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Abstract

Background noise strongly penalizes auditory perception of speech in humans or vocalizations in an-
imals. Despite this, auditory neurons are still able to detect communications sounds against considera-
ble levels of background noise. We collected neuronal recordings in cochlear nucleus, inferior collicu-
lus, auditory thalamus, primary and secondary auditory cortex in response to vocalizations presented
either against a stationary or a chorus noise in anesthetized guinea pigs at three signal-to-noise ratios
(-10, 0 and 10 dB). We provide evidence that, at each level of the auditory system, five behaviors in
noise exist within a continuum, from neurons with high-fidelity representations of the signal, mostly
found in inferior colliculus and thalamus, to neurons with high-fidelity representations of the noise,
mostly found in cochlear nucleus for the stationary noise and in similar proportions in each structure
for the chorus noise. The two cortical areas displayed fewer robust responses than the inferior collicu-
lus and thalamus. Furthermore, between 21 and 72% of the neurons (depending on the structure)
switch categories from one background noise to another, even if the initial assignment of these neu-
rons to a category was confirmed by a severe bootstrap procedure. Importantly, supervised learning
pointed out that assigning a recording to one of the five categories can be predicted up to a maximum

of 70% based on both the response to signal alone and noise alone.

Significance statement

In daily situations, humans and animals are faced with various background noises in which they have
to detect behaviorally salient signals. Noise resistance is often viewed as an emergent property of cor-
tical networks, but only a few studies have characterized the relative contribution of cortical and sub-
cortical neurons. Our results demonstrate that the neuronal resistance to noise is distributed along the
auditory system with a more important fraction of robust neurons in subcortical structures compared
to auditory cortex, and is relatively well predictable based on the responses to the signal alone and the
noise alone. Our results also suggest that noise-invariant representations of communication sounds

coexist with accurate noise representations, which are detected as early as the cochlear nucleus.

Keywords: auditory system; natural vocalizations; noise resistance; neuronal classification; noise-type sensi-

tivity
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Introduction

In natural conditions, speech (in humans) and communication sounds (in animals) usually co-occur
with many other competing acoustic signals. During evolution, the auditory system has developed
strategies to extract these behaviorally important signals mixed up with substantial amounts of noise.
Over the last decade, many studies performed on different species have reported that the responses of
auditory cortex neurons are quite resistant to various types of noises, even at low SNR (Narayan et al.,
2007; Schneider and Woolley, 2013; Rabinowitz et al., 2013, Mesgarani et al., 2014; Ni et al., 2017;
Beetz et al., 2018). Several hypotheses have been formulated to account for the high performance of
auditory cortex neurons. For example, it was proposed that noise tolerance is correlated with adapta-
tion to the stimulus statistics, potentially more pronounced at the cortical than at the subcortical level
(Rabinowitz et al., 2013). A dynamic model of synaptic depression was also suggested as a potential
mechanism for robust speech representation in the auditory cortex (Mesgarani et al., 2014). Alterna-
tively, a simple feedforward inhibition circuit was viewed as a mechanism to explain background-
invariant responses detected in the secondary auditory cortex (Schneider and Woolley, 2013).

A recent study (Ni et al., 2017) reported that auditory cortex neurons can be assigned to categories
depending upon their robustness to noise. By testing the responses to conspecific vocalizations at dif-
ferent SNRs, this study described four types of response categories (robust, balanced, insensitive and
brittle) in the marmoset primary auditory cortex, and pointed out that depending upon the background
noise, two-thirds of A1 neurons exhibit different response classes (Ni et al., 2017).

The present study aimed at determining whether the subcortical auditory structures display similar
proportions of these four categories and whether the noise-type sensitivity is already present at the
subcortical level. We used the same methodology as in Ni and colleagues (2017) to assign each re-
cording to a given response class: the Extraction Index (EI, initially defined by Schneider and Wool-
ley, 2013) was computed at three SNRs (+10, 0 and -10 dB) and an unsupervised clustering approach
(the K-means algorithm) revealed groups of EI profiles in a given background noise.

We performed this clustering approach in the cochlear nucleus, inferior colliculus, auditory thalamus,
primary and secondary auditory cortex using two types of masking noise, a stationary or a chorus
noise composed of a mixture of conspecific vocalizations. We renamed two neuronal behaviors in
noise for recognizing equivalent roles to stimulus-like neuronal responses (i.c., the signal- and the
masker-like responses) since in ethological conditions, both could play an important functional role.
The categories range from signal-like responses (equivalent to the ‘robust' neurons of Ni et al., 2017)
showing a high-fidelity representation of the signal, to masker-like responses showing a high-fidelity
representation of the noise (equivalent to the ‘brittle’ neurons of Ni et al., 2017), with two intermedi-
ary categories, one showing no preference either for the signal or for the noise named insensitive, and

the other characterized by the highest sensitivity to the SNR named balanced. To minimize the intra-
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category distances, we also added a new category, called signal-dominated, which corresponds to an
attenuated version of the signal-like responses.

Here, we present evidence that the categories initially described by Ni and colleagues (2017) in the
primary auditory cortex do exist at each stage of the auditory system, from cochlear nucleus to sec-
ondary auditory cortex. From a continuum of EI values, we imposed a clustering and revealed that
each category was represented at each relay of the auditory system in different proportions, depending
on the auditory structure and the type of the masking noise. Signal-like and signal-dominated respons-
es were in higher proportions in inferior colliculus and thalamus in both noises. Masker-like responses
were found mostly in the cochlear nucleus in stationary noise but in similar proportions in each struc-
ture in chorus noise. Interestingly, the proportion of balanced responses decreased as one ascends in
the auditory system suggesting a decreased sensitivity to SNR at the cortical level. The noise-type
sensitivity - that is the ability to switch category from a given background noise to another - exists at
each level of the auditory system. Using a supervised learning approach with descriptors extracted
from the responses to the original vocalizations alone (signal) and to the maskers alone, we provide

evidence that the assignment to a given category is relatively well predicted in both types of noise.
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Materials and Methods

Most of the Methods are similar to those described in a previous study (Souffi et al., 2020).

Subjects

These experiments were performed under the national license A-91-557 (project 2014-25, authoriza-
tion 05202.02) and using the procedures N° 32-2011 and 34-2012 validated by the Ethic committee
N°59 (CEEA Paris Centre et Sud). All surgical procedures were performed in accordance with the
guidelines established by the European Communities Council Directive (2010/63/EU Council Di-
rective Decree).

Extracellular recordings were obtained from 47 adult pigmented guinea pigs (aged 3 to 16 months, 36
males, 11 females) at five different levels of the auditory system: the cochlear nucleus (CN), the infe-
rior colliculus (IC), the medial geniculate body (MGB), the primary (A1) and secondary (arca VRB)
auditory cortex. Animals, weighting from 515 to 1100 g (mean 856 g), came from our own colony
housed in a humidity (50-55%) and temperature (22-24°C)-controlled facility on a 12 h/12 h
light/dark cycle (light on at 7:30 A.M.) with free access to food and water.

Two days before the experiment, the animal’s pure-tone audiogram was determined by testing audito-
ry brainstem responses (ABR) under isoflurane anesthesia (2.5 %) as described in Gourévitch and
colleagues (2009). A software (RTLab, Echodia, Clermont-Ferrand, France) allowed averaging 500
responses during the presentation of nine pure-tone frequencies (between 0.5 and 32 kHz) delivered
by a speaker (Knowles Electronics) placed in the animal right ear canal. The auditory threshold of
each ABR was the lowest intensity where a small ABR wave can still be detected (usually wave III).
For each frequency, the threshold was determined by gradually decreasing the sound intensity (from
80 dB SPL down to -10 dB SPL). All animals used in this study had normal pure-tone audiograms
(Gourévitch et al., 2009; Gourévitch and Edeline, 2011).

Surgical procedures

All animals were anesthetized by an initial injection of urethane (1.2 g/kg, i.p.) supplemented by addi-
tional doses of urethane (0.5 g/kg, i.p.) when reflex movements were observed after pinching the hind
paw (usually 2-4 times during the recording session). A single dose of atropine sulphate (0.06mg/kg,
s.c.) was given to reduce bronchial secretions and a small dose of buprenorphine was administrated
(0.05mg/kg, s.c.) as urethane has no antalgic properties. After placing the animal in a stereotaxic
frame, a craniotomy was performed and a local anesthetic (Xylocain 2%) was liberally injected in the

wound.
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For auditory cortex recordings (areas Al and VRB), a craniotomy was performed above the left tem-
poral cortex. The dura above the auditory cortex was removed under binocular control and the cere-
brospinal fluid was drained through the cisterna to prevent the occurrence of oedema. For the record-
ings in MGB, a craniotomy was performed above the most posterior part of the MGB (8mm posterior
to Bregma) to reach the left auditory thalamus at a location where the MGB is mainly composed of its
ventral, tonotopic, part (Redies et al., 1989, Edeline et al., 1999; Anderson et al., 2007; Wallace et al.,
2007). For IC recordings, a craniotomy was performed above the left IC and portions of the cortex
were aspirated to expose the surface of the left IC (Malmierca et al., 1995, 1996; Rees et al., 1997).
For CN recordings, after opening the skull above the left cerebellum, portions of the cerebellum were
aspirated to expose the surface of the left CN (Paraouty et al., 2018).

