures that the spectral
density is continuous and (f,∇f,∇2f) is non-degenerate (i.e. its evaluation on a finite number
of distinct points is a non-degenerate Gaussian vector, see [6, Lemma A.2]). The symmetry
assumption is crucial in d = 2 (for instance, to prove RSW estimates), but it also simplifies
some aspects of the proof in all dimensions. Finally, as we mentioned above, if d = 2 then
Assumption 1.4 is sufficient to prove that `c = 0 (see [37, Theorem 1.3] and Remark 1.9 therein).

For most of our results we also assume

(POS)

∫
q :=

∫
Rd
q(x) dx > 0.

This is equivalent to the spectral density being positive at the origin, and is a natural assumption
when studying how properties of a Gaussian field change with the level; see e.g. [38, 5].

For some of our results we further assume that f is positively correlated :

(POS’) K(x) = (q ? q)(x) ≥ 0 for all x ∈ Rd.
This is equivalent to the FKG inequality holding for the field (i.e. the field is positively associ-
ated), so that events increasing with respect to the field are positively correlated [41].4 Note that

4Although in [41] this is proven only for finite Gaussian vectors, one can deduce positive associations for all
increasing events considered in this paper via standard approximation arguments, see [43, Lemma A.12].
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(POS’) is stronger than (POS) (the former implies that the spectral density is positive definite,
and so strictly positive at the origin unless K = 0).

Recall that the mean-field lower bound (1.1) is not known for Gaussian percolation. We
introduce it as an assumption: There exists c > 0 such that, for ` > `c sufficiently close to `c,

(MFB) θ(`) := P`[Λ1 ←→∞] ≥ c(`− `c).

While we expect (MFB) to hold in great generality, in this paper we prove it only for finite-range
dependent fields, see Theorem 1.14 below.

For Gaussian percolation we prove the following upper bounds on the one-arm exponent:

Theorem 1.5. Suppose f = q ? W satisfies Assumption 1.4 with parameter β and (POS).

(1) If d ≥ 3 and β > 4d− 4, then η1 ≤ min{d−2+α(3d−1)
1+2α , d− 1} where α = 3d−4

2β−5d+4 .

(2) If d ≥ 2, β > 2d− 1, and (MFB) holds, then η1 ≤ min{max{d3 + α(d−1)
3 , α(2d−1)

3 }, d− 1}
where α = 3d−2

2β−d .

(3) If d = 2, β > 8
3 , and (POS’) holds, then η1 ≤ min{1

3 + 5
6(β−1) ,

1
2}.

To illustrate Theorem 1.5 consider the example of the Bargmann-Fock field with covariance

kernel K(x) = e−|x|
2/2 (see [4] for background and motivation), which is easily seen to satisfy

Assumption 1.4 for every parameter β and also (POS’). According to the Harris criterion (see

[51], or [7] for further discussion), it is expected that Gaussian percolation is in the Bernoulli

percolation universality class if K(x) � c|x|−2/ν where ν = ν(d) is the correlation length
exponent of Bernoulli percolation (see Section 1.2). In particular the Bargmann-Fock field is
expected to belong to this class, and hence possess the same exponents as Bernoulli percolation.

Corollary 1.6. Suppose f = q ?W satisfies Assumption 1.4 for every parameter β and (POS’)
(e.g. the Bargmann-Fock field). Then

η1 ≤

{
1/3 d = 2,

d− 2 d ≥ 3.

Further, if (MFB) holds then η1 ≤ d/3 .

Proof. Take β →∞ in Theorem 1.5. �

One can also consider the example of finite-range dependent fields, i.e. for which

(BOU) q has bounded support,

noting that this supersedes the second condition in Assumption 1.4.

Corollary 1.7. Suppose f = q?W satisfies Assumption 1.4 and (POS)–(BOU). Then η1 ≤ d/3.

Proof. Take β →∞ in the second statement of Theorem 1.5 ((MFB) holds by Theorem 1.14). �

Remark 1.8. Previously for Gaussian percolation it was known only that η1 ≤ 1/2 in d = 2, and
η1 ≤ d−1 in d ≥ 3 (the former is a consequence of RSW estimates [4, 43, 38], and see [12], or the
proof of Theorem 1.5, for the latter); hence the bounds in Theorem 1.5 exceed what was known
in all dimensions for large β. Notably, as for Bernoulli percolation, the bound d/3 is expected
to be tight if d = 6. We emphasise that Corollary 1.7 does not assume positive correlations, and
so applies to a class of models that lack positive associations.

Remark 1.9. As in Remark 1.3, if d = 2 we could replace the liminf in the definition of η1

with limsup, since the proof yields polynomial lower bounds on P`c [Λ1 ←→ ∂ΛR] (see (3.12)).
Indeed the proof gives polynomial lower bounds on the two-arm event ; for example for the
Bargmann-Fock field we prove that, for every ε > 0 there is a c > 0 such that

P`c [{there exists a path in {f = 0} that intersects Λ1 and ∂ΛR}] ≥ cR−2/3−ε.
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1.2. Relations to other critical exponents. The methods used to prove the above results
also give bounds on η1 in terms of other critical exponents. For simplicity we state these only
for Bernoulli percolation, but similar bounds can be proven for Gaussian percolation (which,
under Assumption 1.4 and (POS’)–(BOU), would match those in Theorem 1.10 below).

Let us introduce the relevant exponents. Recall the mean-field lower bound (1.1) on θ(p). It
is expected that θ(p)→ 0 as a power law as p ↓ pc; although this is not known rigorously (except
in high dimension), we will assume that the corresponding exponent exists

β = lim
p↓pc

log θ(p)

log |pc − p|
∈ (0, 1].

Below criticality p < pc, it is known that connection probabilities decay exponentially [34, 2, 18]
and that the limit

1

ξ(p)
:= lim

R→∞

− logPp[0←→ ∂ΛR]

R
∈ (0,∞)

exists [23, Theorem 6.10]. The correlation length ξ(p) is expected to diverge as a power law as
p ↑ pc, and we will again assume that the corresponding exponent exists

ν = lim
p↑pc

− log ξ(p)

log |pc − p|
∈ (0,∞).

Similarly, as p ↑ pc the susceptibility χ(p) :=
∑

v∈Zd Pp[0 ←→ v] < ∞ is expected to diverge as
a power law, and we will assume the existence of

γ = lim
p↑pc

− logχ(p)

log |pc − p|
∈ (0,∞).

Finally we also assume that the critical two-point function decays as a power law with exponent

d− 2 + η := lim
|v|∞→∞

− logPpc [0←→ v]

log |v|∞
∈ (0,∞),

where | · |∞ denotes the sup-norm. It is well known that ν ≥ 2/d [10], γ ≥ 1 [3], and η ≤ 1 [24].

Theorem 1.10. For Bernoulli percolation on Zd, assuming the existence of β, ν, γ and η,

(1.5)
2− γ
ν
≤ η1 ≤ η̄1 ≤ min

{
d− 2

ν
,

2− η
2/β − 1

}
,

where η̄1 is defined as in (1.3) with limsup replacing liminf. Moreover

η1 ≤
d

2/β + 1
and η̄1 ≤ 1− 1

ν
, if d = 2.

Remark 1.11. To our knowledge the bounds in (1.5) are new even for Bernoulli percolation, and

η1 ≥ 2−γ
ν may be of particular interest as a lower bound on η1. The bound η1 ≤ d

2/β+1 is implied

by the hyperscaling inequality in [9], and for η̄1 ≤ 1− 1
ν if d = 2 see [29, 50].

For Bernoulli percolation in sufficiently high dimension it is known that the exponents ν, γ
and η exist and take their mean-field values ν = 1/2 [26], γ = 1 [3], and η = 0 [27]. Hence
Theorem 1.10 gives a new proof of the result of Kozma and Nachmias that η1 = 2 in high
dimension:

Corollary 1.12 ([31]). For Bernoulli percolation on Zd, there exists d0 > 0 such that, if d ≥ d0,

lim
R→∞

− logPpc [0←→ ∂ΛR]

logR
= 2.

Remark 1.13. Our argument is significantly simpler than the one in [31], however it yields only

c1R
−2 ≤ Ppc [0←→ ∂ΛR] ≤ c2R

−2(logR)4

whereas [31] proved that Ppc [0←→ ∂ΛR] � R−2 in the sense of bounded ratios (see Remark 2.7).
Another difference is that we deduce η1 = 2 in any dimension from the bounds ν ≤ 1/2 and
η ≥ 0 (see Remark 2.7, or recall the Fischer inequality γ/ν ≤ 2−η), whereas the argument in [31]
uses as input d > 6 and the two-sided bound η = 0 (or more precisely Ppc [0←→ v] � |v|−d+2

∞ ).
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1.3. Sharpness of the phase transition for smooth Gaussian fields. As well as bounds
on the one-arm exponent, a second aim of this paper is to establish the sharpness of the phase
transition for smooth finite-range dependent Gaussian fields, and in addition verify the mean-
field lower bound (MFB) for such fields. For this we adapt the celebrated argument of Duminil-
Copin, Raoufi and Tassion [16] by exploiting a new ‘Russo-type inequality’ for smooth Gaussian
fields (see Proposition 4.1); we expect this inequality will have further applications.

Theorem 1.14 (Sharpness of the phase transition and mean-field lower bound). Suppose f =
q ?W is C2-smooth and satisfies (BOU). Then for every ` < `c there exist c1, c2 > 0 such that,
for R ≥ 1,

P`[Λ1 ←→ ∂ΛR] ≤ c1e
−c2R.

Moreover, the mean-field lower bound (MFB) holds.

Remark 1.15. For Gaussian percolation the sharpness of the phase transition was only known
so far in two cases: (i) in d = 2 assuming Assumption 1.4 and (POS’) [38], and (ii) for certain
discrete Gaussian fields on Zd satisfying (POS’) [13]. The mean-field lower bound (MFB) was
not known for any smooth Gaussian fields. We emphasise that in Theorem 1.14 we do not
assume (POS’), so this theorem holds for a class of fields lacking positive associations.

Remark 1.16. Clearly if (BOU) holds then f is finite-range dependent, but we do not know
whether every finite-range dependent f can be represented as q ?W for q with bounded support
(although this seems very natural, and it is true if d = 1, see [19]). If we demand in addition
that q be supported on half of the support of K then, rather surprisingly, this is false [19]. On
the other hand, under (POS’) it is true [19, Corollary 3.2]. Moreover, it is known [45] that if f
is finite-range dependent and isotropic (i.e. K is rotationally symmetric) it can be represented
as a countable sum of independent fi = qi ? Wi for qi with uniformly bounded support. Since it
is straightforward to extend our proof of Theorem 1.14 to handle such fields, the conclusions of
Theorem 1.14 (and Corollary 1.7) also hold if f is smooth, finite-range dependent, and isotropic.

1.4. Other models. Other than Bernoulli percolation and level set percolation of Gaussian
fields, the arguments adapt naturally to many other models in the Bernoulli percolation univer-
sality class. For instance, both Poisson-Voronoi and Poisson-Boolean percolation can be treated
in a very similar way (although in the latter case the obtained bounds may depend on the
decay of the radius distribution, and also some of our arguments in d = 2 do not apply since
the model lacks self-duality). Indeed the necessary tools to apply the OSSS inequality in these
settings, analogous to the arguments in Section 4, have already been developed in [15] and [17]
respectively. For brevity we do not discuss details here.

While this work was begin finalised we learned that similar arguments to those we use to prove
η1 ≤ 1/3 if d = 2 were previously used in the general setting of increasing Boolean functions [8];
see Section 2.4 for a statement of the relevant result from [8] and a comparison to what we prove.

1.5. Outline of the paper. In Section 2 we study Bernoulli percolation and give the proof
of Theorems 1.1 and 1.10. In Section 3 we adapt the arguments to the Gaussian setting, and
give the proof of Theorem 1.5 subject to an auxiliary result (Proposition 3.9). In Section 4 we
establish the Russo-type inequality for smooth Gaussian fields mentioned above, and apply it to
prove Proposition 3.9 and Theorem 1.14. The appendix contains a technical result on orthogonal
decompositions of Gaussian fields.

1.6. Acknowledgements. The second author was partially supported by the Australian Re-
search Council (ARC) Discovery Early Career Researcher Award DE200101467. The authors
thank Damien Gayet, Tom Hutchcroft, Ioan Manolescu and Hugo Vanneuville for helpful dis-
cussions, comments on an earlier draft, and for pointing out references [14] (Ioan) and [8, 49]
(Hugo). This work was initiated while the first author was visiting Queen Mary University of
London and we thank the University for its hospitality.
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2. Bernoulli percolation

In this section we focus on Bernoulli percolation, which serves as a template for the extension
of the arguments to dependent percolation models.

Let us begin by introducing notation for connection events. For k,R > 0, define the box
Bk(R) := [−R,R]× [−kR, kR]d−1 ⊂ E , and the ‘box-crossing event’

Crossk(R) :=
{
{−R} × [−kR, kR]d−1 Bk(R)←→ {R} × [−kR, kR]d−1

}
,

where {A E←→ B} := {there exists a path of open edges in E ⊂ E that intersects A and B}.
For R ≥ 0, define the one-arm event

A1(R) := {0←→ ∂ΛR}.
Restricting for a moment to d = 2, we also introduce the (polychromatic) two-arm event A2(R)
that was mentioned in Remark 1.3. Consider the dual lattice (Z2)∗; in this graph an edge is
considered open if and only if the unique edge e ∈ E that it crosses is closed (i.e. not open).
Note that each vertex v ∈ V has four neighbouring dual vertices, and for A ⊂ V let A? be the
union of these neighbours over v ∈ A. For A,B ⊆ V define

{A E⇐⇒ B} = {A E←→ B} ∩ {there exists a dual path in E that intersects A? and B?},
where a dual path in E is a path of dual edges that cross closed edges in E, and abbreviate

{A⇐⇒B} = {A Z2

⇐⇒ B}. For R ≥ 0, define

A2(R) := {0⇐⇒ ∂ΛR} and η2 := lim inf
R→∞

− logPpc [A2(R)]

logR
.

