
HAL Id: hal-03154580
https://hal.science/hal-03154580

Preprint submitted on 1 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessment of a hybrid software development process for
student projects: a controlled experiment

Rafal Wlodarski, Jean-Rémy Falleri, Corinne Parvéry

To cite this version:
Rafal Wlodarski, Jean-Rémy Falleri, Corinne Parvéry. Assessment of a hybrid software development
process for student projects: a controlled experiment. 2021. �hal-03154580�

https://hal.science/hal-03154580
https://hal.archives-ouvertes.fr

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Assessment of a hybrid software

development process for student projects:

a controlled experiment
Rafał Włodarski

Institute of Information Technology

Lodz University of Technology

Lodz, Poland

rafal.wlodarski@edu.p.lodz.pl

Jean-Remy Falleri

Univ. Bordeaux, Bordeaux INP, CNRS,

LaBRI, UMR5800, F-33400 Talence,

France. Institut Universitaire de France

falleri@labri.fr

Corinne Parvéry

Bordeaux INP

Talence, France

corinne.parvery@bordeaux-inp.fr

Abstract—In recent years, a vivid interest in hybrid

development methods has been observed as practitioners

combine various approaches to software creation to improve

productivity, product quality, and adaptability of the process to

react to change. Scientific papers on the subject proliferate,

however evaluation of the effectiveness of hybrid methods in

academic contexts has yet to follow. The work presented

investigates if introducing a hybrid approach for student

projects brings added value as compared to iterative and

sequential development. A controlled experiment was carried

out among Bachelor students of a French engineering school to

assess the impacts of a given development method on the success

of student computing undertakings. Its three dimensions were

examined via a set of metrics: product quality, team

productivity as well as human factors (teamwork quality &

learning outcomes). Several patterns were observed, which can

provide a starting point for educators and researchers wishing

to tailor or design a software development process for academic

needs.

Keywords— hybrid software development, hybrid method,

software process, iterative, sequential, student projects, education

I. INTRODUCTION

As the software industry evolves to seize technological
opportunities and respond to new challenges, so do the
development approaches applied by practitioners. As a result,
since the conception of the “Waterfall” model, a wide variety
of software processes and life cycle models has been
established, documented and applied in both commercial and
academic contexts. Nevertheless, in many practical cases, a
given methodology applied by the book does not address
issues arising from a particular development environment.

A variety of publications, including scientific papers [1,
2] as well as more practitioner-oriented studies [3] show a
trend towards the development and use of hybrid approaches.
As defined by Kuhrmann et al. [4], these are “any
combination of agile and traditional (plan-driven or rich)
approaches that an organizational unit adopts and customizes
to its own context needs (e.g. application domain, culture,
process, project, organizational structure, techniques,
technologies, etc.)”. What can be observed is that plan-driven
projects incorporate iterative development to accommodate
change and introduce additional activities to generate more
contact hours with users [5]. Likewise, agile-based methods
integrate elements from “traditional” approaches such as
architecture planning and formal estimation [5].

Research on the hybrid approaches is still relatively
scarce, and that is particularly true when it comes to their
application to drive student projects. To the authors’ best
knowledge, there are only two papers reporting on the use of
a hybrid approach in the academic context [6, 7]. In this
study, we aim to compare the effectiveness of a hybrid way
of working against the processes it combines: iterative and
sequential. We thus introduce simplified versions of iterative,
sequential and hybrid methods to guide computing projects
developed by teams of novice students and compare their
outcomes.

A recent study [8] lists the goals most frequently named
by practitioners devising hybrid methods; they can be
regrouped into two broad categories: project quality (e.g.
external product quality) and project efficiency (e.g.
enhanced productivity and time-to-market). While both
remain relevant for student undertakings, the ultimate goal of
any course is fulfilment of its underlying learning outcomes.
Therefore, in our study we evaluate three dimensions of
success: project quality, team productivity and human factors
(teamwork quality & learning outcomes). These elements are
investigated to address the following research question:

RQ: Does a hybrid method yield better results in one of
the evaluated success dimensions of student projects than the
processes it combines (sequential and iterative)?