After all surgeries, a pedestal in dental acrylic cement was built to allow an atraumatic fixation of the
animal’s head during the recording session. The stereotaxic frame supporting the animal was placed in
a sound-attenuating chamber (IAC, model AC1). At the end of the recording session, a lethal dose of
Exagon (pentobarbital >200 mg/kg, i.p.) was administered to the animal.

Recording procedures

Data from multi-unit recordings were collected in 5 auditory structures, the non-primary cortical area
VRB, the primary cortical area A1, the medial geniculate body (MGB), the inferior colliculus (IC) and
the cochlear nucleus (CN). In a given animal, neuronal recordings were only collected in one auditory
structure.

Cortical extracellular recordings were obtained from arrays of 16 tungsten electrodes (TDT, Tuck-
erDavis Technologies; ¢: 33 pm, <1 MQ) composed of two rows of 8 electrodes separated by 1000
pm (350 um between electrodes of the same row). A silver wire, used as ground, was inserted be-
tween the temporal bone and the dura matter on the contralateral side. The location of the primary
auditory cortex was estimated based on the pattern of vasculature observed in previous studies (Wal-
lace et al., 2000; Gaucher et al., 2013; Gaucher and Edeline, 2015). The non-primary cortical area
VRB was located ventral to Al and distinguished because of its long latencies to pure tones (Rutkow-
ski et al., 2002; Grimsley et al., 2012). For each experiment, the position of the electrode array was set
in such a way that the two rows of eight electrodes sample neurons responding from low to high fre-
quency when progressing in the rostro-caudal direction [see examples in Figure 1 of Gaucher et al.,
(2012) and in Figure 6A of Occelli et al., (2016)].

In the MGB, IC and CN, the recordings were obtained using 16 channel multi-electrode arrays (Neu-
roNexus) composed of one shank (10 mm) of 16 electrodes spaced by 110 pm and with conductive
site areas of 177um®. The electrodes were advanced vertically (for MGB and IC) or with a 40° angle

(for CN) until evoked responses to pure tones could be detected on at least 10 electrodes.
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All thalamic recordings were from the ventral part of MGB (see above surgical procedures) and all
displayed latencies < 9ms. At the collicular level, we distinguished the lemniscal and non-lemniscal
divisions of IC based on depth and on the latencies of pure tone responses. We excluded the most su-
perficial recordings (until a depth of 1500pum) and those exhibiting latency >= 20ms in an attempt to
select recordings from the central nucleus of IC (CNIC). At the level of the cochlear nucleus, the re-
cordings were collected from both the dorsal (DCN) and ventral (VCN) divisions, but based on the
recording depth, we estimate that the DCN recordings were more numerous.

The raw signal was amplified 10,000 times (TDT Medusa). It was then processed by an RX5 multi-
channel data acquisition system (TDT). The signal collected from each electrode was filtered (610-
10000 Hz) to extract multi-unit activity (MUA). The trigger level was set for each electrode to select
the largest action potentials from the signal. On-line and off-line examination of the waveforms sug-
gests that the MUA collected here was made of action potentials generated by a few neurons at the
vicinity of the electrode. However, as we did not used tetrodes, the result of several clustering algo-
rithms (Pouzat et al., 2004; Quiroga et al., 2004; Franke et al., 2015) based on spike waveform anal-
yses were not reliable enough to isolate single units with good confidence. Although these are not
direct proofs, the fact that the electrodes were of similar impedance (0.5-1MOhm) and that the spike
amplitudes had similar values (100-3001V) for the cortical and the subcortical recordings, were two
indications suggesting that the cluster recordings obtained in each structure included a similar number
of neurons. Even if a similar number of neurons were recorded in the different structures, we cannot
discard the possibility that the homogeneity of the multi-unit recordings differs between structures. By
collecting several hundreds of recordings in each structure, these potential differences in homogeneity

should be attenuated in the present study.
Acoustic stimuli

Acoustic stimuli were generated using MatLab, transferred to a RP2.1-based sound delivery system
(TDT) and sent to a Fostex speaker (FE87E). The speaker was placed at 2 cm from the guinea pig’s
right ear (or left ear for CN recordings), a distance at which the speaker produced a flat spectrum (+ 3
dB) between 140 Hz and 36 kHz. Calibration of the speaker was made using noise and pure tones rec-
orded by a Bruel and Kjaer microphone 4133 coupled to a preamplifier B & K 2169 and a digital re-
corder Marantz PMD671. All the stimuli intensities were calculated as RMS.

The Time-Frequency Response Profiles (TFRP) were determined using 129 pure-tones frequencies

covering eight octaves (0.14-36 kHz) and presented at 75 dB SPL. The tones had a gamma envelop

-t
given by y(t) = (i)zeT , where t is time in ms. At a given level, each frequency was repeated eight

times at a rate of 2.35 Hz in pseudorandom order. The duration of these tones over half-peak ampli-

tude was 15 ms and the total duration of the tone was 50 ms, so there was no overlap between tones.
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A set of four conspecific vocalizations was used to assess the neuronal responses to communication
sounds. These vocalizations were recorded from animals of our colony. Pairs of animals were placed
in the acoustic chamber and their vocalizations were recorded by a Bruel & Kjaer microphone 4133
coupled to a preamplifier B&K 2169 and a digital recorder Marantz PMD671. A large set of whistle
calls was loaded in the Audition software (Adobe Audition 3) and four representative examples of
whistle were selected. As shown in figure 1A (lower panels), despite the fact the maximal energy of
the four selected whistle was in the same frequency range (typically between 4 and 26 kHz), these
calls displayed slight differences in their spectrograms. In addition, their temporal (amplitude) enve-
lopes clearly differed as shown by their waveforms (Figure 1A, upper panels).

The four whistles were also presented in two frozen noises ranging from 10 to 24,000 Hz. To generate
these noises, recordings were performed in the colony room where a large group of guinea pigs were
housed (30-40; 2-4 animals/cage). Several 4-seconds of audio recordings were added up to generate
the "chorus noise", which power spectrum was computed using the Fourier transform. This spectrum
was then used to shape the spectrum of a white Gaussian noise. The resulting vocalization-shaped
stationary noise therefore matched the "chorus-noise" audio spectrum, which explains why some fre-
quency bands were over-represented in the vocalization-shaped stationary noise. Figures 1B-1C dis-
play the spectrograms of the four whistles in the vocalization-shaped stationary noise (1B) and in the
chorus noise (1C) with a SNR of +10 dB, 0 dB, -10 dB. The last spectrograms of these two figures

represent the noises only.

Experimental protocol

As inserting an array of 16 electrodes in a brain structure almost systematically induces a deformation
of this structure, a 30-minutes recovering time lapse was allowed for the structure to return to its ini-
tial shape, then the array was slowly lowered. Tests based on measures of time-frequency response
profiles (TFRPs) were used to assess the quality of our recordings and to adjust electrodes’ depth. For
auditory cortex recordings (Al and VRB), the recording depth was 500-1000 um, which corresponds
to layer III and the upper part of layer IV according to Wallace and Palmer (2008). For thalamic re-
cordings, the NeuroNexus probe was lowered about 7mm below pia before the first responses to pure
tones were detected.

When a clear frequency tuning was obtained for at least 10 of the 16 electrodes, the stability of the
tuning was assessed: we required that the recorded neurons displayed at least three successive similar
TFRPs (each lasting 6 minutes) before starting the protocol. When the stability was satisfactory, the
protocol was started by presenting the acoustic stimuli in the following order: We first presented the
four whistles at 75 dB SPL in their original versions (in quiet), then the chorus and the vocalization-

shaped stationary noises were presented at 75 dB SPL followed by the masked vocalizations presented
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against the chorus then against the vocalization-shaped stationary noise at 65, 75 and 85 dB SPL.
Thus, the level of the original vocalizations was kept constant (75 dB SPL), and the noise level was
increased (65, 75 and 85 dB SPL). In all cases, each vocalization was repeated 20 times. Presentation
of this entire stimulus set lasted 45 minutes. The protocol was re-started either after moving the elec-
trode arrays on the cortical map or after lowering the electrode at least by 300 pm for subcortical

structures.

Data analysis
All the analyses were performed on MATLAB 2019 (MathWorks).
Quantification of responses to pure tones

The TFRP were obtained by constructing post-stimulus time histograms for each frequency with 1 ms
time bins. The firing rate evoked by each frequency was quantified by summing all the action poten-
tials from the tone onset up to 100 ms after this onset. Thus, TFRP were matrices of 100 bins in ab-
scissa (time) multiplied by 129 bins in ordinate (frequency). All TFRPs were smoothed with a uni-
form 5x5 bin window.

For each TFRP, the Best Frequency (BF) was defined as the frequency at which the highest firing rate
was recorded. Peaks of significant response were automatically identified using the following proce-
dure: A positive peak in the TFRP was defined as a contour of firing rate above the average level of
the baseline activity plus six times the standard deviation of the baseline activity. Recordings without

significant peak of responses or with inhibitory responses were excluded from the data analyses.