We make the elementary observation that

(2.1) η2 ≥ 2η1

where η1 is defined in (1.3). To see this, note that by the FKG inequality

Pp[A2(R)] ≤ Pp[A1(R)]Pp[{there exists a dual path that intersects 0∗ and Λ?R}].
Since Bernoulli percolation on Z2 is self-dual at pc = 1/2, and by translation invariance,

Ppc [{there exists a dual path that intersects 0∗ and Λ?R}] ≤ 4Ppc [A1(R− 1)].

Hence Ppc [A2(R)] ≤ 4Ppc [A1(R− 1)]2, and (2.1) follows immediately.

Let us return to the general setting of Bernoulli percolation on Zd. The case d ≥ 3 of
Theorem 1.1 is proven by combining the following result with the mean-field lower bound (1.1):

Proposition 2.1. For 0 < p ≤ q < 1 and R ≥ 1,

Pq[A1(R)]− Pp[A1(R)] ≤ max
{ √

2√
q(1− q)

,

√
2√

p(1− p)

}
(q − p)

√
Pq[A1(R)]

∑
v∈ΛR

Pp[0←→ v].

For the case d = 2 of Theorem 1.1 we rely instead on the following inequalities:

Proposition 2.2. Let k ≥ 1. Then there exists c > 0 such that, for p ∈ (0, 1) and R ≥ 1,

d

dp
Pp[Crossk(R)] ≤ cRd/2√

p(1− p)
×

{√
Pp[A2(R)] d = 2,√
Pp[A1(R)] d ≥ 2.

Proposition 2.3. Let d = 2 and k ≥ 1. Then there exists c > 0 such that, for p ∈ (0, 1) and
R ≥ 8,

(2.2)
d

dp
Pp[Crossk(R)] ≥ c

p(1− p)
Pp[Cross1/(8k)(kR)]4

(
1− Pp[Cross8k(R/8)]

)2
Pp[A2(R)]

.

We prove Propositions 2.1–2.3 later in the section; for now we complete the proof of our main
results (Theorems 1.1 and 1.10). First we recall some standard facts:
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Lemma 2.4.

(1) There exists δ > 0 and p′ = p′(R) ≤ pc such that, for R ≥ 1,

Pp′ [Cross5(R)] = δ.

(2) (RSW) Let d = 2 and k > 0. Then there exists δ > 0 such that, for R ≥ 1,

Ppc [Crossk(R)] ∈ (δ, 1− δ).

Proof. For the first statement, a classical bootstrapping argument (see, e.g., [28, Section 5.1])
shows that Ppc [Cross5(R)] > δ, and the result follows by continuity in p. The second statement
amounts to the classical RSW estimates. �

Proof of Theorem 1.1. In the proof c > 0 are constants that depend only on the dimension and
may change from line to line. We begin with the case d ≥ 3. We may assume that Ppc [A1(R)]→ 0
as R→∞ since otherwise η1 = 0. Define q = q(R) > pc such that

Pq[A1(R)] = min{2Ppc [A1(R)], 1},

which exists since p 7→ Pp[A1(R)] is continuous and strictly increasing. Note that q(R)→ pc as
R→∞ since otherwise

lim sup
R→∞

Ppc [A1(R)] ≥ lim sup
R→∞

θ(q(R))/2 > 0.

By the mean-field lower bound (1.1), for sufficiently large R

(2.3) Ppc [A1(R)] = Pq[A1(R)]/2 ≥ θ(q)/2 ≥ c(q − pc).

Now apply Proposition 2.1 to p = pc and q = q(R); this yields

Ppc [A1(R)] = Pq[A1(R)]− Ppc [A1(R)] ≤ c(q − pc)
√
Ppc [A1(R)]

∑
v∈ΛR

Ppc [0←→ v]

for large R. Combining with (2.3), we deduce that

(2.4) Ppc [A1(R)]
∑
v∈ΛR

Ppc [0←→ v] ≥ c

for all R ≥ 1.

We now show that η1 ≤ d/3 follows from (2.4). If η1 = 0 there is nothing to prove, so assume
η1 > 0 and fix η∗ ∈ (0, η1). Then by the definition of η1

(2.5) Ppc [A1(R)] ≤ R−η∗

for large R; in particular, via an integral comparison,

(2.6)
∑
v∈ΛR

Ppc [A1(b|v|∞/2c)]2 ≤ max{Rd−2η∗ , 1}(logR)

for large R. Next observe that {0←→ v} implies the occurrence of

{0←→ Λb|v|∞/2c} and {v ←→ v + Λb|v|∞/2c}

which depend on disjoint subsets of edges. Hence by translation invariance and (2.6)

(2.7)
∑
v∈ΛR

Ppc [0←→ v] ≤
∑
v∈ΛR

Ppc [A1(b|v|∞/2c)]2 ≤ max{Rd−2η∗ , 1}(logR)

for large R, and so

c ≤ Ppc [A1(R)]
∑
v∈ΛR

Ppc [0←→ v] ≤ R−η∗ max{Rd−2η∗ , 1}(logR).

This implies η∗ ≤ d/3, and since η∗ < η1 was arbitrary, we deduce η1 ≤ d/3.
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We now turn to the case d = 2. By Propositions 2.2–2.3 and the RSW estimates (the second
statement of Lemma 2.4), for large R

c

Ppc [A2(R)]
≤ d

dp
Pp[Cross1(R)]

∣∣∣
p=pc

≤ cR
√
Ppc [A2(R)]

which yields, for large R,

(2.8) Ppc [A2(R)] ≥ cR−2/3.

By the discussion after (2.1), this implies

(2.9) Ppc [A1(R)] ≥ cR−1/3

for large R, and hence η1 ≤ 1/3. �

Remark 2.5. One could replace the right-hand side of (2.2) with the (perhaps simpler) expression

c

p(1− p)
Pp[Crossk(R)]

(
1− Pp[Crossk(R)]

)
1
R2

∑R
i,j=0 Ppc [A2(min{i, j})]

.

While this suffices to prove η1 ≤ 1/3, it does not yield the stronger bounds (2.8)–(2.9).

Remark 2.6. In the case d ≥ 3 our argument does not imply Ppc [A1(R)] ≥ cR−d/3. However, as
mentioned in Remark 1.3, one can obtain this by working under a ‘box-crossing’ assumption.

First, by modifying the proof of Proposition 2.3 one can prove that, for every k ≥ 1 there
exists a c > 0 such that, for p ∈ (0, 1) and R ≥ 2,

d

dp
Pp[Crossk(R)] ≥ c

p(1− p)
Pp[Crossk(R)]2

(
1− Pp[Cross2k(R/2)]

)
Pp[A1(R)]

.

Next assume the following box-crossing property: For every k ≥ 1 and δ0 ∈ (0, 1) there are
δ1 ∈ (0, 1) and R0 > 0 such that, for R ≥ R0 and p ≤ pc,

(BOX) Pp[Crossk(R)] < 1− δ0 =⇒ Pp[Cross2k(R/2)] < 1− δ1.

Then by working on the sequence p′ = p′(R) ≤ pc at which Pp′ [Cross5(R)] = δ, guaranteed by the

first statement of Lemma 2.4, and comparing upper and lower bounds on d
dpPp[Cross5(R)]|p=p′ ,

one deduces the result.

Note that (BOX) states roughly that if box-crossings do not occur with high probability for
one aspect ratio, then they do not occur with high probability for other aspect ratios. This is
known in d = 2 by the RSW estimates in Lemma 2.4, and is strongly believed to hold if d < 6 [9].
Although (BOX) seems difficult to verify, it is quite natural to work under this assumption; e.g.
in [9] hyperscaling relations were proven under a version of (BOX), although interestingly they
use this assumption to obtain lower bounds on η1.

Proof of Theorem 1.10. In the proof c > 0 are constants that depend only on the dimension and
may change from line to line, and o(1) denotes a quantity that decays to zero as R→∞.

We begin with the bounds η1 ≤ d/(2/β + 1) and η̄1 ≤ (2− η)/(2/β − 1) which require only a
slight change to the argument used to prove η1 ≤ d/3 above. Recall (2.4) and let q(R)→ pc be
defined as in (2.3). By the definition of the exponent β, one can replace (2.3) with

Ppc [A1(R)] ≥ θ(q)/2 ≥ c(q − pc)β+o(1),

which gives, in place of (2.4),

(2.10) Ppc [A1(R)]
2
β
−1+o(1)

∑
v∈ΛR

Ppc [0←→ v] ≥ c,

for large R. Then using (2.7), for any η∗ ∈ (0, η1) and large R we have

R
−η∗( 2

β
−1)+o(1)

max{Rd−2η∗ , 1}(logR) ≥ c,
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which implies η1 ≤ d/(2/β + 1). On the other hand, by the definition of the exponent η,∑
v∈ΛR

Ppc [0←→ v] = R2−η+o(1),

which by (2.10) implies

Ppc [A1(R)] ≥ R−(2−η)/(2/β−1)+o(1)

and hence η̄1 ≤ (2− η)/(2/β − 1).

To prove the remaining bounds we use the fact that, by a super-multiplicativity argument
(see [23, Section 6.2]), there is a c1 > 0 such that

(2.11) Pp[0←→ v] ≤ e−c1|v|∞/ξ(p)

for all p < pc and v ∈ Zd. We also recall the standard facts [23, Theorem 6.14] that ξ(p) is
continuous, strictly increasing, and ξ(p)→∞ as p ↑ pc.

Let C > 0 be a constant to be fixed later, and for R sufficiently large, let p′ = p′(R) ↑ pc
be such that R = Cξ(p′) log ξ(p′). Since we have the a priori bound Ppc [A1(R)] ≥ cR−(d−1)/2

[24, 48], we can take C > 0 sufficiently large so that, by (2.11) and the union bound,

Pp′ [A1(R)] ≤ cRd−1e−c1C log ξ(p′) ≤ cRd−1R−c1C+o(1) ≤ Ppc [A1(R)]/2

for large R. Then applying Proposition 2.1 to p = p′ and q = pc gives, for large R,

Ppc [A1(R)]/2 ≤ Ppc [A1(R)]− Pp′ [A1(R)] ≤ c(pc − p′)
√
Ppc [A1(R)]

∑
v∈ΛR

Pp′ [0←→ v]

or, equivalently,

(2.12) Ppc [A1(R)] ≤ c(pc − p′)2
∑
v∈ΛR

Pp′ [0←→ v].

Since
∑

v∈ΛR
Pp′ [0←→ v] ≤ χ(p′), and by the definition of the exponents ν and γ, this implies

Ppc [A1(R)] ≤ c(pc − p′)2χ(p′) ≤ cξ(p′)−2/ν+o(1)ξ(p′)γ/ν+o(1) = R−(2−γ)/ν+o(1)

for large R, which implies η1 ≥ (2− γ)/ν.

Finally, let δ > 0 be such that Ppc [Cross5(R)] ≥ δ for large R (possible by the first statement
of Lemma 2.4), and again let p′ = p′(R) ↑ pc be such that R = Cξ(p′) log ξ(p′). Then

Pp′ [Cross5(R)] ≤ δ/2
for large R, and we deduce that there exists p′′ ∈ (p′, pc) such that

d

dp
Pp[Cross5(R)]

∣∣∣
p=p′′

≥ δ/2

pc − p′
.

On the other hand, by Proposition 2.2 and monotonicity in p,

d

dp
Pp[Cross5(R)]

∣∣∣
p=p′′

≤ cRd/2
√

Ppc [A1(R)]

and hence
(pc − p′)2Rd Ppc [A1(R)] ≥ c

for large R. By the definition of the exponent ν, this implies

ξ(p′)−2/ν+o(1)RdPpc [A1(R)] = Rd−2/ν+o(1)Ppc [A1(R)] ≥ c
for large R, which implies that η̄1 ≤ d− 2/ν. The bound η̄1 ≤ 1− 1/ν in d = 2 is similar, except
we use two-arm events as in the proof of Theorem 1.1. �

Remark 2.7. As mentioned in Remark 1.13, by combining the high-dimensional bounds [26, 27]

ξ(p) ≤ c(pc − p)−1/2 and Ppc [0←→ v] ≤ c|v|−d+2
∞

with (2.4) and (2.12), one arrives at a quantitative version of Corollary 1.12, namely the bounds

c1R
−2 ≤ Ppc [A1(R)] ≤ c2R

−2(logR)4.
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2.1. Exploration algorithms. To prove Propositions 2.1–2.3 we make use of exploration al-
gorithms, which we introduce in a general setting.

Definition 2.8 (Randomised algorithms). Let X = (Xi) be a countable set of random variables
taking values in arbitrary probability spaces. A (randomised) algorithm A on X is a random
adapted procedure that sequentially reveals a subset of the coordinates Xi and returns a value.
We say that A determines an event A if it returns the value 1A almost surely. The revealment
Rev(i) of a given coordinate Xi is the probability that A reveals this coordinate.

For Bernoulli percolation we consider algorithms on X = (Xe)e∈E for Xe = 1e open. A useful
property of the events A1(R) and Crossk(R) is the existence of determining algorithms whose
revealments are controlled by connection probabilities. Recall the box Bk(R) ⊂ E , and define
its right half B+

k (R) := [0, R] × [−kR, kR]d−1 ⊂ E . If d = 2, define also its top-right quarter

B†k(R) := [0, R]× [0, kR] ⊂ E .