To answer the research question, a total of 16 metrics
were evaluated for a group of 67 third year students of a
Telecommunications program. We were also conducting
post-experiment surveys in which we measure subjects’
perception of the response variables in the human factors
category. The remaining sections of the paper describe the
experiment planning process and operational aspects of its
execution. Results of the study are then presented, and their
validity discussed. The paper concludes with a discussion on
the findings and their contribution to the body of knowledge
on software engineering education.

II. EXPERIMENT PLANNING

A. The study environment – setting and artefacts

The context of the experiment is a Web programming
course, a compulsory class worth 2.5 ECTS points (5 hours
of lectures, 20 hours of tutorials, and 5 weeks x 2h of
supervised assignment work). Following the European Credit
Transfer and Accumulation System guidelines [9], students
were expected to dedicate 30 to 40 hours on the course
outside of activities guided by teaching staff.

The assignment was a PHP, HTML and CSS-based
system to keep track of and share expenses with others, a
concept similar to applications like Tricount and Splitwise.
Due to a limited duration of the project, the requirements
engineering activity was carried out prior to the course by its
instructors and the students were provided with a Backlog of
user stories, classified according to their priority:

- P1 – core of the application, to be implemented first
- P2 – major functionality, to be treated with high priority
- P3 – nice to have functions, to be developed if time allows

Given that the authors investigate a university context,
typically characterized by stable requirements, an informed
decision not to introduce changing needs was taken as it
could skew the experiment towards the iterative approach.

As part of the assignment, all teams were required to
provide the following artefacts:

1. application source code as well as its deployment script

2. a project documentation, containing the following

sections:
- description, of the project context and its target users i.e.

‘personas’,
- sitemap of the application, indicating its GUI structure,
- wireframes of all the screens of the application to be

developed,
- a list of the system modules, their description and

underlying PHP scripts - a basis of the architecture
- a list of test cases as well as a requirements traceability

matrix that links user stories to their tests, as well as

tracks their execution and outcomes.

Detailed instructions and samples were provided to ensure
proper understanding of what is expected and facilitate
students’ work.

B. The study environment - processes
The course population was divided into three separate

laboratory groups, where different processes were
introduced: iterative, sequential and hybrid. The development
approach applied differed by means of:

- project phases distinction and underlying activities
organization,

- work planification and monitoring method.
 The assignment, deliverables and grading scheme were
independent of the treatment, hence shared by all teams.

 1) Iterative approach

In this approach there are no formal project phases as instead,

certain steps are performed repeatedly. Such loops are called

“iterations” and encompass different software development

activities. In the context of this case study, an iteration lasts

2 weeks (the same as period between follow up classes),

includes design, coding and testing activities and as its

outcome, a piece of functionality is added to the target

system. All of the above are captured in a “Definition of

Done”, which reflects the conditions to be met so that a given

functionality can be considered complete. This practice

implies that both the application and its documentation are

delivered incrementally:

1. A wireframe corresponding to a given user story is

created.
2. Source code is written and committed to a shared code

repository.
3. HTML and PHP code quality is verified (see III.C).
4. Test case(s) linked to a given user story is defined.
5. Test case(s) is executed, and its outcome reflected in the

Requirements Traceability Matrix.
Additionally, every iteration begins with a planning exercise

and concludes with a demonstration of the developed part of

the system to the course instructor. This is when formal

feedback is provided; any suggestions or improvements can

be then incorporated in an upcoming iteration. Partial design

was not formally reviewed but feedback was provided upon

request.

2) Sequential approach
Sequential lifecycle models consist of a succession of

phases, with no or little overlap between consecutive phases.

In the context of this experiment, every project progressed

through design, implementation and testing, each phase

requiring specific artefacts to be produced. As part of the

design, students were to conceive their solution and formalize

it by means of documentation (as described in section II. A).

The course instructor shared his feedback on the design

before students could move to the next phase -

implementation. It kicked off with a planning exercise for the

whole phase ahead and onwards consisted mostly of coding

activities with regular progress check points (formally

monitored with KPIs). A final phase of testing consisted of

executing prepared test cases and updating the Requirements

Traceability Matrix to reflect their outcome. The last two

weeks of the course were dedicated to bug fixing and

polishing the application.

3) Hybrid approach
Recent literature examined [10] how combining different

methods is done with regards to the organization of the whole

development process and identified three prevailing patterns.