Quantification of responses evoked by original vocalizations and noises alone

The responses to vocalizations were quantified using two parameters:

(i) The firing rate of the evoked response, which corresponds to the total number of action potentials
occurring during the presentation of the stimulus;

(ii) the trial-to-trial temporal reliability coefficient (CorrCoef) which quantifies the trial-to-trial relia-
bility of the response over the 20 repetitions of the same stimulus. This index was computed for each
vocalization: it corresponds to the normalized covariance between each pair of spike trains recorded at

presentation of this vocalization and was calculated as follows:

N-1 N
CorrC _ 1 Oxx;
orrCoef = N(N-1) Z, -Zﬁ 74,0,
i=1 j=i L

where N is the number of trials and oxx; is the normalized covariance at zero lag between spike trains

x; and x; where i and j are the trial numbers. Spike trains X; and x; were previously convolved with a
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10-ms width Gaussian window. Based upon computer simulations, we have previously shown that
this CorrCoef index is not a function of the neurons’ firing rate (Gaucher et al., 2013a).

We have computed the CorrCoef index with a Gaussian window ranging from 1 to 50 ms to determine
if the selection of a particular value for the Gaussian window influences the difference in CorrCoef
mean values obtained in the different auditory structures. Based upon the responses to the original
vocalizations, we observed that the relative ranking between auditory structures remained unchanged
whatever the size of the Gaussian window was. Therefore, we kept the value of 10 ms for the Gaussi-
an window as it was used in several previous studies (Huetz et al., 2009; Gaucher et al., 2013a; Gau-

cher and Edeline, 2015; Aushana et al., 2018; Souffi et al., 2020).

Quantification of the Extraction Index

To evaluate the influence of noise upon neural representation of vocalizations, we quantified the
amount of vocalization encoded by neurons at a particular SNR level by calculating the Extraction
Index (EI) adapted from a similar study in songbirds (Schneider and Woolley, 2013). This metric is
based on the repetition-averaged peristimulus time histogram (PSTH) of neural response with a time
bin of 4 ms. Different window bins of 1, 2, 4, 8, 16, and 32 ms were also evaluated, which yielded
qualitatively similar results. In this manuscript, we only report results based on 4 ms time bins. Only

the PSTH during the evoked activity is taken into account in this analysis.

EI was computed as follows:

Dy gny — Dy
EI: n-snr v-snr

Dn-snr +D. v-snr
D -1 Pn'Psnr D - Pv'P.mr
nsnr — LT T Lyespr= 1T TS
I2alll Pl 1Py P sl

where D, s, is the distance between PSTH , of noise and PSTH g, of vocalization at a particular SNR,
whereas D, is the distance between PSTH , of pure vocalization and PSTH g, of vocalization at a
particular SNR. EI is bounded between -1 and 1: a positive value indicates that the neural response to
noisy vocalization is more vocalization-like, and a negative value implies that the neural response is
more noise-like. The EI profile for each recording was determined by computing EI at every SNR
level. The normalized inner product was used to compute distance between ,, or y and ,r, as shown in
equation above.

To probe the response patterns of each neuron, we further implemented an exploratory analysis based
on the calculated EI profiles as in Ni and colleagues (2017). By applying k-means clustering on the
blended EI profiles from both noise conditions separately, we obtained, from a continuum of EI val-

ues, subgroups of EI profiles, which divided the neuronal population into clusters according to the
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similarity of their EI profiles. Similarity was quantified by Euclidean distance. The number of clusters

was determined by the mean-squared error (MSE) of clustering, as in equation below,

ot S 2
MSE=S> (EIP yusier—: — EIP))

where N is the number of neurons, EIP; is the EI profile of a neuron, and cjuster-i is the mean EI profile
of the cluster into which this neuron is categorized.

To determine a significance level for the Extraction Index of each neuron, we generated 100 false ran-
dom spike trains which follow a Poisson law based on the firing rate values obtained for each stimulus
(original and noisy vocalizations). For a given SNR and recording, we computed based on these false
spike trains, 100 Elsumrogaie Values and fixed a significance level corresponding to the mean plus two

standard deviations. Using this criterion, we selected only the recordings with at least one of the six EI

values significantly higher than the Elgyrogate.

Bootstrap procedure

To estimate the variability of the EI index generated in assigning each recording to a particular cate-
gory in particular noise, we used a bootstrap strategy for all the recordings, separately for the station-
ary and the chorus noise. Even in anesthetized animals, auditory cortex responses can show some var-
iability. We suspected that in a given type of noise, a recording could change category because of the
response variability and/or because the border between two clusters was very close, independently to
the change in noise type.

From the 20 trials obtained for each stimulus during the experiment, we resampled randomly 20 trials
(allowing repetitions) keeping the total number of trials the same as in the experimental data. For each
resampled group of 20 trials, we recalculated both the PSTHs and the Extraction Index at each SNR
then the K-means algorithm was used to define five clusters as in the experimental data. For each re-
cording, this procedure was performed 100 times. Then, we reallocated each resampled data in the
closest cluster compared to the original centroids of the experimental data to measure the percentage

of changed categories relative to the original clustering.
Classification using Linear Discriminant Analysis

In order to investigate whether the assignment of a given recording to a particular category can be
predicted from the response characteristics obtained with pure tones and/or with the original vocaliza-
tions in quiet, and/or the noise responses alone, an automatic classification algorithm was applied.
Linear Discriminant Analysis classifiers (LDA) were chosen among several linear supervised learning

algorithms because of their slight higher classification performances when trained with all predictors
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(Statistics and Machine Learning Toolbox™, MATLAB 2019). LDA is a statistical classifier that
achieves a linear decision boundary based on the class scatter matrices. All classifiers used in this
study were given identical parameters (same cost matrix, same cross-validation scheme), but were
given different sets of predictors extracted from the data (as shown on Figures 6-7). A cost matrix was
constructed in order to penalize the wrong assignment of all categories into the “insensitive” category
that contained more recordings than the other categories (all costs were set to 1 except for the “insen-
sitive” category where they were set to 2). Cross-validation was performed using a 5-fold validation
scheme.

Fifteen LDA classifiers were built, trained and tested on the recordings considered as reliable with the
bootstrap procedure (with a confidence interval [] 95%) in both noises: 342 recordings were thus se-
lected for the stationary and chorus noise (see Table 2, first line). For each recording and each type of
noise (stationary or chorus), 12 predictors were available, extracted either from responses to pure
tones, vocalizations, maskers or a combination of both signal and maskers. Each classifier has used a

subset of predictors as shown in figure 8A.

Descriptors used for the classifier

In total, 12 neuronal descriptors were extracted for each type of noise grouped in four types of de-
scriptors: the TFRP, signal, masker and signal-to-masker ratio descriptors (Figures 6-7). Three de-
scriptors were extracted from the responses to pure tones (TFRP): the best frequency (BF) firing rate
(in spikes/sec), the bandwidth of tuning (in octave) and the response duration (in ms). From the re-
sponses to the signal alone (original vocalizations) and the maskers alone, two descriptors were ex-
tracted: the firing rate (in spikes/sec) and the temporal reliability (or CorrCoef).

Three other masker descriptors were computed to have an estimation of the firing rate short-term ad-
aptation to the masker: first, we computed the ratio between the firing rate taken at the time the signal
should have occurred and the initial firing rate during the first 200 ms of the masker (FRm300 and
FRm200, Figures 6-7H). Second, we extracted the number of action potentials emitted during the first
(Initial) and last (Final) 50 ms of the masker alone over a 564 ms-period (Figures 6-71).

For the signal-to-masker ratios, the response to the maskers was extracted from the masker alone trials
either from the initial firing rate (first 200 ms of the masker, FRm200, (1) in the Figures 6-7J) or from
the firing rate taken at the time the signal should have occurred (i.e., for a mean duration of 300 ms,

FRm300, (2) in the Figures 6-7K).
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Global quantification of category changes with mutual information

The mutual information allowed quantifying how many recordings change category from stationary
noise to chorus noise based upon either all recordings (Figure 5-1A) or only the reliable recordings
(Figure 5-1B), independently of structure. For that, we built a matrix with five rows related to the five
categories in stationary noise and five columns related to the becoming of each recording in chorus
noise. From this matrix, the Mutual Information (MI) is given by Shannon’s formula:
MI =3 plx,y)xlog, (22D
Xy px)x p(y)

where x and y are the rows and columns of the confusion matrix.

In a scenario where the categorization based on the responses in stationary noise do not carry infor-
mation on the categorization based on the responses in chorus noise, assignment of each recording to a
category is equivalent to chance level (here 0.20 because there were 5 different categories) and the MI
would be close to zero. In the opposite case, when responses in stationary noise always fall in the
same category when recorded with chorus noise, the confusion matrix would be diagonal and the mu-

tual information would tend to log2(5) = 2.3 bits.