Lemma 2.9. For every p ∈ (0, 1) and R ≥ 1 there is an algorithm determining A1(R) such
that, under Pp, ∑

e∈E
Rev(e) ≤ 2

∑
v∈ΛR

Pp[0←→ v].

Moreover for every k ≥ 1, p ∈ (0, 1) and R ≥ 1 there are algorithms determining Crossk(R)
such that, under Pp,

max
e∈B+

k (R)
Rev(e) ≤ 2Pp[A1(R)],

and, if d = 2,

max
e∈B†k(R)

Rev(e) ≤ 2Pp[A2(R)].

We only give a sketch of proof; for more details see the proof of Lemma 3.6 which gives
analogous statements in the Gaussian setting.

Proof (sketch). Recall the definition of {A E←→ B}, and for each edge e ∈ E let {e E←→ B} be

the union of {v E←→ B} over the endpoints v of e, and {e E⇐⇒ B} similarly.

For the first statement, let W be the random subset of B1(R) defined by

W :=
{
e ∈ B1(R)

∣∣∣{0
B1(R)←→ e

}}
.

Then consider the algorithm that sequentially reveals W starting from the origin. This deter-
mines A1(R) and satisfies∑

e∈E
Rev(e) =

∑
e∈B1(R)

Pp
[{

0
B1(R)←→ e

}]
≤ 2

∑
v∈ΛR

Pp[{0←→ v}].

For the second statement define instead

W :=
{
e ∈ Bk(R)

∣∣∣{e Bk(R)←→ {−R} × [−kR, kR]d−1
}}
.

Then consider the algorithm that sequentially reveals W starting from the vertical hyperplane
{−R} × [−kR, kR]d−1. This determines Crossk(R) since any crossing of Bk(R) intersects the
hyperplane {−R} × [−kR, kR]d−1, and the revealments for edges in B+

k (R) are bounded by

max
e∈B+

k (R)
Pp
[{
e
Bk(R)←→ {−R} × [−kR, kR]d−1

}]
≤ 2Pp[A1(R)].

For the third statement define instead

W :=
{
e ∈ Bk(R)

∣∣∣ {e Bk(R)⇐⇒
(
{−R} × [−kR, kR]

)
∪
(
[−R,R]× {−kR}

)}}
and consider the algorithm that sequentially reveals W starting from the union of the vertical
and horizontal lines {−R}× [−kR, kR] and [−R,R]×{−kR}. This determines Crossk(R), since
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if we reveal all interfaces that intersect these vertical and horizontal lines then we also determine
Crossk(R). Moreover the revealments for edges in B†k(R) are bounded by

max
e∈B†k(R)

Pp
[{
e
Bk(R)⇐⇒

(
{−R} × [−kR, kR]

)
∪
(
[−R,R]× {−kR}

)}]
≤ 2Pp[A2(R)]. �

2.2. Proof of Propositions 2.1 and 2.2. We prove a general bound valid for arbitrary events,
which extends a result from [40] (see also [46, Appendix B] and [50] for similar arguments):

Proposition 2.10. Let p, q ∈ (0, 1), let A be an event depending on a finite number of edges,
let A be an algorithm determining A, and let E ′ ⊆ E be a subset of edges. Then

(2.13) |PE ′p;q[A]− Pp[A]| ≤ max
{ 1√

p(1− p)
,

1√
q(1− q)

}
|p− q|

√
max{Pp[A],PE ′p;q[A]}Ep|WE ′ |

where PE ′p;q denotes the modification of Pp in which the parameter on E ′ is set to q (remaining at
p on other edges), and WE ′ is the set of edges in E ′ that are revealed by A. In particular,

(2.14)
∣∣∣∑
e∈E ′

∂

∂pe
Pp[A]

∣∣∣ ≤ 1√
p(1− p)

√
Pp[A]Ep|WE ′ |,

where ∂
∂pe

denotes the derivative with respect to the parameter on e.

Our proof of Proposition 2.10 is different to previous approaches in the literature (see Re-
mark 2.14), and relies on properties of the relative entropy. For P and Q probability measures
on a common measurable space, the relative entropy (or Kullback-Leibler divergence) from P to
Q is defined as

DKL(P ||Q) :=

∫
log
(dP
dQ

)
dP

if P is absolutely continuous with respect to Q, and DKL(P ||Q) :=∞ otherwise; DKL(P ||Q) is
non-negative by Jensen’s inequality. If X and Y are random variables taking values in a common
measurable space, with respective laws P and Q, we also write DKL(X||Y ) for DKL(P ||Q). We
shall need two basic properties of the relative entropy (see [32, Theorem 2.2 and Corollary 3.2]):

(1) (Chain rule) Let X = (X1, X2) and Y = (Y1, Y2) be random variables taking values in a
common product measurable space. Then

(2.15) DKL(X||Y ) = DKL(X1||Y1) + Ex∼X1

[
DKL((X2|X1 = x)||(Y2|Y1 = x))

]
.

(2) (Contraction) Let X and Y be random variables taking values in a common measurable
space and let F be a measurable map from that space. Then

(2.16) DKL(X||Y ) ≥ DKL(F (X)||F (Y )).

We first state a simple lemma on the relative entropy of stopped sequences of i.i.d. random
variables. A stopping time for a real-valued sequence X = (Xi)i≥1 is a positive integer τ = τ(X)
such that {τ ≥ n+ 1} is determined by (Xi)i≤n. We define the corresponding stopped sequence
Xτ = (Xτ

i )i≥1 as Xτ
i = Xi for i ≤ τ , and Xτ

i = † for i > τ , where † is an arbitrary symbol.

Lemma 2.11. Let X = (Xi)
n
i≥1 and Y = (Yi)

n
i≥1 be finite real-valued sequences of i.i.d. random

variables with respective univariate laws µ and ν, let τ ≤ n be a stopping time, and let Xτ and
Y τ be the corresponding stopped sequences. Then

DKL

(
Xτ
∥∥Y τ

)
= E[τ(X)]DKL(µ‖ν).

Proof. Define Xk∧τ = (Xτ
i )i≤k and analogously for Y . By the chain rule (2.15), for 1 ≤ k ≤ n−1,

DKL

(
X(k+1)∧τ∥∥Y (k+1)∧τ)

= DKL

(
Xk∧τ∥∥Y k∧τ)+ Ex∼(Xτ

i )i≤k

[
DKL

(
Xτ
k+1

∣∣(Xτ
i )i≤k=x

∥∥Y τ
k+1

∣∣(Y τ
i )i≤k=x

)]
= DKL

(
Xk∧τ∥∥Y k∧τ)+ Ex∼(Xτ

i )i≤k

[
1τ(X)≥k+1DKL

(
Xk+1

∣∣(Xτ
i )i≤k=x

∥∥Yk+1

∣∣(Y τ
i )i≤k=x

)]
= DKL

(
Xk∧τ∥∥Y k∧τ)+ P[τ(X) ≥ k + 1]DKL(µ‖ν)
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where in the last step we used that τ is a stopping time. Hence, by induction,

DKL

(
Xτ
∥∥Y τ

)
=

∑
1≤k≤n−1

P[τ(X) ≥ k + 1]DKL(µ‖ν) = E[τ(X)]DKL(µ‖ν). �

We also need a variant of Pinsker’s inequality:

Lemma 2.12. Let P and Q be probability measures on a common measurable space and let A
be an event. Then

|P (A)−Q(A)| ≤
√

2 max{P (A), Q(A)}DKL(P‖Q).

Proof. We use a standard reduction to the binary case. Let Ber(x) and Ber(y) be Bernoulli
random variables with respective parameters x := P (A) and y := Q(A). By the contraction
property (2.16) DKL(P‖Q) ≥ DKL(Ber(x)‖Ber(y)), so it suffices to prove that

(2.17) (x− y)2 ≤ 2 max{x, y}DKL(Ber(x)‖Ber(y)).

If x ∈ {0, 1} or y ∈ {0, 1} then (2.17) is trivial since either the right-hand side is infinite (if
x 6= y) or both sides are zero (if x = y). On the other hand, if x, y ∈ (0, 1) then

DKL(Ber(x)‖Ber(y)) := x log
x

y
+ (1− x) log

1− x
1− y

=

∫ x

y

x− s
s(1− s)

ds

≥ 1

max{x, y}

∫ x

y
(x− s)ds =

1

2 max{x, y}
(x− y)2

where we used that sups∈[a,b] s(1− s) ≤ max{a, b} for 0 ≤ a ≤ b ≤ 1. �

Remark 2.13. In the proof we could replace max{x, y} with min{max{x, y}, 1/4}, which recovers

the classical Pinsker’s inequality dTV (P,Q) := supA |P (A)−Q(A)| ≤
√
DKL(P‖Q)/2.

Proof of Proposition 2.10. Recall that WE ′ denotes the edges in E ′ that are revealed by the
algorithm, and let W = (Wi)i≤|WE′ | denote the configuration on WE ′ listed in the order of

revealment. Moreover let W ′ denote the configuration on edges in E \ E ′

First suppose that the algorithm A depends only on the configuration (i.e. there is no auxiliary
randomness). Then the event A is measurable with respect to (W,W ′), and so by Lemma 2.12

|PE ′p;q[A]− Pp[A]| ≤
√

2 max{Pp[A],PE ′p;q[A]}DKL((X,Z)||(Y,Z))]

where (X,Z) (resp. (Y, Z)) is a random variable with the law of (W,W ′) under Pp (resp. PE ′p;q).
Moreover, conditionally on W ′, W has the law, under Pp (resp. PE ′p;q), of a sequence of i.i.d.
Bernoulli random variables with parameter p (resp. q) stopped at the stopping time |WE ′ |.
Hence by the chain rule for the Kullback-Liebler divergence and Lemma 2.11,

DKL((X,Z)||(Y,Z)) = E
[
DKL((X|FZ)||(Y |FZ))

]
= Ep|WE ′ |DKL(Ber(p)‖Ber(q))

where FZ denotes the σ-algebra generated by Z. Combining we have

(2.18) |PE ′p;q[A]− Pp[A]| ≤
√

2 max{Pp[A],PE ′p;q[A]}Ep|WE ′ |DKL(Ber(p)‖Ber(q)).

Finally since

DKL(Ber(p)‖Ber(q)) := p log
p

q
+ (1− p) log

1− p
1− q

=

∫ p

q

p− s
s(1− s)

ds

≤ max
{ 1

p(1− p)
,

1

q(1− q)

}∫ p

q
(p− s)ds = max

{ 1

2p(1− p)
,

1

2q(1− q)

}
(p− q)2

the proof is complete.

The general case follows by averaging over any auxiliary randomness in the algorithm, since
by Jensen’s inequality E[

√
E[|WE ′ |G]] ≤ E[

√
|WE ′ |] for any sub-σ-algebra G. �
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Remark 2.14. For comparison we sketch an alternative approach which is closer to that appearing
in previous works (e.g. [40]); this leads to the bound

(2.19)
∣∣∣∑
e∈E ′

∂

∂pe
Pp[A]

∣∣∣ ≤ 1

p(1− p)

√
Pp[A]Ep|WE ′ |

which is comparable to (2.14), although we believe it to be less general than the non-differential
statement (2.13) (in particular, it does not seem straightforward to obtain (2.4) from (2.19)).

Consider Russo’s formula∣∣∣∑
e∈E ′

∂

∂pe
Pp[A]

∣∣∣ =
1

p(1− p)

∣∣∣∑
e∈E ′

Covp(1A,1e open)
∣∣∣(2.20)

and decompose the sum as∑
e∈E ′

Covp
(
1A1Rev(e),1e open

)
+
∑
e∈E ′

Covp
(
1A1Rev(e)c ,1e open

)
where Rev(e) denotes the event that e is revealed by the algorithm. One can check that
1A1Rev(e)c is independent of 1e open and so the second sum vanishes. Hence (2.20) is at most

1

p(1− p)

∣∣∣∑
e∈E ′

Covp
(
1A1Rev(e),1e open

) ∣∣∣ ≤ 1

p(1− p)

√
Pp[A]Ep

[(∑
e∈E ′

1Rev(e)(1e open − p)
)2]

where we used the the Cauchy-Schwartz inequality. For edges e and f introduce the event

Rev(e, f) := Rev(e) ∩ Rev(f) ∩ {e is revealed before f}.

Again one checks that, for e 6= f , 1Rev(e,f)(1e open − p) is independent of 1f open. Hence

Ep
[(∑

e∈E ′
1Rev(e)(1e open − p)

)2]
=
∑
e∈E ′

Ep
[
1Rev(e)(1e open − p)2

]
≤
∑
e∈E ′

Ep[1Rev(e)] = Ep|WE ′ |,

since off-diagonal terms are zero by independence, and we used that (1e open − p)2 ≤ 1. Com-
bining the above gives (2.19).