One of them - the Waterfall-Agile-Approach - uses the

Waterfall model and its underlying phases as its baseline,

however implementation is done in an iterative manner. It

was chosen for this case study as it could be accommodated

in the relatively short course timeframe (as opposed to the

other two patterns). Similarly, to the sequential approach, the

development process imposed progressing through dedicated

design, implementation and test phases. As in the iterative

approach, 2-week cycles were put in place during

implementation and involved a planning exercise as well as a

demo. The hybrid approach was additionally characterized by

a practice concerning the team composition: “align team

structure with system architecture” to help nurture

technical skills and improve the internal quality of the

system. It implied individual module ownership, meaning

that a certain part of the solution was assigned to a single

student. He was therefore responsible for all the aspects of

that module: its design, implementation and quality

assurance. The last part signifies that such student verified the

quality of PHP and HTML code bases with corresponding

tools (see section III.C) and executed test cases covering

underlying user stories.

As part of the project design, students had to specify the

solution architecture with its underlying modules. That

served as a basis for the distribution of responsibilities among

the team members. Prior to starting the implementation, team

members were requested to notify the course instructor about

the functionalities under their responsibility via email.

C. The study environment – student activities

This section describes activities that students had to

perform as part of the course and details how they were

contextualized for the approaches under study.

1) Planning
Prior to starting any coding activity, all teams had to plan

the work ahead (regardless of the process applied). It implied

choosing the functionalities that will be implemented (their

order suggested by the associated priority level, see II.A),

identifying the underlying tasks and distributing them among

the team members. Nevertheless, the scope of planning

differed between the approaches. Students working in an

iterative and hybrid manner were to plan work for the

following two weeks whereas those working in a sequential

fashion had to define tasks for the entire implementation

phase (6 weeks) and set delivery targets for every follow up

class. All students were required to formalize the scope of

their upcoming work via an email sent to the instructor,

listing all the functionalities planned in a given timeframe.

Additionally, all tasks were logged in GitHub Issues and

assigned to their owners.

As breaking down requirements into granular work items

is not straightforward for novice developers [27], a sample

user story and its translation into tasks was provided to the

students. To further facilitate the planning exercise, the

course instructor suggested to conceive the entire database

scheme upfront and helped refine tasks granularity so that at

least two layers are always distinguished (front end:

HTML/CSS and backend: PHP).

2) Work progress follow up
As form of the follow up and progress monitoring outside

of classes, all teams were asked to organize a meeting every

other week and as its outcome, the following items were

addressed:

- update of the task statuses on GitHub issues (to do/

in progress/done),
- submission of a project summary report,
- calculation of work progress KPIs.

The first two activities looked the same for all groups. The

meeting report format was imposed and took form of a table

outlining the following items for each team member:

- advancement made since the last class,
- work to be done prior to the next class,
- problems encountered,
- risks identified.

On top of the summary, each group submitted a KPI showing

the progress of work, calculated in a way that was

characteristic to a given process. All teams received

instructions and excel templates to be used for that purpose.

Students following the iterative approach used a

simplified version of “Team velocity” to measure their

productivity. Every week, they tracked the amount of

completed tasks (those fulfilling the conditions of Definition

of Done) versus the total number foreseen for a given

iteration.

The sequential approach students employed one of the

tools used to assess the project’s performance in classical

project management - Schedule Performance Index (SPI). It

is a ratio of earned and planned value at a given point in time.

In the study it was expressed by the number of tasks already

tackled, divided by the total number of tasks identified during

the implementation planning exercise. During every team

meeting and follow up classes, students calculated the current

SPI score and compared it with the target they have set

initially (e.g 0.4 after 4 weeks of classes).

Students developing their solution with the hybrid

method, made use of a metric originating from Lean

manufacturing - Work In Progress - which corresponds to the

amount of ongoing tasks at some point in time. A team was

to maintain a limit on that number, which was established

together with the instructor and was equal roughly to two

tasks per team member. A Kanban board reflecting the

possible statuses was available in GitHub and was used for

Fig. 2. A diagram presenting the structure of the three processes evaluated along with key student activities.

tracking purposes. At the end of every team meeting, a

summary of tasks distribution was handed in.