Statistics

To assess the significance of the multiple comparisons (masking noise conditions: three levels; audito-
ry structure: five levels), we used an analysis of variance (ANOVA) for multiple factors to analyze the
whole data set. Post-hoc pairwise tests were performed between the noisy conditions (paired t-tests)
and between categories (Kruskal-Wallis tests). They were corrected for multiple comparisons using

Bonferroni corrections and were considered as significant if their p-value was below 0.05.
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Results

From a database of 2334 multi-unit recordings collected in the five investigated auditory structures,
several criteria were used to include each neuronal recording in our analyses (see Table 1). A record-
ing had to show significant responses to pure tones (see Methods section) and a significant evoked
firing rate relative to spontaneous firing rate (200 ms before each original vocalization) in response to
at least one of the four original vocalizations (Figure 1A illustrates their waveforms and spectro-
grams). These four vocalizations were presented in quiet and embedded either in a vocalization-
shaped stationary noise (Figure 1B) or in a chorus noise (Figure 1C) using three SNRs (+10, 0 and -10
dB). We selected recordings showing responses at the three SNRs both in stationary and chorus noise
in order to derive systematically six Extraction Index (EI) values for each neuronal recording. The EI
index quantifies to what extent the evoked response at a given SNR is similar to the response to vocal-
izations in quiet or to noise alone. To determine a significance level of the EI value, we computed an
Elsurrogate Value for each recording (see Methods section) and included only the recordings with at least
one of the six EI values significantly higher than the Elgymogate. Applying these criteria, we selected a
total of 1267 recordings (selection type (b) in Table 1): 389 in the cochlear nucleus (CN), 339 in the
central nucleus of the inferior colliculus (CNIC), 198 in the ventral division of the auditory thalamus
(MGv), 261 in the primary auditory cortex (Al) and 80 in a secondary auditory cortical area (Ventro-
Rostral Belt, VRB).

Chorus noise impacted more neuronal responses than stationary noise at each stage of the audi-

tory system

Figure 2A shows rasters for recordings collected in the five auditory structures in response to the orig-
inal (in quiet) and masked vocalizations embedded in stationary (top) and chorus (bottom) noise. In all
structures, the neuronal responses evoked by the four whistles progressively vanished as the SNR de-
creased from +10 to -10 dB. However, one can clearly notice that the recordings obtained in CNIC
and MGv still display detectable responses at 0 dB SNR, even down to -10 dB for some vocalizations
in CNIC.

To evaluate the neuronal resistance to noise, we quantified the Extraction Index (EI, see Methods sec-
tion; Schneider and Woolley, 2013; Ni et al., 2017) of the 1267 recordings obtained in the five struc-
tures. For each recording, the extraction index compares the PSTH obtained at a given SNR with the
PSTHs obtained with the original vocalizations and with the noise alone: the higher the EI value
(close to 1), the more the responses are signal-like (Figure 2B, left). Conversely, the lower the EI val-

ue (close to -1), the more the responses are masker-like (Figure 2B, right). In both noises, the EI val-
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ues were higher in the inferior colliculus and thalamus than in the cochlear nucleus and cortex, except
in chorus noise at — 10 dB SNR, which strongly impacted all neuronal responses at each stage (Figure
2C). In addition, the EI values obtained in chorus noise at 0 and -10 dB SNR were significantly lower
than those obtained in stationary noise in all structures except in the CN at 0 dB SNR (Figure 2C, one-
way ANOVAs, p<0.001; with post-hoc paired t tests, p<0.001).

Thus, in all structures, both noises altered the evoked responses promoting masker-like responses, the
chorus noise promoting, on average, a significantly higher proportion of masker-like responses than

the stationary noise.

Robustness to noise is a distributed property in the auditory system

We initially aimed at determining whether the four categories of cortical neurons (robust, balanced,
insensitive and brittle) described by Ni and colleagues (2017) can also be found at each stage of the
auditory system. For each neuronal recording, we computed six EI values (three for the stationary
noise and three for the chorus noise, relative to the three SNRs). To do the clustering, we used the
three EI values of all responses (i.e., the 1267 recordings) separately, in stationary and chorus noise.
However, analyzing our whole database with the same clustering method and the same criterion (el-
bow method) as in Ni and colleagues (2017) led us to consider either five or six clusters in both noises
(Figure 3), potentially because our recordings came from three subcortical structures in addition to
two cortical areas. When six clusters were defined, two of them displayed very similar behaviors with
only slight differences in EI values at the three SNRs (see Figure 3B-C), which urged us to consider
only five clusters and suggests also that a larger number of clusters would have been non-informative
as similar behaviors should re-appear. Compared to the four categories of Ni and colleagues (2017),
we added one new category, which represents an attenuated version of their robust category. These
neurons cannot be neglected as they represent in fact a large proportion of our database (25% and 18%

in the stationary and chorus noise).

Figure 4 presents the five categories derived from the whole data set across the three SNRs and the
two noises. Figures 4A and 4F present the EI values of all neurons in the three SNRs in a given back-
ground noise (with a color code from blue to red when progressing from low to high EI values). The
five categories are indicated by a color bar on the right side and are derived from a continuum of EI
values. This color code is used for the 3D representations of the five categories in the stationary (Fig-
ure 4B) and chorus (Figure 4G) noise. Figure 4C shows the mean EI values in stationary noise for
these five categories across the three SNRs and the percentage of neurons in each category is dis-

played in figure 4D. Approximately 10% of the neurons exhibit signal-like responses characterized by
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mean EI values greater than 0.5 at +10 and 0 dB SNRs. More than 25% display signal-dominated re-
sponses characterized by mean EI values greater than 0.2 at +10 and 0 dB SNRs. About 5% of the
neuronal responses are balanced and more than 40% of the total population has a mean EI value
around 0 at all SNRs which corresponds to the insensitive responses. More than 10% of the auditory
neurons have negative mean EI values at the three SNRs, which correspond to masker-like responses.
Figures 4H and 41 show the mean EI values for these five categories in the chorus noise with, roughly,
similar proportions of the five categories as in the stationary noise. However, in the chorus noise there
were less signal-like (from 10% to 7.5%) and signal-dominated (from 27% to 20%) responses and
more balanced responses (from 6.5% to 19.5%), whereas the proportion of insensitive responses re-
mained similar (42-39.5%). Note also that in the chorus noise, the categories of signal-like and signal-
dominated responses showed, on average, lower EI values at the 0 and -10 dB SNR than in stationary
noise (compared Figure 4C and Figure 4H). Based upon these quantifications performed in the entire

auditory system, we found five similar neuronal behaviors in the stationary and chorus noise.

What are the proportions of these categories in each structure? For each auditory structure, the per-
centage of neurons from each category is presented in stationary noise (Figure 4E) and in chorus noise
(Figure 4J). In stationary noise, signal-like and signal-dominated responses were mostly present in the
inferior colliculus and thalamus, while the three other categories of neuronal responses classified as
balanced, insensitive, and masker-like were mostly present in the cochlear nucleus and in the two cor-
tical fields. Statistical analyses confirmed that the proportions of the different categories differed in IC
and MGv compared with the three other structures (all Chi-Square; p<0.001). In chorus noise, there
was a large increase in the proportion of balanced responses and a decrease in signal-like responses in
all structures, but these latter neurons remained in higher proportions in IC and MGv than in CN and
in cortex. Moreover, the masker-like responses were in equivalent proportions in all structures (be-
tween 12.5% and 19%). In the CN, there was also an increase in the proportion of signal-dominated
responses (from 7 to 14.5%). Statistical analyses confirmed that, in the chorus noise too, the propor-
tions of the different categories differed in the IC and MGv compared with the three other structures
(all Chi-Square; p<0.001).

Note that including the recordings with no significant TFRP (n=82) led to exactly the same propor-
tions of recordings in the different categories in both noises (Figure 4-1). These neurons, which did
not respond to pure tones, displayed no signal-like response in subcortical structures and very rarely in
the auditory cortex (see Figure 4-1D-H). In addition, in an attempt to evaluate the differences between
the ventral and dorsal parts of the CN, we compared the EI values for a set of 87 recordings collected
at the deepest electrode placements (assuming that they were potentially located in or close to VCN)

versus the rest of the CN population considered as collected in DCN (Figure 4-2). The mean EI values
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did not significantly differ between these two populations at the three SNRs in both noises (Figure 4-2
A-B) and the proportions of the different categories were relatively similar in these two populations.
Note also, that in the inferior colliculus, the recordings potentially obtained from the non-lemniscal
divisions displayed (i) more balanced responses than in the lemniscal division in the stationary noise,

and (ii) more insensitive responses than in the lemniscal division in the chorus noise (Figure 4-3).