We can now complete the proof of Propositions 2.1 and 2.2:

Proof of Proposition 2.1. This follows directly from (2.13) (with E ′ = E) by considering the
algorithm in Lemma 2.9 that determines A1(R) such that

Ep|WE ′ | =
∑
e∈E

Rev(e) ≤ 2
∑
v∈ΛR

Pp[0←→ v]. �

Proof of Proposition 2.2. For d ≥ 2, recall the box Bk(R) and its right half B+
k (R) := [0, R] ×

[−kR, kR]d−1. Consider the algorithm in Lemma 2.9 that determines Crossk(R) such that∑
e∈B+

k (R)

Rev(e) ≤ cRd max
e∈B+

k (R)
Rev(e) ≤ 2cRd Pp[A1(R)].

for c = c(k) > 0. By reflective symmetry in the vertical axis,

d

dp
Pp[Crossk(R)] =

∑
e∈Bk(R)

∂

∂pe
Pp[Crossk(R)] ≤ 2

∑
e∈B+

k (R)

∂

∂pe
Pp[Crossk(R)]

and hence, applying (2.14) (with E ′ = B+
k (R))

d

dp
Pp[Crossk(R)] ≤ 1√

p(1− p)

√
Ep|WE ′ | ≤

√
2cRd/2√
p(1− p)

√
Pp[A1(R)].
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For d = 2, recall the top-right quarter B†k(R) := [0, R] × [0, kR] of the box Bk(R). Consider
the algorithm in Lemma 2.9 that determines Crossk(R) such that∑

e∈B†k(R)

Rev(e) ≤ cR2 max
e∈B†k(R)

Rev(e) ≤ 2cR2 Pp[A2(R)]

for c = c(k) > 0. Again by reflective symmetry (this time in both axes)

d

dp
Pp[Crossk(R)] =

∑
e∈Bk(R)

∂

∂pe
Pp[Crossk(R)] ≤ 4

∑
e∈B†k(R)

∂

∂pe
Pp[Crossk(R)],

and the result follows from (2.14) (with E ′ = B†k(R)) as in the previous case. �

2.3. Proof of Proposition 2.3. We begin by introducing the OSSS inequality. Let X =
(Xi)

n
i=1 be a finite sequence of independent random variables taking values in arbitrary proba-

bility spaces, and let A be an event. Then the resampling influence of Xi on A is

(2.21) Infl(i) := P[1X∈A 6= 1X(i)∈A]

where X(i) denotes X with the coordinate Xi resampled.

Theorem 2.15 (OSSS inequality [39]). For every algorithm A determining A,

Var(1A) ≤ 1

2

n∑
i=1

Rev(i)Infl(i)

where Rev(i) is the revealment of Xi under A.

Returning to the setting of Bernoulli percolation, combining the OSSS inequality with Russo’s
formula yields the following:

Proposition 2.16. Let p ∈ (0, 1), let A be an increasing event depending on a finite number of
edges, let A be an algorithm determining A, and let E ′ ⊆ E be a subset of edges. Then∑

e∈E ′

∂

∂pe
Pp[A] ≥ 4

p(1− p)
Varp

[
Pp[A | FE ′ ]

]
maxe∈E ′ Rev(e)

,

where FE ′ is the σ-algebra generated by the edges in E ′, and the revealements Rev(e) are under Pp.

Remark 2.17. If p = 1/2, the quantity Varp[Pp[A|FE ′ ]] has an interpretation as the square-sum
of the Fourier coefficients of 1A supported on non-empty subsets of E ′ (see, e.g., [21]).

Proof. Let X0 denote the vector of configurations on edges e /∈ E ′, and (Xe)e∈E ′ be the con-
figuration on the remaining edges. Then by the OSSS inequality (Theorem 2.15) applied to
X = (X0, (Xe)e∈E ′), and bounding the revealment of X0 by 1,

Varp(1A) ≤ 1

2

(
Infl(0) +

∑
e∈E ′

Rev(e)Infl(e)
)

where Infl(0) and Infl(e) are defined as in (2.21) under Pp. Next observe that

1

2
Infl(0) =

1

2
Ep
[
Pp[the outcome of A changes when the edges e /∈ E ′ are resampled | FE ′ ]

]
= Ep

[
Pp[A | FE ′ ](1− Pp[A | FE ′ ])

]
= Ep

[
Varp[1A | FE ′ ]

]
,

and hence, by the law of total variance,

Varp(1A)− Infl(0)/2 = Varp(1A)− Ep
[
Varp[1A | FE ′ ]

]
= Varp

[
Pp[A | FE ′ ]

]
.

This yields the following extension of the OSSS inequality

(2.22) Varp
[
Pp[A | FE ′ ]

]
≤ 1

2

∑
e∈E ′

Rev(e)Infl(e) ≤ maxe∈E ′ Rev(e)

2

∑
e∈E ′

Infl(e).
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We deduce the result by combining with Russo’s formula for increasing events, namely∑
e∈E ′

∂

∂pe
Pp[A] =

2

p(1− p)
∑
e∈E ′

Infl(e)

(which coincides with (2.20) since Covp(1A,1e open) = 2Infl(e) for increasing A). �

Proof of Proposition 2.3. Recall the top-right quarter B†k(R) and set E ′ = B†k(R). We claim

(2.23) Varp
[
Pp[Crossk(R) | FE ′ ]] ≥ Pp[Cross1/(8k)(kR)]4(1− Pp[Cross8k(R/8)])2.

Assuming (2.23), the statement follows by applying Proposition 2.16 to the algorithm in Lemma 2.9

that determines Crossk(R) whose revealments on B†k(R) are bounded by 2Pp[A2(R)].

To prove (2.23), remark first that, for any event A and sub-σ-algebra G,

Var[P[A|G]] = E[(P[A|G]− P[A])2] ≥ sup
A′∈G

E[(P[A|G]− P[A])2 1A′ ](2.24)

≥ sup
A′∈G

P[A′](P[A|A′]− P[A])2

where the second inequality is Jensen’s. Hence it is enough to construct an event A′, measur-
able with respect to the configuration on the top-right quarter, such that Crossk(R) becomes
substantially more likely if A′ occurs (see Figure 1 for an illustration).

Define

A′ :=
{
{R/4} × [R/4, R/2]

[R/4,R]×[R/4,R/2]←→ {R} × [R/4, R/2]
}

∩
{

[R/4, R/2]× {R/4} [R/4,R/2]×[R/4,kR]←→ [R/4, R/2]× {kR}
}
,

which is measurable with respect to FE ′ . By the FKG inequality and symmetry (and an obvious
event inclusion), Pp[A′] ≥ Pp[Cross1/(8k)(kR)]2. Define also the events

B1 :=
{
{−R} × [R/2, 3R/4]

[−R,R/2]×[R/2,3R/4]←→ {R/2} × [R/2, 3R/4]
}

B2 :=
{
{3R/4} × [−kR, kR]

[3R/4,R]×[−kR,kR]←→ {R} × [−kR, kR]
}

which are defined on disjoint domains and are translated copies of, respectively, Cross1/6(3R/2)
and Cross8k(R/8). Finally, define

C :=
{
{−R} × [−kR, kR]

Bk(R)←→
(
{R/2} × [R/2, kR]

)
∪
(
[R/2, R]× {R/2}

)
∪
(
{R} × [−kR,R/2]

)}
and observe (i) Crossk(R) ⊆ C, (ii) on A′, Crossk(R) = C, and (iii) B1 ∩ Bc

2 ⊆ C \ Crossk(R).
Hence

Pp[Crossk(R)|A′]− Pp[Crossk(R)] = Pp[C|A′]− Pp[Crossk(R)] ≥ Pp[C]− Pp[Crossk(R)]

= Pp[C \ Crossk(R)] ≥ Pp[B1 ∩Bc
2] = Pp[B1](1− Pp[B2])

≥ Pp[Cross1/(8k)(kR)]
(
1− Pp[Cross8k(R/8)]

)
,

where the second step is by the FKG inequality, the penultimate step uses disjoint domains, and
the final step is an obvious event inclusion. Applying (2.24) (with A = Crossk(R) and G = FE ′)
gives (2.23). �

2.4. A general bound for revealments of increasing events. Combining Propositions 2.10
and 2.16 yields a general lower bound on the revealments of increasing events:

Proposition 2.18. In the setting of Proposition 2.16 (in particular the event A is increasing),

max
e∈E ′

Rev(e) ≥
(
4Varp

[
Pp[A | FE ′ ]

])2/3
(p(1− p)Pp[A]|E ′|)1/3

.
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Figure 1. An illustration of the proof of (2.23). The first panel shows the
event A′. The second illustrates how, on A′, the event C is equivalent to
Crossk(R). The third shows how the crossing given by B1, combined with the
dual crossing given by Bc

2, realises C but not Crossk(R).

Proof. By (2.14) and Proposition 2.16 we have

4

p(1− p)
Varp

[
Pp[A | FE ′ ]

]
maxe∈E ′ Rev(e)

≤
∑
e∈E ′

∂

∂pe
Pp[A]

≤ 1√
p(1− p)

√
Pp[A]Ep|WE ′ | ≤

1√
p(1− p)

√
Pp[A]|E ′|max

e∈E ′
Rev(e)

and rearranging gives the result. �

Proposition 2.18 generalises a result from [8] which considered the case p = 1/2 and E ′ is the
set of edges on which A depends; denoting by n the cardinality of this set of edges, this gives

(2.25) max
e

Rev(e) ≥
(
8Var1/2[1A]

)2/3
(P1/2[A]n)1/3

which is comparable to [8, Theorem 2 (part 2)], although (2.25) has a stronger constant.

3. Level set percolation of Gaussian fields

We now establish our main results in the case of Gaussian percolation; the proof will closely
follow the approach for Bernoulli percolation in Section 2. For k,R > 0, recall the box Bk(R) :=
[−R,R]× [−kR, kR]d−1, which we now view as a subset of Rd. Then define

Crossk(R) :=
{
{−R} × [−kR, kR]d−1 Bk(R)←→ {R} × [kR, kR]d−1

}
where

{A E←→ B} := {there exists a path in {f ≥ 0} ∩ E that intersects A and B}.
For 0 ≤ r ≤ R define

A1(r,R) := {Λr ←→ ∂ΛR} and A2(r,R) := {Λr⇐⇒ ∂ΛR}
where

{A E⇐⇒ B} = {A E←→ B} ∩ {there exists a path in {f ≤ 0} ∩ E that intersects A and B},

and {A⇐⇒B} = {A Rd⇐⇒ B}. By continuity of f , if d = 2 then A2(r,R) could equivalently be
defined as

A2(r,R) = {there exists a path in {f = 0} that intersects Λr and ∂ΛR}.
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We make the elementary observation that P`c [A2(r,R)] ≤ P`c [A1(r,R)], and moreover if d = 2
and under (POS’) (so the FKG inequality is available; c.f. (2.1)) then

(3.1) P`c [A2(r,R)] ≤ P`c [A1(r,R)]2.

We now state the analogues of Propositions 2.1–2.3, which concern Gaussian fields f = q ? W
with finite-range dependence. Recall the Dini derivatives, defined for f : R→ R as

d+

dx
f(x) = lim sup

ε↓0

f(x+ ε)− f(x)

ε
and

d−

dx
f(x) = lim inf

ε↓0

f(x+ ε)− f(x)

ε
.

Proposition 3.1. Suppose f = q ? W satisfies Assumption 1.4 and (POS)–(BOU), and let
r > 0 be such that q is supported on Λr. Then for ` ≤ `′ and R ≥ r ≥ 1,

P`′ [A1(1, R)]− P`[A1(1, R)] ≤ rd/2(`′ − `)∫
q

√
P`′ [A1(1, R)]

∑
v∈rZd∩ΛR+2r

P`[Λ1 ←→ v + Λ6r].

Proposition 3.2. Suppose f = q ? W satisfies Assumption 1.4 and (POS)–(BOU), and let
r > 0 be such that q is supported on Λr. Then for k ≥ 1 there exists c = c(k) > 0 such that, for
` ∈ R and R ≥ 4r > 0,

d+

d`
P`[Crossk(R)] ≤ cRd/2∫

q

{√
P`[A2(2r,R− 2r)] d = 2,√
P`[A1(2r,R− 2r)] d ≥ 2.

Proposition 3.3. Suppose f = q ? W satisfies Assumption 1.4 and (POS)–(BOU), and let
r > 0 be such that q is supported on Λr. Then for k ≥ 1 there exists c = c(k) > 0 such that, for
` ∈ R and R ≥ 8r > 0,

(3.2)
d−

d`
P`[Crossk(R)] ≥ c

‖q‖2
P`[Crossk(R)]

(
1− P`[Crossk(R)]

)
r
R

∑R/r
i=2 P`[A1(2r, ir)]

,

and, if d = 2 and (POS’) holds,

(3.3)
d−

d`
P`[Crossk(R)] ≥ c

‖q‖2
P`[Cross1/(8k)(kR)]4

(
1− P`[Cross8k(R/8)]

)2
P`[A2(2r,R− 2r)]

.

We prove Propositions 3.1–3.3 later in the section; for now we establish our main result
Theorems 1.5. For this we need two auxiliary results; these are rather standard, but we give
details on their proof at the end of the section. The first is the analogue of Lemma 2.4:

Lemma 3.4. Suppose f = q ? W satisfies Assumption 1.4 with parameter β > d.

(1) There exists δ > 0 and `′ = `′(R) ≤ `c such that, for R ≥ 1,

P`′ [Cross5(R)] = δ.

(2) (RSW) Let d = 2 and k > 0 and suppose that (POS’) holds. Then there exists δ > 0
such that, for R ≥ 1,

P`c [Crossk(R)] ∈ (δ, 1− δ).

The second allows us to compare a Gaussian field with an approximation that satisfies (BOU).
Fix a smooth symmetric cutoff function ϕ : R → [0, 1] such that ϕ(x) = 1 for ‖x‖∞ ≤ 1/2,
ϕ(x) = 0 for ‖x‖∞ ≥ 1. For r > 0 define

(3.4) fr := qr ? W

where qr(x) := q(x)ϕ(|x|/r). Note that qr is supported on Λr, and also, since q ∈ L1(Rd) ∩
L2(Rd), as r →∞,

(3.5) ‖qr‖2 → ‖q‖2 and

∫
qr →

∫
q.