3) Testing
Sequential and hybrid approaches included a dedicated

testing phase while the iterative way of working imposed

inclusion of tests as part of every solution increment.

Regardless of the process, all students had to perform the

same tasks:

1. Write and document a test case(s) linked to a given user

story.
2. Execute the corresponding test case(s).
3. Update the Requirements Traceability Matrix with the

outcome of the test.

D. The study environment – roles &

responsibilities within a team

Every team had a designated Team Leader, who was there
to guide the team towards the course’s objectives, coordinate
the work all along the project and be a point of contact for the
instructor. Additionally, he/she was in charge of the
following artefacts: team meeting summary and work
progress KPI calculation.

Aside from Team Lead, no distinction of roles was made
(e.g. tester or UX designer) and there was no notion of
hierarchy - all the decisions were to be taken together (e.g.
with regards to tasks distribution) and the team lead did not
have authority over others.

E. Variables in the study

Independent variables. The independent variable of interest

in this study is the development approach applied by student

teams. The effects of the following processes are evaluated:

iterative, sequential, hybrid.

Dependent variables. The effectiveness of the software

development method can be examined from different

perspectives. In the study measures that encompass artefact,

process and people facets of success were applied. A multi-

dimensional approach for evaluation of the students’ work,

based on [11] inspired measurement of performance of a

given processes in terms of the number of dependent

variables.

• Internal quality - HTML errors index: given the Web

nature of the assignment, the quality of client-side code was

evaluated. A single score based on the number of errors

generated during a W3C validation for a pre-selected

portion of pages (unknown to the students), and divided by

the total number of lines of code was used in this regard (1)

 HE = E/n (1)
where: E - number of errors detected during W3C validation, n -

number of lines in a HTML page

• Internal quality - HTML warnings index: it is a measure

similar to the first dependent variable, yielding the number

of warnings per line of code (2).

HW = W/n (2)
where: W - number of warnings detected during W3C validation, n

- number of lines in a HTML page

• Internal quality - maintainability ranking of PHP code:

this is a single maintainability measure that consolidates

different technical aspects of the produced software, as

defined by SIG, a software management consulting

company, in collaboration with TV Informationstechnik

laboratory. The underlying technical quality model is based

on a number of metrics [12]:

- Lines of Code (LOC),

- duplicated LOC,

- Cyclomatic Complexity,

- parameter counts,

- dependency counts.

• External quality - Functional Correctness: one of

functional suitability characteristics defined in the ISO

25010 Product Quality Model [13] represents the degree to

which a system provides the correct results. In the study, it

is expressed as a ratio of functions containing bugs to the

total number of functions tested.

FC = 1- ΣC/D (3)
where: C - severity of issues detected in a function, D - number of

functions described in requirements specification

• Team productivity - Functional Completeness: ISO

defines it as a degree to which the set of functions covers

all specified tasks and user objectives [13]. Simply put, it

is a measure of the team’s output, expressed by the amount

of functionality delivered. It is calculated as a ratio of the

number of missing functions detected during evaluation

and the total number of functions described in the

requirements specification.

TP = 1- A/B (4)
where: A - number of missing functions detected in evaluation, B -

number of functions described in requirements specification

• Teamwork quality - team cohesion - defined in literature

as a "shared bond that drives team members to stay together

and to want to work together” [14]. As stated in [15] team

cohesion is highly correlated with project success and is

critical for team effectiveness [16]” thus it was used as a

proxy of teamwork quality in the study and was assessed

using an adapted form of The Group Environment

Questionnaire [17].

• Learning outcomes - soft skills: were evaluated using

rubrics and encompass organizational and inter-personal

skills. The following aspects of efficient collaboration

within a team were measured:

- teamwork: in terms of conformity with the team’s

pace of work and engagement towards the team’s

goals,

- planning, in terms of conformity with the project

plan decided by the group,

- tasks management, in terms of respect of the tasks

distribution,

- collective decision-making, in terms of negotiation

skills and facilitating an agreement at the team level,

- contribution to a positive working environment, in

terms of mutual support, diplomacy and goodwill.

• Learnings outcomes - technical skills: assessing the

courses technical learning objectives: HTML, CSS, PHP

and SQL programming as well as relational database

management.