To sum up, in both noises, the neurons with a high-fidelity representation of the signal were mostly
present at two subcortical levels, in the inferior colliculus and thalamus. The insensitive responses
showing no preference either for the signal or the noise were found in majority in the cochlear nucleus
and in the auditory cortex. The balanced responses represented a small fraction of neurons in station-
ary noise but were more numerous in the chorus noise, especially in IC and MGv. Interestingly, in
both types of noise, the proportion of these balanced responses decreased as one ascends in the audito-
ry system suggesting a decrease in sensitivity to SNR at the cortical level. Finally, the neurons with a
high-fidelity representation of the noise were mostly localized in the cochlear nucleus in the stationary
noise but were in an equivalent proportion in all structures in the chorus noise (between 12.5% and

19%).
The noise-type sensitivity is found at each stage of the auditory system

In the auditory cortex of awake marmoset, Ni and colleagues (2017) have pointed out that the neu-
ronal behavior in noise can be context-dependent: the behavior of a given neuron in a particular noise
does not predict its behavior in another noise. Is this a property characterizing cortical neurons, or is it
a general property that exists at all levels of the auditory system?

In each auditory structure, the neuronal behaviors were partly, but not completely, preserved in the
two noises. On Figure 5A1, the group-switching matrix represents the percentage of neurons in a giv-
en cluster in chorus noise depending on the cluster originally assigned in the stationary noise. The
preservation of the same neuronal behavior in both noises is indicated by the percentages in the diag-
onal line. About 50% of the signal-like and 40% of the signal-dominated neuronal responses in the
stationary noise remained so in the chorus noise. Most of the balanced (73.5%) and insensitive neu-
ronal responses (65.5%) in the stationary noise remained also in the same category in the chorus
noise. Only 36.5% of the masker-like neuronal responses remained so in the chorus noise. Figure 5A2
indicates that the signal-like, signal-dominated and masker-like neuronal responses were the three
categories with the highest percentages of category changes (y° p<0.001). In the different structures,
the percentage of category changes was between 37 and 57% without significance difference between

structures.
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A bootstrap procedure was used to estimate the percentage of category changes, which can occur
simply due to response variability (see Methods section). We suspected that, independently to the
change in noise type, a recording can potentially change category because of its response variability
and/or because it was located at the frontier between two clusters. Briefly, for each recording, and
from the pool of 20 trials obtained for each stimulus, we resampled 20 trials (allowing repetitions),
recomputed the Extraction Index and reallocated each resampled recording in the closest category.
This entire procedure was performed 100 times for each recording. In all the following results, we
only considered the recordings which remained in the same category 95 times or more (out of the 100
bootstraps) in both noises, that is, recordings that displayed a very high reliability of their responses
and were assigned to a particular category with a 95% confidence or more.

Figure 5B1 shows, for this population of 342 recordings, that a non-negligible fraction (36-75%) of
the neurons assigned to a given category remained in the same category when shifting from the sta-
tionary to the chorus noise. When analyzing the percentage of neurons changing categories, we found
a similar pattern as the whole population of 1267 neurons, i.e., the largest proportions of neurons
switching category from the stationary to the chorus noise were in the signal-like, signal-dominated
and masker-like categories (y° p<0.05, Figure 5B2). Analyzing the percentage of neurons changing
clusters according to the structure revealed that the lowest percentages of category changes were in
the cochlear nucleus and in A1 (21 and 22%) and the highest proportion in MGv (72%, x* p<0.05).
Note that when computing the mutual information based on all neurons (Figure 5-1A) or only reliable
neurons (Figure 5-1B), we obtained low MI values (0.53 bits for all neurons and 0.7 bits for reliable
neurons) confirming that a large proportion of neurons change category between noises.

Thus, even when using a bootstrap procedure with a severe selection criterion, a non-negligible frac-
tion of recordings change categories from one background noise to another and this noise-type sensi-

tivity is found at each stage of the auditory system.

The neuronal behaviors in stationary and chorus noise are predictable based on response pa-

rameters obtained in quiet

A fundamental question is whether the assignment of a given recording to a particular category can be
predicted from the response characteristics obtained by presenting pure tones and/or the original vo-
calizations in quiet and/or the maskers alone. To address this question, we firstly focused on the neu-
rons reliably categorized with the bootstrap procedure in both noises (with a confidence interval >

95%, n=342).
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To determine if the assignment of a recording to a particular category can be predicted based upon
response characteristics, we trained an artificial classifier (linear discriminant analysis) with all com-
binations of descriptor types.

Three descriptors were extracted from the responses to pure tones (TFRP): the best frequency (BF)
firing rate, the bandwidth of tuning and the response duration. From the responses to the signal alone
(original vocalizations) and the maskers alone, two descriptors were extracted: the firing rate and the
temporal reliability (CorrCoef index, see Methods). Three other masker descriptors were used in both
noises in an attempt to quantify the firing rate short-term adaptation to the masker (see Methods). Fi-
nally, we included two descriptors corresponding to the ratios between the responses to the signal and
to the masker (see Methods).

In stationary noise, for the descriptors extracted from the TFRP (Figure 6A-C), the distributions of
best frequency (BF) firing rate and bandwidth of tuning did not point out significant differences across
the five categories (Figures 6A-B), but the signal-like category showed significantly longer response
duration than the other categories (Kruskal-Wallis test, p<0.05, Figure 6C). For the descriptors ex-
tracted from the signal responses (Figure 6D-E), the firing rate was significantly lower for the insensi-
tive responses compared to all other response categories (Kruskal-Wallis test, p<0.05, Figure 6D) and
the signal-like and balanced responses had significantly higher CorrCoef values compared to three
other categories (Kruskal-Wallis test, p<0.05, Figure 6E). For the descriptors extracted from the re-
sponses to the masker (Figure 6F-I), the signal-like, signal-dominated and insensitive neuronal re-
sponses showed lower firing rate compared to the balanced and masker-like responses (Kruskal-
Wallis test, p<0.05, Figure 6F), whereas the CorrCoef values did not differ across categories except
for the insensitive neuronal responses that showed the lowest CorrCoef values (Kruskal-Wallis test,
p<0.05, Figure 6G). The masker accommodation (Figure 6H-I) was significantly lower for the signal-
like and signal-dominated categories than the other categories, indicating that these two categories
adapted more to the masker (their firing rate decreased during presentation of the masker alone). For
the two descriptors combining the firing rate to the signal and to the masker (Figure 6J-K), the values
were higher for the signal-like and signal-dominated categories than for the other categories (Figure
6J-K) indicating that these two categories displayed marked preference for the signal over the masker
(Kruskal-Wallis test, p<0.05, Figure 6G).

In general, similar results were obtained in the chorus noise for TFRP and signal descriptors (Figure
7A-E). However, more differences emerged across categories for the masker descriptors as the Cor-
rCoef index (Figure 7G). The differences observed across categories were relatively comparable to the
differences observed in the CorrCoef values obtained for the signal (Figure 7E).

Altogether, these analyses pointed out that there were little or no between-category differences based

upon the TFRP descriptors and that the descriptors combining responses to the signal and to the
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maskers provide information allowing a correct separation between the signal-like and signal-
dominated categories vs. the others.

When the classifier was trained with all the descriptors in stationary noise (combination 1 in Figure
8A, left column), the accuracy of the classifier reached 68.42%, which is more than three times the
chance level (20% as there were five categories). Figure 8B presents the confusion matrix obtained
with this classifier in stationary noise and revealed that the percentage of correct classification de-
pends on the category. Indeed, the signal-like, the balanced and the insensitive neuronal responses
were well predicted (67%, 64% and 91% respectively) whereas only 21% and 37% of the signal-
dominated and masker-like neuronal responses were correctly predicted.

Next, for isolating which type of descriptors allowed the higher predictability, we used 14 different
classifiers corresponding to the 14 possible combinations from the four types of descriptors (combina-
tions 2-15 in Figure 8A). Several important results emerged from these analyses. First, the TFRP de-
scriptors alone (line 8 in Figure 8A) led to the lowest accuracy, 27.78%, which is close from the
chance level indicating that the responses to pure tones are insufficient to predict the behavior of a
given neuron in noise. Second, the descriptors extracted either from the responses to the signal alone
(line 12 of Figure 8A), or from the responses to the masker alone (line 14 of Figure 8A), or from the
signal-to-masker alone (line 15 of Figure 8A) led to an accuracy between 56.73% and 58.77%, which
was only 10% less than the best performance when combining all the descriptors. Finally, the de-
scriptors extracted from the responses to the signal, to the masker and to the signal-to-masker ratio
(line 9 of Figure 8A), generated an accuracy of 66.96%, which is close from the global level reached
with all the descriptors. Therefore, the classifier reached a relative good performance in stationary
noise (66.96%) by combining the three descriptors extracted from the responses to the signal alone
and to the masker alone, the TFRP descriptors only slightly increasing the performance of the classifi-
er (around 3%).

Globally, the results were similar in the chorus noise: Based on all the descriptors, the accuracy of the
classifier was 69%, it dropped to 26% with the TFRP descriptors alone, and between 62% and 66%
with the signal descriptors alone or masker descriptors alone (Figure 8A, left column). The only dif-
ference was that the accuracy of the classifier with only the signal/masker descriptors was at the
chance level (20.18%) probably because the firing rate to the masker is very close to the firing rate to
the signal, suggesting that with a masker composed by a mixture of different type of signals (as the
chorus noise), the masker firing rate does not significantly increase the performance of the classifier.
Figure 8C illustrates the confusion matrix obtained by combining the four types of descriptors in cho-
rus noise, which led to the maximum accuracy of the classifier (69.01%).