Remark that if either Assumption 1.4 or (POS) holds for f then it holds for fr (on the other
hand, deducing this for (POS’) seems difficult but we do not need it). In particular, as discussed
in Section 1.1, if d = 2 and Assumption 1.4 holds for f then `c(f) = `c(fr) = 0.
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The following lemma, essentially taken from [38], allows us to compare f and fr:

Lemma 3.5. Suppose f = q ? W satisfies Assumption 1.4 with parameter β > d and (POS).
Then there exist c1, c2 > 0 such that, for r,R ≥ 2, increasing event A measurable with respect to
f |B(R), and ` ∈ R,

|P`[f ∈ A]− P`[fr ∈ A]| ≤ c1

(
Rd/2(logR)r−(β−d/2) + e−c2(logR)2

)
.

The same conclusion holds if A is the intersection of one increasing and one decreasing event
which are both measurable with respect to f |B(R).

We are now ready to prove Theorem 1.5:

Proof of Theorem 1.5. In the proof c > 0 are constants that depend only on f (and the choice
of the cutoff function ϕ in (3.4)) and may change from line to line. The bound η1 ≤ d− 1, and
also η1 ≤ 1/2 if d = 2 and (POS’) holds, are rather classical; in fact they are true for any β > d.
For the former, combining P`c [Cross5(R)] ≥ δ (the first statement of Lemma 3.4) with the union

bound applied along the hyperplane {0} × [−kR, kR] gives P`c [A1(1, R)] ≥ cR−(d−1). For the
latter, by combining the RSW estimates (the second statement of Lemma 3.4) with Lemma 3.5
one can deduce (see [4, 38] for similar arguments)

P`c
[
{−R} × [−R,R]

B1(R)⇐⇒ {R} × [−R,R]
]
≥ c
(
1−R1−(β−1)(logR)

)
≥ c/2

for sufficiently largeR. By the union bound applied along {0}×[−R,R] this implies P`c [A2(1, R)] ≥
cR−1, and given (3.1) we see that P`c [A1(1, R)] ≥ cR−1/2.

We now prove the remaining bounds, beginning with the first statement. Fix 1 > α > d/2
β−d/2

and η1 > η∗ > 0 (if η1 = 0 there is nothing to prove). Then by monotonicity in `, the union
bound, and the definition of η1,

P`[A1(r,R)] ≤ P`c [A1(r,R)] ≤ crd−1P`c [A1(1, R− r)] ≤ rd−1R−η
∗

for all ` ≤ `c, R sufficiently large, and r ∈ [1, R/2]. Set r = Rα. Then by an integral comparison,

r

R

R/r∑
i=2

P`[A1(2r, ir)] ≤ cr−η∗+(d−1) × r

R

R/r∑
i=2

i−η
∗

≤ cr−η∗+(d−1)(R/r)−min{η∗,1}(log(R/r))

≤ c(logR)
(
Rα(d−1−η∗)−(1−α) min{η∗,1})

for ` ≤ `c and large R. Consider the field fr defined in (3.4). By Lemma 3.5,

P`[fr ∈ A1(r′, R)] ≤ P`[A1(r′, R)] + cRd/2−α(β−d/2)(logR) + ce−c(logR)2

for ` ≤ `c and 2 ≤ r′ ≤ R, and hence

r

R

R/r∑
i=2

P`[fr ∈ A1(2r, ir)] ≤ c(logR)
(
Rα(d−1−η∗)−(1−α) min{η∗,1} +Rd/2−α(β−d/2)

)
for ` ≤ `c and large R. Moreover, by Lemma 3.4 there are δ > 0 and `′ = `′(R) ≤ `c such that
P`′ [Cross5(R)] = δ. Hence, again by Lemma 3.5,

P`′ [fr ∈ Cross5(R)]
(
1− P`′ [fr ∈ Cross5(R)]

)
≥ δ(1− δ)− cRd/2−α(β−d/2)(logR) ≥ δ(1− δ)/2

for large R, where we used that α > d/2
β−d/2 .

We now apply Propositions 3.2 and 3.3 to the field fr at the sequence of levels `′(R) ≤ `c.
First, by (3.2) (recalling (3.5))

d

d`
P`[fr ∈ Cross5(R)]

∣∣∣
`=`′
≥ cδ(1− δ)
‖qr‖2

( r
R

R/r∑
i=2

P`′ [fr ∈ A1(2r, ir)]
)−1

(3.6)

≥ c(logR)−1
(
Rα(d−1−η∗)−(1−α) min{η∗,1} +Rd/2−α(β−d/2)

)−1
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for large R. Similarly, by Proposition 3.1,

d

d`
P`[fr ∈ Cross5(R)]

∣∣∣
`=`′
≤ cRd/2

(
Pl′ [fr ∈ A1(2r,R)]

)1/2
(3.7)

≤ cRd/2
(
R−η

∗+α(d−1) +Rd/2−α(β−d/2)(logR)
)1/2

≤ c
√

logR
(
Rd/2−η

∗/2+α(d−1)/2 +R3d/4−α(β−d/2)/2
)

for large R, where we used that
√
a+ b ≤

√
a+
√
b for a, b > 0. Comparing (3.6) and (3.7) and

expanding the brackets we deduce that at least one of the exponents

E1 :=
(
3d/4− α(β − d/2)/2

)
+
(
d/2− α(β − d/2)

)
E2 :=

(
d/2− η∗/2 + α(d− 1)/2

)
+
(
d/2− α(β − d/2)

)
E3 :=

(
d/2− η∗/2 + α(d− 1)/2

)
+
(
α(d− 1− η∗)− (1− α) min{η∗, 1}

)
E4 :=

(
3d/4− α(β − d/2)/2

)
+
(
α(d− 1− η∗)− (1− α) min{η∗, 1}

)
must be non-negative. The first is equivalent to α ≤ 5d

6(β−d/2) . The second implies that η∗ ≤
d
3 +α(d− 1), assuming that α > 5d

6(β−d/2) . The third is equivalent to either η∗ ≤ d
3 +α(d− 1) (if

η∗ ≤ 1) or η∗ ≤ d−2+α(3d−1)
1+2α (if η∗ > 1). Finally, the fourth implies either η∗ ≤ d

3 + α(d− 1) (if

η∗ ≤ 1, assuming that α > 5d
6(β−d/2)) or α ≤ 3d−4

2β−5d+4 (if η∗ > 1). One can check that, since d ≥ 3,

5d
6(β−d/2) <

3d−4
2β−5d+4 and d

3 + α(d − 1) < d−2+α(3d−1)
1+2α . Hence we conclude that if α > 3d−4

2β−5d+4

then η∗ ≤ d−2+α(3d−1)
1+2α . Sending α→ 3d−4

2β−5d+4 from above gives the result.

The proof of the remaining statements are similar, and closer to the arguments in Section 2.

For the second statement, fix 1 > α > 3d/2−1
β−d/2 and η1 > η∗ > 0. As in the proof of the first

statement,

(3.8) P`c [A1(2r,R)] ≤ rd−1R−η
∗

for large R and r ∈ [1, R/4]. Now let r = Rα. Since we have the a priori bound P`c [A1(1, R)] ≥
cR−(d−1) (from the start of the proof), by Lemma 3.5

|P`c [fr ∈ A1(r′, R′)]− P`c [A1(r′, R′)]| ≤ cRd/2−α(β−d/2)(logR) + ce−c(logR)2(3.9)

≤ P`c [A1(r′, R′)]/2

for large R and 1 ≤ r′ ≤ R′ ≤ R, where we used that d/2 − α(β − d/2) ≤ −(d − 1) by the
definition of α. Observe next that, for |x| ≥ 18r, the event Λ1 ←→ x+Λ6r implies the occurrence
of the events

{A1(1, |x|∞/3)} and {x+A1(6r, |x|∞/3)},
which are measurable with respect to disjoint domains separated by distance r. Since fr is
r-dependent, for large R and 18r ≤ |x| ≤ R+ 2r this implies

P`c [fr ∈ Λ2r ←→ x+ Λ6r] ≤ P`c [fr ∈ A1(1, |x|∞/3)]P`c [fr ∈ A1(6r, |x|∞/3)]

≤ 4P`c [A1(1, |x|∞/3)]P`c [A1(6r, |x|∞/3)]

≤ crd−1|x|−2η∗
∞

where we used (3.8) and then (3.9). Then by an integral comparison, for large R,∑
v∈rZd∩ΛR+2r

P`[fr ∈ Λ2r ←→ v + Λ6r] ≤ c+ crd−1
∑

v∈rZd∩ΛR+2r\{0}

|v|−2η∗
∞

≤ c+ crd−1 max{r−2η∗(R/r)d−2η∗(log(R/r)), 1}

≤ cRmax{α(d−1),−α+d−2η∗}(logR).

Next define, for large R,

`′(R) = inf{` > `c : P`[A1(1, R)] = 2P`c [A1(1, R)]},
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which exists by continuity in ` (see Lemma 3.13), and since P`c [A1(1, R)] > 0 and

P`[A1(1, R)] ≥ P
[

sup
x∈ΛR

f(x) ≤ `
]
→ 1

as `→∞. By the mean-field lower bound (1.1), for large R,

P`c [A1(1, R)]/2 = P`′ [A1(1, R)]/4 ≥ θ(`′)/4 ≥ c(`′ − `c),(3.10)

where we used that `′(R)→ `c as R→∞, since otherwise

lim sup
R→∞

P`c [A1(1, R)] ≥ lim sup
R→∞

θ(`′(R))/2 > 0

which contradicts (3.8). Similarly to (3.9) we also have

|P`′ [fr ∈ A1(1, R)]− P`′ [A1(1, R)]| ≤ cRd/2−α(β−d/2)(logR) + ce−c(logR)2

≤ P`c [A1(1, R)] = P`′ [A1(1, R)]/2.

Then applying Proposition 3.1 to the field fr, for large R,

P`c [A1(1, R)] = P`′ [A1(1, R)]− P`c [A1(1, R)] ≤ 2(P`′ [fr ∈ A1(1, R)]− P`c [fr ∈ A1(1, R)])

≤ 2rd/2(`′ − `c)∫
q

√
P`′ [A1(1, R)]

∑
v∈rZd∩ΛR+2r

P`c [Λ2r ←→ v + Λ6r]

≤ 2(`′ − `c)∫
q

Rαd/2
√
R−η∗Rmax{0,α(d−1),−α+d−2η∗}(logR).

Comparing with (3.10) implies that αd − η∗ + max{α(d − 1),−α + d − 2η∗} ≥ 0, and so η∗ ≤
max{d/3 + α(d− 1)/3, α(2d− 1)}, and sending α→ 3d/2−1

β−d/2 from above gives the result.

Finally, consider the third statement. Fix 1 > α > 5
3(β−1) and r = Rα. By the RSW estimates

(the second statement of Lemma 3.4) and Lemma 3.5,

P`c [fr ∈ Cross5(R)]
(
1− P`c [fr ∈ Cross5(R)]

)
≤ c− cR1−α(β−1)(logR) < c/2

for large R. Then by (3.3) and Proposition 3.2 we have, for large R,

cP`c [fr ∈ A2(2r,R− 2r)]−1 ≤ d

d`
P`[fr ∈ Cross5(R)]

∣∣∣
`=`c
≤ cR

√
P`c [fr ∈ A2(2r,R− 2r)]

which gives P`c [fr ∈ A2(2r,R − 2r)] ≥ cR−2/3 for large R. Applying the union bound and

Lemma 3.5 (valid since A2(3
√

2r,R) is the intersection of an increasing and a decreasing event)
yields

P`c [A2(1, R− 2r)] ≥ cr−1P`c [A2(2r,R− 2r)] ≥ cR−α
(
R−2/3 −R1−α(β−1)(logR)

)
.

Sending α→ 5
3(β−1) from above gives that, for every ε > 0,

(3.11) P`c [A2(1, R)] ≥ c2R
−2/3−5/(3(β−1))−ε.

for c2 = c2(ε) > 0 and large R. Hence by the FKG inequality (see (3.1))

(3.12) P`c [A1(1, R)] ≥ (P`c [A2(1, R)])1/2 ≥ c3R
−1/3−5/(6(β−1))−ε/2

for c3 = c3(ε) > 0 and large R, which gives the result. �

3.1. Randomised algorithms. Recall from Definition 2.8 that (randomised) algorithms are
adapted procedures that sequentially reveal a subset of random variables X = (Xi) and return
a value. In the Bernoulli case we took Xe = 1e open indexed by the edges of Zd. In the Gaussian
setting we will instead decompose the field f =

∑
fS into independent components indexed by

a partition of Rd into disjoint boxes S, and take XS = fS .

Fix a constant s > 0 and partition Rd into boxes S ∈ Ss which are translations of [0, s)d by
the lattice sZd. Then one can decompose f =

∑
S∈Ss fS where

fS(·) = (q ? W |S)(·) =

∫
y∈Rd

q(· − y)dW |S(y) =

∫
y∈S

q(· − y)dW (y)
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are independent centred almost surely continuous Gaussian fields,5 and W |S = W1S is the
restriction of the white noise W to S.6 We then introduce the collection As of algorithms that
adaptively reveal a subset of (fS)S∈Ss . For brevity we say that a box S ∈ Ss is revealed if fS (or
equivalently W |S) is revealed. As in Definition 2.8, Rev(S) is the probability that S is revealed.

In the case that f satisfies (BOU), we make the important distinction between the set of boxes
that are revealed by an algorithm, and the set V ⊂ Rd on which the field f is determined by an
algorithm. More precisely, for V ⊂ Rd and a set of boxes P ⊂ Ss, we say that f is determined
on V using P if f |V = (

∑
S∈P fS)|V , or equivalently, if ((

⋃
S∈Ss\P Supp(q ? 1S)) ∩ V = ∅.