To verify that the descriptors are relevant predictors on the whole set of recordings, we trained the

classifiers on the reliable neurons and tested them on the rest of the population (Figure 9). The accura-
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cy of the classification was lower in both noises (43.24% and 49.84% in the stationary and chorus
noise respectively, combination 1 in Figure 9) certainly because among our recordings, some did not
display reliable enough responses. However, these values of accuracy were still more than twice the
chance level. Again, the descriptors based on the TFRP provided an accuracy close to the chance level
(31.24% and 23.35% in the stationary and chorus noise respectively, line 8 in Figure 9) and the de-
scriptors based on the response to the signal alone (line 12 in Figure 9) and response to the masker
alone (line 14 in Figure 9) generated an accuracy that was close from those obtained with the whole
set of descriptors (43.03% and 42.38% in stationary noise; 41.62% and 43.24% in chorus noise).

Altogether, our results pointed out that very few neuronal parameters (as the firing rate and the tem-
poral reliability) to the signal alone and to the noise alone are sufficient to predict, up to a maximum

of around 70%, the neuronal behaviors in noise.
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Discussion

Here, we demonstrate that the robustness to noise of neuronal responses relies on a distributed net-
work along the auditory system. Signal-like and signal-dominated responses were detected at each
level of the auditory system but were in higher proportions at the collicular and thalamic levels. In
terms of proportions, the highest fidelity representation of the signal or the noise was found at the
subcortical level whereas at the cortical level, the majority of neuronal responses showed no prefer-
ence for the signal or the noise suggesting that cortical neurons are less sensitive to the spectro-
temporal details of the noisy vocalizations. Our results also indicate that neurons sensitive to the type
of noise are present at each stage of the auditory system. Finally, a few neuronal parameters extracted
from both the responses to the signal alone and to the noise alone convey enough information to pre-

dict the neuronal behavior in noise up to a maximum of 70%.

Limitations of the study

Based on all EI values, the five categories rather form a continuum with no strict boundaries between
them, which inevitably led us to « impose » the categories. Nonetheless, using a severe criterion of the
bootstrap testing (a confidence interval > 95%), we found reliable neurons in each category, in each
structure and in both noises. In addition, for a given recording, prediction about its assignment to a
particular category reached about a maximum of 70% based upon a few descriptors of neuronal re-
sponses. All these results suggest that these five behaviors do exist in the whole auditory system. The
behaviors of cortical neurons found here in anesthetized animals were the same as previously de-
scribed in awake marmosets (Ni et al., 2017). Therefore, the cortical representation of noisy signals by
different neuronal categories characterized either by the preference of the signal, the masker, a sensi-
tivity to SNR or an absence of these three acoustic features, seems independent of the fact that the
animal is awake or anesthetized.

One can suspect that the higher proportion of signal-like responses in the CNIC and MGv compared
to auditory cortex, results from the fact that our data were collected in anesthetized animals. Accord-
ing to this view, if the recordings have been collected in awake, behaving animals, the results would
be reversed, with a higher proportion of cortical neurons exhibiting robust responses to acoustic deg-
radations. Confrontation of several results suggests that this simple explanation might not being cor-
rect. First, Lohse and colleagues (2020) have recently demonstrated that collicular neurons of awake

mice displayed the same gain control adaptation to the stimulus statistics than in anesthetized mice.
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Second, auditory cortex responses collected in behaving ferrets were found to be sufficiently robust to
preserve vowel identity across a large range of acoustic transformations, such as changes in funda-
mental frequency, sound location or level (Town et al., 2018). However, earlier studies from the same
laboratory performed in anesthetized conditions (Bizley et al., 2009, Walker et al., 2011) have reached
similar conclusions for vowels varying in fundamental frequency and virtual acoustic location, indi-
cating that the general principles allowing neuronal discrimination are observable across anesthetized
and behavioral states. Furthermore, at the subcortical level, it seems that there is not a large difference
between the phase-locking properties in anesthetized and awake animals. In fact, in awake animals,
the subcortical neurons, especially collicular ones (Ter-Mikaelian et al., 2007), will still be far better
than cortical ones to follow the 4-20Hz temporal cues contained in the four vocalizations, which are
crucial cues for responding to these signals in noisy conditions (see figure 12 in Souffi et al., 2020).
Thus, the differences observed here between cortical and subcortical structures in detecting and re-

sponding to communication sounds in noisy conditions should remain the same in awake preparations.

Using the same methods to classify and determine the optimal number of clusters as Ni and colleagues
(2017), we opted for five categories rather than four, which is one main difference with their study.
Our additional category corresponds to the signal-dominated responses and stands as an intermediate
category between the signal-like and the insensitive responses. These responses might represented a
too small fraction in their cortical data to emerge as a category, but the inclusion of three subcortical
structures and a secondary cortical area might favored their emergence in larger proportions (25% and
18% in the stationary and chorus noise, respectively). We can also wonder if choosing 7, 8, or 9 clus-
ters, would have highlighted other neuronal behaviors. Part of the answer is provided by figures 3B-C,
which show that with 6 clusters, similar behaviors re-appear suggesting that a larger number of cate-
gories would have been non-informative. However, it is possible that more specific behaviors might
have been missed as we collected multi-unit recordings composed of 2-6 shapes of action potentials.
This is potentially the case at the cortical level where a large number of cell types have been described
(Ascoli et al., 2008; DeFelipe et al., 2013) and also in the cochlear nucleus (Cant and Benson, 2003;
Kuenzel, 2019). In fact, in the cochlear nucleus, multi-unit recordings might have masked the distinct
temporal response profiles corresponding to different morphological cell-types. For example, the
pause/build-up cells have been associated with the fusiform cells in the dorsal division of CN (Rhode
et al., 1983; Smith and Rhode, 1985), whereas primary-like, onset and phase-locked patterns have
been associated with the VCN globular bushy cells (Smith and Rhode, 1987). Because of our surgical
approach, our recordings mainly (but not exclusively) come from the DCN.

Obviously, it is also important to assess if our results can be generalized to other types of communica-

tion sounds and to other types of masking noises. In fact, similar results were found in the initial study
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by Ni and colleagues (2017) with five other different vocalizations and two other masking noises
which suggests that with our experimental conditions, the results should not significantly change, at

least in primary auditory cortex, with other types of communication sounds and other masking noises.

Robustness to noise in the auditory system: a localized vs. distributed property?

In the Al of awake marmosets, Ni and colleagues (2017) found about 20-30% of robust responses
(depending on the vocalization), called here signal-like responses. In our cortical data, when pooling
together the signal-like and signal-dominated responses, we obtained about the same proportions as in
the marmoset Al (33%). In the bird auditory system, Schneider and Woolley (2013) described the
emergence of noise-invariant responses for a subset of cells (the broad spike cells) of a secondary au-
ditory area (area NCM), whereas upstream neurons (IC and A1 neurons in their study) represent vo-
calizations with dense and background-corrupted responses. They suggest that a sparse coding scheme
operating within NCM allows the emergence of this noise-invariant representation. In our study (and
in the mammalian A1 in general), a sparse representation already exists as early as A1l (see the rasters
in Figure 2A, see also Hromadka et al., 2008) allowing signal-like and signal-dominated responses to
be present in about the same proportions in Al and in the secondary area VRB.
Noise-invariant representations were also reported in Al of anesthetized ferrets (Rabinowitz et al.,
2013). This study suggested a progressive emergence of noise-invariant responses from the auditory
nerve to IC and to A1, and proposed the adaptation to the noise statistics as a key mechanism to ac-
count for the noise-invariant representation in Al. However, Lohse and colleagues (2020) have re-
cently challenged this result by showing, in anesthetized animals too, (i) that collicular, thalamic and
cortical neurons display the same adaptation to noise statistics and (ii), importantly, that silencing the
auditory cortex did not affect the capacity of IC and MGv neurons to adapt to noise statistics.

In fact, Las and colleagues (2005) reported that A1, MGB and IC neurons can detect low-intensity
target tones in a louder fluctuating masking noise and display the so-called “phase-locking suppres-
sion”, that is the interruption of phase-locking to the temporal envelope of background noise. This last
result indicates that both IC and MGB neurons have the same ability as cortical neurons to detect low-
intensity target sounds in louder background noises (even at -15 or -35 dB SNR). Thus, the robustness
of some of our subcortical neurons may stem from this ability to detect the vocalizations even at SNRs
as low as the -10 dB SNR.

Based upon the proportion of signal-like and signal-dominated responses, it seems that the robustness
to noise peaks in CNIC, with the MGv neurons being at the intermediate level between IC and Al
(Figures 4E, 4J). In fact, our results point out an abrupt change from a prominent noise-sensitivity in

CN to a prominent noise-robustness in IC, which means that this robustness is generated by neural
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computation taking place in the central auditory system. Whether this is an intrinsic property emerg-
ing de novo in the IC or whether this property emerges as a consequence of the multiple inputs con-
verging upon IC cells (Malmierca and Ryugo, 2011) remains to be determined. Several studies have
clearly demonstrated that IC neurons adapt to the stimulus statistics. First, adaptations of IC neurons
to the average stimulus intensity, stimulus variance and bimodality that has already been described
with a temporal decay of about 160 ms at 75 dB (Dean et al., 2005; 2008). Second, adaptation to the
noise statistics shifted the temporal modulation function (TMF) of IC neurons to slower modulations,
sometimes transforming band-pass TMF to low pass TMF in about 200 ms of noise presentation
(Lesica and Groethe, 2008). In addition, recent studies have shown that a tone-in-noise discrimination
task influences neuronal activity as early as the inferior colliculus (Slee and David, 2015, Shaheen et
al., 2020) suggesting that subcortical structures may participate to complex auditory tasks and should
not be considered as passive relays.

A particularly interesting result is that, in both types of noise, the proportion of neurons classified as
balanced (i.e. showing strong SNR-dependence) decreased progressively as one ascends in the audito-
ry system, which is in line with the idea that cortical neurons are less sensitive to SNR than subcorti-

cal ones.

Noise-type sensitivity and noise representation in the auditory system

Ni and colleagues (2017) found about two-thirds of A1 neurons switching category from one back-
ground noise to another, suggesting that the majority of cortical neurons have a behavior specific to
the type of noise. We preferred to call this phenomenon noise-type sensitivity rather context-
dependence (proposed by Ni and colleagues, 2017) because the latter refers to situations where the
same stimulus is presented in different contexts; whereas inserting signal stimuli in two types of noise
generated different auditory streams.

Here, we confirmed that these neurons exist at the level of the primary auditory cortex and extended
this result to the subcortical structures. Therefore, different types of noise streams activate different
subpopulations of neurons at each stage of the auditory system for constructing invariant representa-
tions of communication sounds in noise. In addition, based on a restrictive population of neurons that
have a high response reliability as they remained in the same category with a bootstrap procedure (i.e.,
the reliable neurons), we also found such neurons that switch categories between the two noises in all
auditory structures. However, although we initially found around 40% of such neurons in Al (Figure
5A2), the bootstrap procedure indicated that more realistic percentages should be much lower, poten-
tially around 20% (Figure 5B2). The response variability, which is probably much larger in awake
than in anesthetized animals (Edeline et al., 2000, 2001; Huetz et al., 2009), can potentially explain
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the difference between our results and those of Ni and colleagues (2017). Here, these neurons were
detected in auditory cortex but were found in higher proportions in the inferior colliculus and in the
auditory thalamus. This indicates that these subcortical neurons might be more sensitive to the sound
streams in which the signals were embedded. It is interesting to note that signal-like responses in sta-
tionary noise became as much balanced as they remained signal-like in chorus noise. Since in chorus
noise, the signal and masker are very close (both spectrally and temporally), this change of category
from signal-like to balanced was predictable. As already mentioned by Ni and colleagues (2017), if a
larger number of noise types would have been tested, the proportion of neurons within each category
would have been different. For example, a larger fraction of neuronal responses can potentially be
considered as signal-like or masker-like, because masker-like responses in a particular type of noise
can be the signal-like ones in another noise. Our results show that their assumption, if valid, does not
only concern the primary auditory cortex.

Robust perception of speech in humans or vocalizations in animals probably also requires a robust
representation of competing sounds (here, masking noise). This can be the functional role of the neu-
rons presenting masker-like responses, which are potentially crucial to determine the characteristics of
the noise type and to provide an accurate representation of it within the auditory stream reaching our
ears at any time. They were detected here, in higher proportion in the CN in stationary noise, but they
became more numerous and in equivalent proportion in all structures in chorus noise. Therefore, the
noise representation can be based upon the neuronal activity in the cochlear nucleus in stationary
noise, whereas this representation can be more distributed in the chorus noise potentially because this
noise has more naturalistic temporal properties leading to activate more neurons than the stationary

noise.

Predictors of neuronal behavior in noise

Using classifiers trained with different types of descriptors, we looked for characteristics from the
responses to the pure tones (i.e., the TFRPs), to the signal alone and to the noise alone for predicting
the assignment of a given recording in a particular category. We pointed out that the TRFP parameters
led to an accuracy of the classifier very close to the chance level indicating that the basic static filter-
ing properties derived from the TFRPs did not predict the neuronal behaviors in noise. When adding
the descriptors of both the signal alone and noise alone (as the firing rate and the temporal reliability),
the classifier reached an accuracy up to around 70% in both noises which strongly suggests that re-
sponses to signal alone and to noise alone contained enough information to predict the behavior in
noise of a given recording. In a previous study testing the responses of IC cells to vocalizations in

noise, it was shown that despite no consistent effect of the mean firing rate, the temporal reliability
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was decreased by half (Lesica and Grothe, 2008). Under these conditions, IC neurons were still effi-
cient in detecting vocalizations in noise. Using these physiological results in a computational model,
this study also pointed out that under noisy conditions, lowpass filtering the noisy vocalizations is the
most efficient strategy to code the stimuli because it preserved the power at low modulation frequen-
cies and the temporal reliability of responses.

Together, these results suggest that the more temporally precise are the synaptic inputs converging
onto a particular neuron, the more robust is the response of that neuron in background noise. This is
true for encoding slow amplitude modulations, which are among the most efficient cues to discrimi-

nate speech and communication sounds (Shannon et al., 1995; Zeng et al. 2005; Souffi et al., 2020).

General conclusion

Here, we propose that the noise-robustness observed in many studies at the cortical level stems, at
least partially, from subcortical mechanisms (Lesica and Groethe, 2008; Lohse et al., 2020). There-
fore, the auditory cortex potentially inherits adaptation from earlier levels, allowing the cortical net-
works to focus on higher-level processing such as classifying the target stimuli into phonetic or lin-
guistic features (Mesgarani et al., 2014), segregating the different auditory streams (Mesgarani and
Chang, 2012) integrating multimodal information (Deneux et al., 2019), and retaining behaviorally
important stimuli in short term (Huang et al., 2016) or long term memory (Moczulska et al., 2013;
Concina et al., 2019).
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Figure legends

Figure 1. Original and noisy vocalizations. A. Waveforms (top) and spectrograms (bottom) of the
four original whistles used in this study. B-C. Spectrograms of the four whistles in stationary (B) and
chorus (C) noise at three SNRs (+10, 0 and -10 dB, from top to bottom) and the noise only. The
frequency range for all spectrograms is 0-30 kHz and all spectrograms share the same color scale
(covering a range of 50 dB).

Figure 2. The decrease in EI values is more pronounced in chorus noise than in stationary noise
in each auditory structure. A. Raster plots of responses of the four original vocalizations, noisy
vocalizations (in both noises) and noise alone recorded in CN, CNIC, MGv, Al and VRB. The grey
part of rasters corresponds to the evoked activity. For each structure, all the rasters correspond to the
same recording. B. Rasters showing examples of neuronal responses in stationary noise with values of
EI > 0 corresponding to a signal-like response (left, IC recording) and EI < 0 corresponding to a
masker-like response (right, Al recording). Top panels show the responses to the original
vocalizations, the middle panels the responses to vocalizations at the 0 dB SNR in stationary noise and
the bottom panels the responses to stationary noise alone. C. Box plots showing the EI values for the
three SNRs obtained in CN (in black), CNIC (in green), MGv (in orange), Al (in blue) and VRB (in
purple) alternatively in stationary (SN) and chorus noise (CN). In each box plot, the red dot represents
the mean value. The black lines represent significant differences between the mean values (one-way
ANOVAs, P<0.001; with post-hoc paired t tests, P*joa.cn = 4.03e-18, P 10as. conic = 1.45-07, Pogs,
CNIC = 2.476-45, Pd()dB, MGy — 2.1 16-30, PeOdB,Al : 5.416-25, PdeB,VRB = 6.366-10, Pg_lodB, CN = 5.746-12,
Ph,mdB, CNIC = 1.836-59, Pl,10dB, MGv — 1.166-36, PJ_lodB)A1 = 2.846-24, Pk+]0dB’ VRB — 4.62¢-1 1).

Figure 3. The choice of five clusters is optimal to reveal the different behaviors in both noises.

A. Mean square error of EI profile clustering as a function of the number of clusters using the K-
means algorithm for the stationary and chorus noise. B-C. Population average EI profile (:SEM) of
each cluster when considering six clusters to separate the data in the stationary noise (B) and in the
chorus noise (C). Note that in both noises, two clusters have similar mean EI profile, i.e., the same EI
evolution across the three SNRs, (the two grey clusters in B and the two blue clusters in C) leading us
to consider only five clusters in the following results (Figure 4).

Figure 4. Robustness to noise is a distributed property in the auditory system.

A. Each row corresponds to the EI profile of a given neuronal recording obtained in the five auditory
structures in stationary noise with a color code from blue to red when progressing from low to high EI
values. On the right, five stacked colors delineate the identity for the five categories of responses. The
signal-like category is in green, the signal-dominated category in pink, the balanced category in
turquoise, the insensitive category in gray and the masker-like category in yellow. The names of the
categories used in the study by Ni and colleagues (2017) are provided for comparison. B-E. 3D
representation of the five categories in stationary noise (B), mean EI values (+SEM) of the five
categories (C), relative proportions of each category in stationary noise (D) and proportion of each
category in the five auditory structures from CN to VRB (E).