We now state the analogue of Lemma 2.9. Recall the box Bk(R) = [−R,R]× [−kR, kR]d−1,
its right half B+

k (R) = [0, R] × [−kR, kR]d−1, and in the case d = 2, its top-right quarter

B†k(R) = [0, R]× [0, kR], all considered as subsets of Rd.

Lemma 3.6. Suppose f = q?W satisfies Assumption 1.4 and (BOU), and let r > 0 be such that
q is supported on Λr. Then for every ` ∈ R and R ≥ r there is an algorithm in Ar determining
A(1, R) such that, under P`,∑

S∈Sr

Rev(S) ≤
∑

v∈rZd∩ΛR+2r

P`[Λ1 ←→ v + Λ6r].

Moreover for every k ≥ 1, ` ∈ R, and R ≥ 4r > 0, there are algorithms in Ar determining
Crossk(R) such that, under P`, these algorithms satisfy respectively

max
S∈Sr

Rev(S) ≤ 4r

R

R/r∑
i=2

P`[A1(2r, ir)] , max
S∈Sr:d(S,B+

k (R))<r
Rev(S) ≤ P`[A1(2r,R− 2r)],

and, if d = 2,
max

S∈Sr:d(S,B†k(R))<r
Rev(S) ≤ P`[A2(2r,R− 2r)].

Proof. We begin by introducing some notation. Distinct boxes S, S′ ∈ Sr are adjacent if their
closures have non-empty intersection. For a set of boxes P ⊂ Sr define its outer boundary

∂+P := {S ∈ Sr \ P : S is adjacent to a box S′ ∈ P },
so in particular ∂+{S} are the boxes adjacent to S. Define also the interior int(P) := {S ∈
P : ∂+{S} ⊆ P}. Note that, since q is supported on Λr, f is determined on int(P) using P. A
primal (resp. dual) path will designate a path in {f ≥ 0} (resp. {f ≤ 0}) and a level line will
designate a path in {f = 0}; these paths are contained in a set of boxes P ⊂ Sr if they are
contained in ∪S∈PS. The left and right sides of Bk(R) are respectively {−R} × [−kR, kR]d−1

and {R} × [−kR, kR]d−1, and if d = 2 the top and bottom sides are defined similarly.

For the first statement consider the following algorithm:

• Reveal every box that intersects Λ1 as well as all adjacent boxes.
• Iterate the following steps:

– Let W ⊂ Sr be the boxes that have been revealed.
– Identify the set U ⊆ ∂+(int(W)) such that, for each S ∈ U , there is a primal path

contained in int(W)∩ΛR between Λ1 and the boundary of S (measurable since f is
determined on int(W)). In other words, U contains all boxes on which f is not yet
determined but which are connected to Λ1 by a primal path in ΛR that has been
determined.

– If U is empty end the loop. Otherwise reveal the boxes in ∂+U \W.

5For fixed s > 0 we can suppose they are simultaneously continuous almost surely by countability.
6More precisely (W |S)S∈Ss are defined by setting, for g ∈ L2(Rd),

∫
y∈Rd g(y)dW |S(y) to be jointly centred

Gaussian random variables with covariance

E
[ ∫

y∈Rd

g1(y)dW |S1(y)

∫
y∈Rd

g2(y)dW |S2(y)
]

=

{∫
y∈S1

g1(y)g2(y)dy if S1 = S2,

0 else.
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• If int(W)∩ΛR contains a primal path between Λ1 and ∂ΛR output 1, otherwise output 0.

This algorithm determines A(1, R) since int(W) eventually contains all the components of {f ≥
0} ∩ ΛR that intersect Λ1. To estimate the sum of revealments Rev(S), a box S is revealed if
and only if either (i) it is adjacent to a box that intersects Λ1, or (ii) there is a primal path in
ΛR between Λ1 and a box adjacent to S. If S = v+ [0, r)2 and Λ1∩ (v+ Λ6r) = ∅ then the latter
implies the occurrence of Λ1 ←→ v + Λ6r. Summing over S gives∑

S∈Sr

Rev(S) ≤
∑

v∈rZd∩ΛR+2r

Pp[Λ1 ←→ v + Λ6r].

For the second statement, the first algorithm is:

• Draw a random integer i uniformly in [−R/r, 0], define L = {ir} × [−kR, kR]d−1, and
reveal every box that intersects L ∩Bk(R), as well as all adjacent boxes.
• Iterate the following steps:

– Let W ⊂ Sr be the boxes that have been revealed.
– Identify the set U ⊆ ∂+(int(W)) such that, for each S ∈ U , there is a primal path

contained in int(W) ∩Bk(R) between L ∩Bk(R) and the boundary of S.
– If U is empty end the loop. Otherwise reveal the boxes in ∂+U \W.

• If int(W) ∩ Bk(R) contains a primal path between the left and right sides of Bk(R)
output 1, otherwise output 0.

This algorithm determines Crossk(R) since int(W) eventually contains all the components of
{f ≥ 0} ∩ Bk(R) that intersect L ∩ Bk(R), and any primal path in Bk(R) between its left and
right sides must intersect L ∩ Bk(R). To estimate the revealments Rev(S) of this algorithm, a
box S is revealed if and only if either (i) it is adjacent to a box that intersects L∩Bk(R), or (ii)
there is a primal path in Bk(R) between L and a box adjacent to S. If d′ denotes the distance
from the centre of S to L, this implies the occurrence of (a translation of) the event A1(2r, d′).
Averaging over i ∈ [−R/r, 0] gives

Rev(S) ≤ r

R

(
4 + 2

R/r∑
i=3

P`[A1(2r, ir)]
)
≤ 4r

R

R/r∑
i=2

P`[A1(2r, ir)].

For the second algorithm we modify the above by setting L as {−R} × [−kR, kR]d−1, and
repeating all other steps. A box S ∈ Sr such that d(S,B+

k (R)) < r is only revealed if there is a
primal path in Bk(R) between L and a box adjacent to S, which as before implies the occurrence
of (a translation of) the event A1(2r, d), where d is the distance from the centre of S to L. Since
d is at least R− 2r, Rev(S) ≤ P`[A1(2r,R− 2r)] as required.

The final algorithm (specific to d = 2) is:

• Define L1 = [−R,R] × {−kR} and L2 = {−R} × [−kR, kR], and reveal every box that
intersects (L1 ∪ L2) ∩Bk(R), as well as all adjacent boxes.
• Iterate the following steps:

– Let W ⊂ Sr be the boxes that have been revealed.
– Identify the set U ⊆ ∂+(int(W)) such that, for each S ∈ U , there is a level line

contained in int(W) ∩Bk(R) between (L1 ∪ L2) ∩Bk(R) and the boundary of S.
– If U is empty end the loop. Otherwise reveal the boxes in ∂+U \W.

• If int(W) ∩ Bk(R) contains a primal (resp. dual) path between the left and right (resp.
top and bottom) sides of Bk(R) terminate with output 1 (resp. 0).
• Since int(W) contains all components of {f = 0}∩Bk(R) that intersect L1 ∩L2 and the

algorithm has not yet terminated, exactly one of {f ≥ 0} ∩ Bk(R) or {f ≤ 0} ∩ Bk(R)
has a component that intersects all four sides of Bk(R). Partition Bk(R) into regions
(Pi) using the components of {f = 0} ∩ Bk(R) that intersect L1 ∪ L2. Let A to be the
region Pi which contains the top-left corner of Bk(R), and set C = 1 (resp. C = 0) if f is
positive (resp. negative) on Pi. Then iterate the following:

– If A contains a path in Bk(R) between its left and right sides terminate with out-
put C.
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Figure 2. The final loop of the algorithm in the proof of the third statement
of Lemma 3.6; this loop occurs when there is no left-right or top-bottom paths
in {f = 0} ∩Bk(R). In this example the loop expands the area A three times in
order to determine the sign C of the crossing.

– Change the value of C (from 0 to 1 or 1 to 0), and add to A the region Pi that is
adjacent to it.

The final loop is illustrated in Figure 2; it terminates almost surely since there are a finite
number of connected components of {f = 0}∩Bk(R) (recall that f is C1-smooth). Note that the
algorithm does not necessarily reveal all components of {f = 0} inside Bk(R) – any components
which are closed loops or only touch the top and right sides of Bk(R) are not revealed – but
these do not affect whether Crossk(R) occurs.

To estimate the revealments of this algorithm, a box S ∈ Sr such that d(S,B†k(R)) < r is only
revealed if there is a level line in Bk(R) between L1 ∩L2 and a box adjacent to S, which implies
the occurrence of (a translation of) the event A2(2r, d′), where d′ is the distance from the centre
of S to L1 ∩ L2. Since d′ is at least R− 2r, Rev(S) ≤ P`[A2(2r,R− 2r)] as required. �

3.2. Proof of Propositions 3.1–3.3. Before proving Propositions 3.1 and 3.2 we give the
analogue of Proposition 2.10, which applies to continuous stationary Gaussian fields f = q ? W
(note that we do not need to assume Assumption 1.4):

Proposition 3.7. Suppose f = q ? W is continuous. Then for every ` ∈ R, event A, s > 0,
algorithm A ∈ As that determines A, set of boxes S ′ ⊆ Ss, and ε ≥ 0,∣∣P`[f + ε

∑
S∈S′

q ? 1S ∈ A
]
− P`[f ∈ A]

∣∣ ≤ εsd/2√max
{
P`[A],P`

[
f + ε

∑
S∈S′

q ? 1S ∈ A
]}

E`|WS′ |,

where WS′ is the set of boxes in S ′ that are revealed by A. In particular, if (POS) holds,

(3.13)
∣∣P`+ε[A]− P`[f ∈ A]

∣∣ ≤ εsd/2∫
q

√
max{P`[A],P`+ε[A]}E`|W|,

where W is the set of all boxes in Ss that are revealed by A .

Proof. Consider S ∈ Ss. We use the decomposition (see Proposition A.1 in the appendix)

fS(·) d
=
ZS(q ? 1S)(·)

sd/2
+ gS(·),

where ZS is a standard normal random variable and gS is a continuous Gaussian field indepen-
dent of ZS , which implies also that

fS(·) + ε(q ? 1S)(·) d
=

(ZS + εsd/2)(q ? 1S)(·)
sd/2

+ gS(·).
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The same argument that led to (2.18) (this time with W equal to (ZS)S∈WS′ in the order of
revealment, and W ′ containing ZS on S /∈ S ′ as well as gS for all S) yields in this case∣∣P`[f + ε

∑
S∈S′

q ? 1S ∈ A
]
− P`[f ∈ A]

∣∣
≤
√

2 max
{
P`[A],P`

[
f + ε

∑
S∈S′

q ? 1S ∈ A
]}

E`|WS′ |DKL(Z‖Z + εsd/2)

where Z is a standard normal random variable. Since DKL(Z‖Z + εsd/2) = ε2sd/2 we have the
first statement. For second statement, notice that

∑
S∈Ss(q ? 1S) = (q ? 1)(x) =

∫
q. Then set

S ′ = Ss and replace ε 7→ ε/
∫
q in the first statement. �

Proof of Proposition 3.1. This follows directly from (3.13) by considering the algorithm in Lemma 3.6
that determines A1(1, R) such that

E`|W| =
∑
S∈Sr

Rev(S) ≤
∑

v∈rZd∩ΛR+2r

P`[Λ1 ←→ v + Λ6r]. �

Proof of Proposition 3.2. We begin with the general case d ≥ 2. We first partition the set of
boxes {S ∈ Sr : d(S,Bk(R)) < r} that cover Bk(R) into the disjoint sets

S ′1 = {S ∈ Sr : d(S,B+
k (R)) < r} and S ′2 = {S ∈ Sr : d(S,Bk(R)) < r} \ S ′1

Note that S ′1 and S ′2 correspond roughly to boxes which cover, respectively, the right-half B+
k (R)

and its complement Bk(R) \B+
k (R), except that we enforce disjointness (see Remark 3.8 for an

explanation) so we do not have exact reflective symmetry. However the reflection of S ′2 in the
hyperplane {0} × Rd−1 is contained in S ′1.

By disjointness and since q is supported on Λr, for every x ∈ Bk(R) we have∑
i=1,2

∑
S∈S′i

(q ? 1S)(x) =
∑

S∈S′1∪S′2

(q ? 1S)(x) = (q ? 1)(x) =

∫
q.

Then by the multivariate chain rule for Dini derivatives

∂+

∂`
P`
[
Crossk(R)

]
=

1∫
q

∂+

∂ε
P`
[
f + ε

∑
i=1,2

∑
S∈S′i

q ? 1S ∈ Crossk(R)
]∣∣∣
ε=0

≤ 1∫
q

∑
i=1,2

∂+

∂ε
P`
[
f + ε

∑
S∈S′i

q ? 1S ∈ Crossk(R)
]∣∣∣
ε=0

.

Now consider the algorithm in Lemma 3.6 that determines Crossk(R) such that, under P`,

max
S∈S′1

Rev(S) ≤ P`[A1(2r,R− 2r)].

By reflective symmetry, there is also an algorithm determining Crossk(R) such that, under P`,

max
S∈S′2

Rev(S) ≤ P`[A1(2r,R− 2r)].

Since also maxi=1,2 |S ′i| ≤ c1(R/r)d for some c1 > 0 depending only on k and d, applying
Proposition 3.7 gives

∂+

∂`
P`
[
Crossk(R)

]
≤ rd/2

2
∫
q

√
c1(R/r)dP`[A1(2r,R− 2r)] =

c2R
d/2∫
q

√
P`[A1(2r,R− 2r)]

for some c2 = c2(k, d) > 0, as required.