F-J. Same representations as in A, B, C, D and E for the responses collected in the chorus noise.

See Table 1 selection type (b) for referring to the number of selected recordings in each structure.

Figure 4-1. Similar results as in figure 4 are obtained taking into account the neurons without
significant TRFP.

A-C. Mean EI values (+SEM) of the five categories across the three SNRs (+10, 0 and -10 dB) (A),
relative proportions of each category in stationary noise (B) and proportion of each category in the
five auditory structures from CN to VRB for the recordings with or without significant TFRP (Time-
Frequency Response Profile, relative to pure tone responses) (C).
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D. Proportion of each category in the five auditory structures from CN to VRB for the recordings
without significant TFRP.

E-H. Same representations as in A, B, C and D for the chorus noise.

See Table 1 (selection type (a)) for referring to the number of selected recordings in each structure.

Figure 4-2. Attempt to separate the ventral and dorsal parts of the cochlear nucleus based on
the depth of the recordings.

A-B. Box plots showing the EI values for the three SNRs obtained in the ventral (VCN, in black) and
dorsal (DCN, in grey) parts of the cochlear nucleus in stationary (A) and chorus noise (B). In each box
plot, the red dot represents the mean value. There was no significant difference between the EI values
obtained in VCN and DCN for the three SNRs and in both noises (one-way ANOVAs, P>0.05; with
post-hoc paired t tests, P>0.05). C. Proportion of each category in the ventral part of the cochlear
nucleus (VCN, n=87 recordings) and its dorsal part (DCN, n=302 recordings) obtained in stationary
(SN) and chorus (CN) noise.

Figure 4-3. Lemniscal and non-lemniscal parts of the inferior colliculus.

Proportion of each category in the lemniscal part of inferior colliculus (central nucleus of inferior
colliculus, CNIC, n=339 recordings) and its non-lemniscal parts (dorsal and external cortices of the
inferior colliculus, DCIC-ECIC, n=73 recordings) obtained in stationary and chorus noise. See Table
1 (selection type (b)) for referring to the number of selected recordings.

Figure 5. The noise-type sensitivity is found at each stage of the auditory system.

Al. Group-switching matrix representing the percentage of recordings in a given category in chorus
noise depending on the category originally assigned in the stationary noise. The abscissas indicate the
category identity in the stationary noise and the ordinates represent the category identity in the chorus
noise.

For example, signal-like responses in stationary noise are also 50% signal-like in chorus noise but
10% are reclassified as signal-dominated, 35% balanced, 1.5% insensitive and 3.5% masker-like. Note
that, in stationary noise, the number of recordings in each category were 139, 346, 83, 540 and 159 in
signal-like, signal-dominated, balanced, insensitive and masker-like category respectively.

A2. Mean percentages of recordings changing category from the stationary noise to the chorus noise,
first in each category and second in each structure (VRB, (in purple), Al (in blue), MGv (in orange),
CNIC (in green) and CN (in black)).

B1. Group-switching matrix representing the percentages of recordings changing category from the
stationary noise to the chorus noise based only on recordings considered as reliable with the bootstrap
procedure in the two types of noise (with a confidence interval > 95%).

B2. Mean percentages of recordings changing category from the stationary noise to the chorus noise,
first in each category and second in each structure (VRB, (in purple), Al (in blue), MGv (in orange),
CNIC (in green) and CN (in black)).

Figure 5-1. Confusion matrices obtained for all and reliable recordings.

A. Confusion matrix relative to Figure 5A1 representing the number of recordings in a given category
in chorus noise depending on the category originally assigned in the stationary noise.

B. Same as in (A) with only recordings considered as reliable with the bootstrap procedure in the two
types of noise (with a confidence interval > 95%). This figure is relative to the Figure 5B1.

Note that the mutual information (MI, bits) values were low in (A) and (B) corroborating the fact that
a large proportion of recordings assigned to a given category in stationary noise change category in
chorus noise.

Figure 6. Descriptors of the categories in stationary noise used by the classifiers.
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A-C. Three TFRP parameters were chosen as descriptors: the best frequency (BF) firing rate, the
bandwidth and the response duration. D-E. Two signal descriptors were selected corresponding to the
firing rate and the CorrCoef values obtained in original conditions. F-G. Two main masker descriptors
were presented corresponding to the firing rate and the CorrCoef values obtained in stationary noise
alone. H-I. The three other masker descriptors are: (H) the ratio between the masker firing rate taken
at the time the signal should have occurred and the initial masker firing rate during the first 200 ms of
the masker and the number of action potentials emitted during the first (Initial, I) and last (Final, I) 50
ms of the masker alone over a 564 ms-period. J-K. Two descriptors of the signal-to-masker ratio are
presented and taken into account the firing rate of responses to the signal and to the masker; the two
differ only on which part of the response to the masker is taken into account (see Methods). For each
violin plot, the red dot represents the median value and the black lines represent significant
differences between the median values (Kruskal-Wallis test, p<0.05).

Figure 7. Descriptors of the categories in chorus noise used by the classifiers.

A-C. Three TFRP parameters were chosen as descriptors: the best frequency (BF) firing rate, the
bandwidth and the response duration. D-E. Two signal descriptors were selected corresponding to the
firing rate and the CorrCoef values obtained in original conditions. F-G. Two main masker descriptors
were presented corresponding to the firing rate and the CorrCoef values obtained in chorus noise
alone. H-I. The three other masker descriptors are: (H) the ratio between the masker firing rate taken
at the time the signal should have occurred and the initial masker firing rate during the first 200 ms of
the masker and the number of action potentials emitted during the first (Initial, I) and last (Final, I) 50
ms of the masker alone over a 564 ms-period.

J-K. Two descriptors of the signal-to-masker ratio are presented and taken into account the firing rate
of responses to the signal and to the masker; the two differ only on which part of the response to the
masker is taken into account (see Methods). For each violin plot, the red dot represents the median
value and the black lines represent significant differences between the median values (Kruskal-Wallis
test, p<0.05).

Figure 8. The neuronal behaviors in stationary and chorus noise are predictable based on
response parameters obtained in quiet.

A. All tested combinations (1-15) based on four types of descriptors (TFRP, Signal, Masker and
Signal/Masker) of the categories in stationary noise and their respective percentages of accuracy of
the classifier. The gray part means that the descriptor is included in the classifier and the white part
means that the descriptor is excluded from the classifier.

B-C. Example of the confusion matrix obtained with all descriptors (combination 1) in stationary (B)
and chorus (C) noise. Each row corresponds to a true category and each column corresponds to a
predicted category. The numbers in the confusion matrix correspond to the percentage of recordings
of a given true category which have been predicted to belong to a given predicted category.

Figure 9. Generalization of the classification.

In this figure, the classifiers were trained with the reliable neurons and tested on the rest of the
population. All tested combinations (1-15) based on four types of descriptors (TFRP, Signal, Masker
and Signal/Masker) of the categories in stationary and chorus noise and their respective percentages of
accuracy of the classifier. The gray part means that the descriptor is included in the classifier and the
white part means that the descriptor is excluded from the classifier.
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1144
1145 Table titles and legends
1146

1147  Table 1. Summary of the number of animals and number of selected recordings in each structure.
1148  CN: cochlear nucleus, CNIC: central nucleus of inferior colliculus, MGv: ventral part of the medial
1149 geniculate body, Al: primary auditory cortex, VRB: ventrorostral belt.

1150 A recording corresponds to a channel of a 16-channel electrode.

I ) 1151
Non-
Q Lemniscal pathway lemniscal
PY— CN pathway Total
S
( ) CNIC MGv Al VRB
m Number of animals 10 11 10 11 5 47
3 Number of recordings tested 672 478 448 544 192 2334
Six Extraction Index (EI) values
C (for the six SNRs) 617 433 343 488 184 2065
m One of the six EI values significantly
higher than the Elgyrogate 428 374 230 349 137 1518
E Selection type
(a) Significant response to at least
one vocalization and/or significant
U TFRP (Time-Frequency Response 401 350 210 279 109 1349
m Profile)
(b) Significant response to at least
4-) one vocalization and significant 389 339 198 261 80 1267
Q e
1152
GJ 1153
Lemniscal pathway Non-lemniscal
©) CN pathway | ropq)
< CNIC |MGv |Al|  VRB
Number of recordings
O reliably categorized in the | 139 | 80 50 |52 21 342
two noises
— Number of recordings
3 reliably categorized and | 30 35 36 | 12 10 123
noise-type sensitive
m Number of recordings
reliably categorized and | 109 45 14 |40 11 219
Z no noise-type sensitive
1154
GJ 1155  Table 2. Number of recordings reliably categorized both in stationary and in chorus noise using the

1156  bootstrap procedure and number of recordings sensitive to the type of noise within this population.
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