For d = 2 we consider the top-right quadrant B†k(R) and the algorithm in Lemma 3.6 that
determines Crossk(R) such that

max
{S∈Sr:d(S,B†k(R))<r}

Rev(S) ≤ P`[A2(2r,R− 2r)].
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Then a similar argument to in the previous case (except partitioning {S ∈ Sr : d(S,Bk(R)) < r}
into ∪i=1,...,4S ′i into four disjoint sets that approximate the four quadrants of B+

k (R) and using
reflective symmetry in both axes) yields the result. �

Remark 3.8. Since we do not assume q ≥ 0, it is not necessarily true that

∂+

∂ε
P`
[
f + εq ? 1S ∈ Crossk(R)

]
≥ 0

for every S ∈ Sr. Hence in the proof of Proposition 3.2 it was crucial that we partitioned
{S ∈ Sr : d(S,Bk(R)) < r} disjointly into ∪iS ′i, since otherwise we could not deduce that

∂+

∂`
P`
[
Crossk(R)

]
≤ 1∫

q

∂+

∂ε
P`
[
f + ε

∑
i=1,2

∑
S∈S′i

q ? 1S ∈ Crossk(R)
]∣∣∣
ε=0

.

To prove Proposition 3.3 we need the analogue of Proposition 2.16. We say that an event A
is compactly supported if A is measurable with respect to f |D for a compact D ⊂ Rd, and is
a continuity event if ` 7→ P`[f + g ∈ A] is continuous for every smooth function g : Rd → R;
for example, Crossk(R) and Ai(r,R), i = 1, 2, are compactly supported continuity events by
Lemma 3.13 below.

Proposition 3.9. Suppose f = q ? W satisfies Assumption 1.4 and (BOU), and let r > 0
be such that q is supported on Λr. Then there exists a c > 0 depending only on d such that,
for every ` ∈ R, increasing compactly supported continuity event A, s > 0, algorithm A ∈ As
determining A, and set of boxes S ′ ⊆ Ss,

(3.14)
d−

d`
P`[A] ≥ cmin{1, (s/r)d}

‖q‖2
Var`[P`[A|FS′ ]]
maxS∈S′ Rev(S)

,

where FS′ denotes the σ-algebra generated by (fS)S∈S′, and the revealments Rev(S) are under P`.

Remark 3.10. The proof of (3.14) shows that it can be strengthened by replacing d−

d` P`[A] =
d−

dε P`[f + ε ∈ A] with d−

dε P`[f + εgS′ ∈ A] where gS′(·) := 1d(·,S′)≤2r, but we do not need this.

Remark 3.11. In [38] a similar result (in the case S ′ = Ss) was proven for an approximation of
the field f in which the white noise is replaced with its discretisation at scale ε� 1. However,
since one needed to take ε � 1 in the approximation (e.g. in d = 2 one needs ε � 1/R if the

event is supported on B(R)), this approach results in a prefactor εd/2 that decays rapidly in the
scale of the event. Although this prefactor is also present in (3.14) as s → 0, the difference is
that one can work with fixed s.

We prove Proposition 3.9 in Section 4 below. Let us complete the proof of Proposition 3.3:

Proof of Proposition 3.3. For the first statement we apply Proposition 3.9 (in the case s = r,
S ′ = Ss, and A = Crossk(R), which is a continuity event by Lemma 3.13) to the algorithm in

Lemma 3.6 that determines Crossk(R) whose revealments are bounded by 4r
R

R/r∑
i=2

P`[A1(2r, ir)].

For the second statement we follow the proof of Proposition 2.3 in the Bernoulli case, except

using Proposition 3.9 (in the case s = r, S ′ = {S ∈ Ss : d(S,B†k(R)) < r}, and A = Crossk(R))
and the algorithm in Lemma 3.6 that determines Crossk(R) whose revealments on S ′ are bounded
by P`[A2(2r,R−2r)]. To control the conditional variances in (3.14) we use the same argument as
in the proof of Proposition 2.3; in particular the FKG inequality is available and, since R ≥ 8r,
the events B1 and B2 are independent as in the Bernoulli case. �

Remark 3.12. Similarly to in Section 2.4, combining Propositions 3.7 and 3.9 yields a general
lower bound on the revealments of increasing events. We omit the proof, but the result is the
following. Suppose f = q ? W satisfies Assumption 1.4 and (POS)–(BOU). Let r be such that
q is supported on Λr, let ` ∈ R, let R ≥ r, let A be an increasing continuity event supported
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on B(R), let s > 0, and let A ∈ As be an algorithm determining A. Then there exists a c > 0
depending only on d such that

max
S∈Ss

Rev(S) ≥
c
(
(
∫
q)/‖q‖2 min{1, (s/r)d}Var`[1A]

)2/3
P`[A]1/3Rd/3

where the revealments Rev(S) are under P`.
One can also prove a lower bound on maxS∈S′ Rev(S) for general S ′ ⊂ Ss, analogous to

Proposition 2.18, however in that case we would need q ≥ 0 (for the same reason as explained
in Remark 3.8 above) and also the refinement to Proposition 3.9 mentioned in Remark 3.10.

3.3. Proof of auxiliary results. To finish the section we prove Lemmas 3.4 and 3.5:

Proof of Lemma 3.5. We first observe that g := f − fr = (q− qr) ?W is a C1-smooth stationary
Gaussian field satisfying

E[g(0)2] =

∫
x∈Rd

(q − qr)2(x) dx =

∫
|x|>r/2

q(x)2(1− ϕ(|x/r|))2 dx ≤
∫
|x|>r/2

q(x)2 ≤ c1r
d−2β,

for some c1 > 0 and we used that |q(x)| ≤ c|x|−β by Assumption 1.4. Similarly, for every
direction v ∈ S1,

E[(∂vg(0))2] =

∫
|x|>r/2

(∂v(q(x)(1− ϕ(|x/r|)))2 dx ≤ c2r
d−2β,

for some c2 > 0 that depends on the (uniformly bounded) derivatives of ϕ, and we used that
|∇q(x)| ≤ c|x|−β by Assumption 1.4. Then by a Borell-TIS argument (see [38, Proposition 3.11]
for the case d = 2, and the proof is identical in all dimensions) there exist c3, c4 > 0 such that,
for all R, r ≥ 2,

(3.15) P[‖f − fr‖∞,B(R) > c3(logR)r−(β−d/2)] ≤ c3e
−c4(logR)2

We also note the following consequence of (POS) which can be proved with a Cameron-Martin
argument (see [38, Proposition 3.6] for the case d = 2, and the proof is identical in all dimensions):
there exists a c5 > 0 such that, for R ≥ 1, increasing event A′ measurable with respect to f |B(R),
` ∈ R and t > 0,

(3.16) P`[{f + t ∈ A′} \ {f ∈ A′}] = P`[f + t ∈ A′]− P`[f ∈ A′] ≤ c5tR
d/2.

We now complete the proof, for which we may assume that ` = 0. Consider A = A1 ∩ A2

where A1 is increasing, A2 is decreasing, and both A1 and A2 are measurable with respect to
f |B(R). Abbreviate t = c3(logR)r−(β−d/2) and define E = {‖f − fr‖∞,B(R) > t}. Then

P[fr ∈ A1 ∩A2] ≤ P[fr ∈ A1 ∩A2 ∩ Ec] + P[E]

≤ P[{f + t ∈ A1} ∩ {f − t ∈ A2}] + P[E]

≤ P[f ∈ A1 ∩A2] + P[{f + t ∈ A1} \ {f ∈ A1}] + P[{f − t ∈ A2} \ {f ∈ A2}] + P[E]

≤ P[f ∈ A1 ∩A2] + 2c5tR
d/2 + c3e

−c4(logR)2

where in the second inequality we used that A1 (resp. A2) is increasing (resp. decreasing) and
measurable with respect to f |B(R), and the final inequality was by (3.15) and (3.16). Similarly

P[fr ∈ A1 ∩A2] ≥ P[{f − t ∈ A1} ∩ {f + t ∈ A2} ∩ Ec]
≥ P[f ∈ A1 ∩A2]− P[{f ∈ A1} \ {f − t ∈ A2}]− P[{f ∈ A2} \ {f + t ∈ A2}]− P[E]

≥ P[f ∈ A1 ∩A2]− 2c5tR
d/2 − c3e

−c4(logR)2

which gives the result. �

Proof of Lemma 3.4. For the first statement, it is enough to prove that

(3.17) lim inf
R→∞

P`c [Cross5(R)] > 0
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since then the result follows by the continuity of ` 7→ P`[Cross5(R)] (by Lemma 3.13 below for
instance). By a classical bootstrapping argument [28, Section 5.1] and Lemma 3.5, there are
c1, ε > 0 such that

(3.18) P`[Cross5(3R)] ≤ c1

(
P`[Cross5(R)]2 +R−ε

)
for ` ∈ R and R sufficiently large. A consequence of (3.18) and the continuity of ` 7→
P`[Cross5(R)] is that

lim inf
R→∞

P`[Cross5(R)] < 1/c1 =⇒ lim inf
R→∞

P`′ [Cross5(R)] = 0 for some `′ > `.

Covering the annulus Λ5R\Λ3R with 2d symmetric copies of B5(R), one can find a finite collection
of copies Ai of Cross5(R) such that {Λ1 ←→∞} ⊆ A1(3R, 5R) ⊆ ∪iAi. Hence we also have

lim inf
R→∞

P`′ [Cross5(R)] = 0 =⇒ P`′ [Λ1 ←→∞] = 0 =⇒ `′ ≤ `c,

and so we deduce (3.17).
For the second statement we refer to [38] where it is shown that the RSW estimates hold

under Assumption 1.4 and (POS’) (indeed the recent work [30] shows that the correlation decay
in Assumption 1.4 is not even needed). �

We also state a continuity result that we used in the section:

Lemma 3.13. Let f be a C2-smooth Gaussian field on Rd such that (f(x),∇f(x),∇2f(x)) is
non-degenerate for every x ∈ Rd. Then for every k ≥ 1 and R ≥ r > 0,

P`[Crossk(R)] and P`[Ai(r,R)] , i = 1, 2

are continuous functions of ` ∈ R.

Proof. Since f is C2-smooth and (f(x),∇f(x),∇2f(x)) is non-degenerate, by Bulinskaya’s lemma
[1, Lemma 11.2.10] the critical points of f , as well as its restriction to a smooth hypersurface, are
almost surely locally finite and have distinct critical levels. Since the events {f+` ∈ Crossk(R)}
and {f + ` ∈ Ai(r,R)} depend only on the (stratified) diffeomorphism class of the level set
{f + ` = 0} restricted to, respectively, Bk(R) and ΛR \Λr, by the (stratified) Morse lemma [25,
Theorem 7] almost surely there is a δ > 0 such that 1{f+`+s∈Crossk(R)} and 1{f+`+s∈Ai(r,R)} are
constant on s ∈ (−δ, δ), which is equivalent to the claimed continuity. �

4. The OSSS inequality for smooth Gaussian fields and applications

In this section we establish a new Russo-type inequality for smooth Gaussian fields which we
use to prove Proposition 3.9, with Theorem 1.14 following as an application. We consider a field
f = q ? W which is C2-smooth and satisfies (BOU), and let r > 0 be such that q is supported
on Λr. In particular this implies that (f(0),∇f(0),∇2f(0)) is non-degenerate. We emphasise
that in this section neither (POS) nor (POS’) play any role.

As in Section 3.1, fix s > 0 and consider the orthogonal decomposition f =
∑

S∈Ss fS where

fS(·) = (q ? W |S)(·) =

∫
y∈Rd

q(· − y)dWS(y) =

∫
y∈S

q(· − y)dW (y).

The proof of Proposition 3.9 is based on an application of the OSSS inequality (Theorem 2.15)
to the independent fields (fS)S∈Ss . In this context the resampling influences (c.f. (2.21)) are
defined, for each S ∈ Ss, as

InflA(S) := P`
[
1{f∈A} 6= 1{f (S)∈A}

]
where f (S) denotes the field f =

∑
S∈Ss fS with fS resampled. Just as for other recent ap-

plications of the OSSS inequality in percolation theory [16, 15, 17], the crucial mechanism is

that d−

d` P`[A] is bounded below by the sum of the resampling influences. Recall the definition of
compactly supported continuity events from the statement of Proposition 3.9.
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Proposition 4.1 (Russo-type inequality). There exists a constant c > 0 depending only on d
such that, for every ` ∈ R, s > 0, and increasing compactly supported continuity event A,

d−

d`
P`[A] ≥ cmin{1, (s/r)d}

‖q‖2

∑
S∈Ss

InflA(S)

where the resampling influences InflA(S) are under P`.
Before proving Proposition 4.1, let us complete the proof of Proposition 3.9.

Proof of Proposition 3.9. The OSSS inequality (Theorem 2.15), combined with the reasoning
leading to (2.22), gives

Var`[P`[A|FS′ ]] ≤
1

2

∑
S∈S′

Rev(S)InflA(S)

and hence (true for arbitrary event A)∑
S∈Ss

InflA(S) ≥
∑
S∈S′

InflA(S) ≥ 2Var`[P`[A|FS′ ]]
maxS∈S′ Rev(S)

.

Combining with Proposition 4.1 yields the result. �

The main idea in the proof of Proposition 4.1, which distinguishes it from the discretisation

approach in [38], is to use an orthonormal decomposition of each fS to interpret d−

d` P`[A] and
the resampling influences InflA(S) as measuring, respectively, the ‘boundary’ and ‘volume’ of
certain sets in Gaussian space. Then we can apply Gaussian isoperimetry to deduce the result.
For a set E ⊂ Rn we denote

E+ε := {x ∈ Rn : there exists y ∈ E s.t. |x− y|2 ≤ ε}
to be the ε-thickening of E.

Proposition 4.2 (Gaussian isoperimetry). There exists a constant c > 0 such that, for every
measurable E ⊂ Rn and ε ≥ 0,

P[X ∈ E+ε \ E] ≥
√

2

π
P[X ∈ E](1− P[X ∈ E])ε− cε2

where X is an n-dimensional standard Gaussian vector.

Proof. Let ϕ(x) and Φ(x) denote the standard normal pdf and cdf respectively. The classical
Gaussian isoperimetric inequality states that

lim inf
ε↓0

ε−1P[X ∈ E+ε \ E] ≥ ϕ(Φ−1(P[X ∈ E])).

A simple consequence (see, e.g., [33, Eq. (3)]) is that, for any ε ≥ 0,

(4.1) P[X ∈ E+ε] ≥ Φ(Φ−1(P[X ∈ E]) + ε).

By Taylor expanding Φ on the right-hand side of (4.1) we have

P[X ∈ E+ε \ E] ≥ εϕ(Φ−1(P[X ∈ E]))− 1

2
sup
x∈R
|ϕ′(x)|ε2,

and the result follows since, for all x ∈ R, ϕ(x) ≥
√

2
π Φ(x)(1 − Φ(x))(as can be seen from the

fact that the Mill’s ratio (1−Φ(x))/ϕ(x) is decreasing on x ≥ 0), and since |ϕ′(x)| is uniformly
bounded on x ∈ R. �

We use the following orthogonal decomposition of fS (see Proposition A.1 in the appendix).
Let Z = (Zi)i≥1 be a sequence of i.i.d. standard normal random variables and let (ϕi)i≥1 be an
orthonormal basis of L2(S). Then

(4.2) fnS :=

n∑
i≥1

Zi(q ? ϕi)⇒ fS ,

in law with respect to the C0-topology.
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Proof of Proposition 4.1. By linear rescaling, we may suppose without loss of generality that
` = 0, ‖q‖2 = 1, and that q is supported on Λ1 (i.e. r = 1). For each S ∈ Ss, let gS : Rd → [0, 1] be
a smooth function such that gS(x) = 1 on {x : d(x, S) ≤ 1} and gS(x) = 0 on {x : d(x, S) ≥ 2}.
Then

∑
S∈Ss gS(x) ≤ c1 max{1, s−d} for some constant c1 > 0 depending only on d. Therefore,

since A is increasing, and by the multivariate chain rule for Dini derivatives,

(4.3)
d−

dε
P[f + ε ∈ A]

∣∣∣
ε=0
≥ 1

c1 max{1, s−d}
∑
S∈Ss

d−

dε
P[f + εgS ∈ A]

∣∣∣
ε=0

.

For each S ∈ Ss, let f ′S denote an independent copy of fS , define hS = f − fS , and let FhS be
the σ-algebra generated by hS . We next claim that, almost surely over FhS ,

(4.4)
d−

dε
P[fS + hS + εgS ∈ A|FhS ]

∣∣∣
ε=0
≥ c2P[1{fS+hS∈A} 6= 1{f ′S+hS∈A}|FhS ]

for some universal c2 > 0. Together with (4.3), this will complete the proof of Proposition 4.1
since

d−

dε
P[fS + εgS ∈ A]

∣∣∣
ε=0
≥ E

[d−
dε

P[fS + hS + εgS ∈ A|FhS ]
∣∣∣
ε=0

]
≥ c2E

[
P[1{fS+hS∈A} 6= 1{f ′S+hS∈A}|FhS ]

]
=: c2InflA(S).

where the first inequality is Fatou’s lemma, and the second inequality is by (4.4).

It remains to prove (4.4). Henceforth we fix S ∈ Ss, condition on hS , and drop FhS from
the notation. Let (ϕi)i≥1 be an orthonormal basis of L2(S) and recall the decomposition (4.2).
Fixing n ∈ N and viewing {fnS + hS ∈ A} as a Borel set E in the n-dimensional Gaussian space
generated by the standard Gaussian vector Zn = (Zi)1≤i≤n, by Proposition 4.2

(4.5) P[Zn ∈ E+ε \ E] ≥ c3εP[Zn ∈ E](1− P[Zn ∈ E])− c4ε
2

for some c3, c4 > 0 and every ε ≥ 0. Consider y = (yi) ∈ Rn such that ‖y‖2 = ε. By Young’s
convolution inequality, and since ϕi are an orthonormal basis,∥∥∥∑

i≤n
yi(q ? ϕi)

∥∥∥
∞
≤ ‖q‖2

∥∥∥∑
i≤n

yiϕi

∥∥∥
2

= ‖y‖2 = ε.

Since q ? ϕi is supported on {x : d(x, S) ≤ 1}, and recalling that gS(·) := 1d(·,S)≤1, this gives

sup
y:|y|2≤ε

∑
i≤n

(Zi + yi)(q ? ϕi)− fnS = sup
y:|y|2≤ε

∑
i≤n

yi(q ? ϕi) ≤ εgS .

Therefore, since A is increasing,

P[fnS + hS + εgS ∈ A]− P[fnS + hS ∈ A] ≥ P[∪y:|y|≤ε{Zn + y ∈ E}]− P[Zn ∈ E]

= P[Zn ∈ E+ε \ E].

Combining with (4.5),

(4.6) P[fnS + hS + εgS ∈ A]− P[fnS + hS ∈ A] ≥ c3εP[fnS + hS ∈ A](1− P[fnS + hS ∈ A])− c4ε
2.

It remains to prove that almost surely (with respect to hS), as n→∞,

(4.7) P[fnS + hS ∈ A]→ P[fS + hS ∈ A] and P[fnS + hS + εgS ∈ A]→ P[fS + hS + εgS ∈ A],

since then sending n→∞ in (4.6) yields

P[fS + hS + εgS ∈ A]− P[fS + hS ∈ A] ≥ c3εP[fS + hS ∈ A](1− P[fS + hS ∈ A])− c4ε
2,

which gives (4.4) after sending ε→ 0.

So let us justify (4.7). Recall that A is an increasing continuity event; this means that for
almost every f = fS + hS there exists δ > 0 such that

1{fS+hS+s∈A} and 1{fS+hS+εgS+s∈A}
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are constant for s ∈ (−δ, δ). Then since fnS → fS in law with respect to the C0-topology, we
have (4.7) (by the Portmanteau lemma for instance). �

Remark 4.3. Note that in the proof of Proposition 4.1 we did not require that the Borel set E in
the n-dimensional Gaussian space generated by Zn be increasing, since Gaussian isoperimetry
is valid for arbitrary sets. This allows us to avoid any requirement that q ? ϕi be a positive
function, in contrast to the discretisation approach in [38].

4.1. Application to the sharpness of the phase transition for finite-range Gaussian
fields. We conclude the section by proving Theorem 1.14, following the approach in [16]. For
this we only need the special case s = r and S ′ = Ss of Proposition 3.9.

Proof of Theorem 1.14. By linear rescaling and adjusting constants, we may assume without
loss of generality that q is supported on Λ1, and prove the theorem for Λ2 replacing Λ1.

For R ≥ 0 define gR(`) := P`[A1(2, R)] (recall that this means gR(`) := 1 if R ∈ [0, 2]), and
its limit gR := limR→∞ gR(`) = P`[Λ2 ←→∞]. We will first establish the differential inequality

(4.8)
d−

d`
gR(`) ≥ c1gR(`)(1− gR(`)

1
R

∑R−1
i=0 gi(`)

for some c1 > 0, every R sufficiently large, and every ` ∈ R. Recall the notation from the
beginning of the proof of Lemma 3.6 and for R ≥ 2 consider the following algorithm in A1

(essentially taken from [16]):

• Draw a random integer i uniformly in [2, R], and reveal every box that intersects ∂Λi,
as well as all adjacent boxes.
• Iterate the following steps:

– Let W ⊂ S1 be the boxes that have been revealed.
– Identify the set U ⊆ ∂+(int(W)) such that, for each S ∈ U , there is a primal path

contained in int(W) ∩ ΛR between ∂Λi and the boundary of S.
– If U is empty end the loop. Otherwise reveal the boxes in ∂+U \W.

• If int(W) contains a primal path between Λ2 and ΛR output 1, otherwise output 0.

This algorithm determines A1(2, R) since int(W) eventually contains all the components of
{f ≥ 0} ∩ ΛR that intersect ∂Λi, and any primal path between Λ2 and ΛR must intersect ∂Λi.
To estimate the revealments Rev(S) under P`, note that a box S is revealed if and only if either
(i) it intersects, or is adjacent to a box that intersects, ∂Λi, or (ii) there is a primal path in ΛR
between ∂Λi and a box adjacent to S. If d′ denotes the distance from the centre of S to Λi, this
implies the occurrence of (a translation of) the event A1(2, d′). Averaging on i ∈ [2, R], we have

Rev(S) ≤ 1

R− 1

(
4 + 2

R−1∑
i=3

P`[A1(2, i)]
)
≤ 4

R− 1

R−1∑
i=0

gi(`) ≤
5

R

R−1∑
i=0

gi(`)

for sufficiently large R. Applying Proposition 3.9 (with s = 1 and S ′ = S1, recalling that
A1(2, R) is a continuity event by Lemma 3.13) gives that

d−

d`
gR(`) ≥ c2gR(`)(1− gR(`))

maxS∈S1 Rev(S)
≥ c2gR(`)(1− gR(`)

5
R

∑R−1
i=0 gi(`)

for some c2 > 0 and sufficiently large R, which gives (4.8).

We now argue that (4.8) implies the result. First assume that there exists a `0 > `c such that
g(`0) < 1 (this is clear if f satisfies (POS’), since then P[infx∈Λ3 f(x) ≥ `] > 0 for every ` ∈ R,
but not in general). Then by monotonicity 1− g`(R) > (1− g(`0)/2 for all ` < `0 and large R.
Hence setting c3 = c1(1− g(`0))/2 > 0 and defining fR(`) = gR(`)/c3 we have

d−

d`
fR(`) ≥ fR(`)

1
R

∑R−1
i=0 fi(`)

.
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for all ` < `0 and large R, and applying [16, Lemma 3.1]7 yields the result. On the other hand,
if g(`0) = 1 for every `0 > `c then the second statement of the theorem is immediate. To prove
the first statement, instead choose a `0 < `c and repeat the above argument. This implies the
statement for ` < `0, and taking `0 ↑ `c gives the claim. �

Appendix A. Orthogonal decomposition of fS

For completeness we present a classical orthogonal decomposition of the Gaussian field

fS(·) = (q ? W |S)(·) =

∫
y∈S

q(· − y)dW (y)

where S ⊂ Rd is a compact domain, q ∈ L2(Rd), and W is the white noise on Rd. In this section
we shall assume only that fS is continuous, all other conditions on q being irrelevant.

Proposition A.1 (Orthogonal decomposition of fS). Let (Zi)i≥1 be a sequence of i.i.d. standard
normal random variables and let (ϕi)i≥1 be an orthonormal basis of L2(S). Then, as n→∞,

fnS :=

n∑
i≥1

Zi(q ? ϕi)⇒ fS

in law with respect to the C0-topology on compact sets. In particular,

fS(·) d
=
Z1(q ? 1S)(·)√

Vol(S)
+ g(·)

where g is an continuous Gaussian field independent of Z1.

Proof. Remark that, for each x ∈ Rd, fnS (x) ⇒ fS(x) in law since they are centred Gaussian
random variables and

E
[( n∑

i≥1

Zi(q ? ϕi)(x)
)2]

=

n∑
i≥1

(∫
S
q(x− s)ϕi(s) dx

)2
→
∫
S
q(x− s)2 dx = E[fS(x)2]

by Parseval’s identity. Note also that the functions q ?ϕi are continuous (as a convolution of L2

functions), and so each fnS is continuous. Hence the first statement of the proposition follows by
an application of Lemma A.2 below. For the second statement, set ϕ1 to be constant on S. �

Lemma A.2. Let (fi)i≥1 be a sequence of independent continuous centred Gaussian fields on Rd
and define gn :=

∑n
i≥1 fi. Suppose there exists a continuous Gaussian field g on Rd such that,

for each x ∈ Rd, gn(x) ⇒ g(x) in law. Then gn ⇒ g in law with respect to the C0-topology on
compact sets.

Proof. We follow the proof of [1, Theorem 3.1.2]. Since gn(x) is a sum of independent random
variables converging in law, by Levy’s equivalence theorem we may define g(x) as the almost sure
limit of gn(x). Fix a compact set Ω ⊂ Rd, and consider (gn)n≥1 as elements of the Banach space
C(Ω) of continuous functions on Ω equipped with the C0-topology. By the Itô-Nisio theorem [1,
Theorem 3.1.3], it suffices to show that∫

Ω
gn dµ→

∫
Ω
g dµ

in mean (and so in probability) for every finite signed Borel measure µ on Ω. Define the
continuous functions un(x) := E[gn(x)2] and u(x) := E[g(x)2]. Then

E
[∣∣∣ ∫

Ω
g dµ−

∫
Ω
gn dµ

∣∣∣] ≤ ∫
Ω

(
E
[(
g(x)− gn(x)

)2])1/2
|µ|(dx) ≤

∫
Ω

(
u(x)− un(x)

)1/2
|µ|(dx).

Since un → u monotonically, by Dini’s theorem the convergence is uniform on Ω, so we have
that E[|

∫
Ω g dµ−

∫
Ω gn dµ|]→ 0 as required. �

7Although this lemma is stated for differentiable functions, it is easy to check that the proof goes through

without differentiability since it only uses f(b)− f(a) ≥
∫ b
a
d−

dx
f(x)dx.
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