F. Hypothesis formulation

Based on the findings reported by Wlodarski et al. [18] who

compare plan driven and iterative approaches in the context

of student computing projects two hypotheses were made

about the evaluated processes:

1. Hybrid approach would yield higher team productivity in

terms of Functional Completeness as compared to the

sequential approach; similar results are expected for the

iterative approach given that both deliver functionality

incrementally.
2. Hybrid approach will produce software of higher external

quality as compared to the iterative approach owing to its

dedicated testing phase; similar results are expected for the

sequential approach.

The team organization practice introduced as part of the

hybrid way of working (and absent from the other

approaches), could additionally bring the following benefits:

3. Hybrid approach would produce software of higher

internal quality as compared to both iterative and

sequential approaches, owing to the practice “Align team

structure with system architecture” which implies

responsibility of a given system module and execution of

all process activities at a team member level.
4. Students working with the hybrid method will exhibit

higher level of technical skills as compared to both

iterative and sequential approaches, owing to the practice

“Align team structure with system architecture”.

G. Data used in the study

The study is performed with data from 67 third year students

of a Telecommunications program at a French engineering

school. As part of it, they spend six semesters (from BAC+3

to BAC+5, or equivalently from BSc to MSc) mastering four

thematic pillars: signal processing, digital communications,

networks, and computer science. A majority of the students

graduated from scientific “classes préparatoires” (which

consist of intensive courses in mathematics, physics,

chemistry as well as introductory classes to computer

science) and therefore have a similar, beginner skill set and

experience with coding.
The list of course participants was known in advance and

they were allocated to three laboratory groups, based on
alphabetical order of their surnames:

- GA (23 students): iterative approach
- GB (23 students): sequential approach
- GC (21 students): hybrid approach

Within one group, teams of 3 were formed; whenever not

possible, teams of 2 were constructed instead and had a

reduced backlog to implement in order to accommodate for

the smaller team size.

III. OPERATIONS

A. Preparation

The design of the study was formalized prior to the start
of the experiment in a protocol that was reviewed by all three
authors. Similarly, all student materials, samples and
questionnaires were prepared upfront and reviewed by the
authors.

As one of the most important sources of variation in
empirical software engineering studies is the skill level of
subjects [28], all students were asked to fill in a demographics
survey before the first classes. It probed their background in
technologies/skills relevant to the course; all questions were
mandatory. No student reported professional experience in
any of the assessed skills or significant programming
acumen, hence none of the team had a head start.

B. Execution

The project part of the course lasted a total of ten weeks
and was interlaced with a 2h follow up class per group every
two weeks. The final delivery was planned two weeks after
the last class.

Prior to the first supervised assignment work, a kick-off
meeting with all participants was held. Students were
informed of the experiment, given its protocol, and advised
on the intent of investigating the effects of following a given
development approach. Nevertheless, they understood that
performance of different laboratory groups would not be
compared to influence the grades. All teams within the study
shared the same evaluation scheme which was fully
transparent and communicated upfront. This included the
developed system (assessed from the perspective of its
internal and external quality as well as team productivity, see
section II.C), the associated documentation as well as timely
delivery of artefacts (meeting summary, KPIs etc.).

During the first class every group received a presentation of
the method of work assigned to them to ensure all study
participants share a baseline understanding of the treatment.
Afterwards, teams were formed, where students within a
laboratory group were randomly divided by three. The Team
Leader role was filled on a voluntary basis. A manual
comparison of teams’ relevant technological acumen (based
on a questionnaire distributed prior to the classes) was
performed to ensure that there were no major gaps in skill sets
among teams. Starting the third week of classes, due to
COVID-19 pandemic and a national lockdown, all
subsequent activities were carried out remotely using Discord
as the main communication channel.

As part of the second follow-up class, an introductory
presentation to the concept of maintainability was given as it
was one of the quality aspects evaluated. The metric used in
this regard maps the underlying quality model to 10 simple
guidelines [10] to be respected when producing quality code.
Students were encouraged to work continuously on source
code quality, nonetheless the Maintainability ranking for
grading purposes was only calculated when the projects were
submitted.

Throughout the semester students were guided on how to
correctly carry out associated activities by the course
supervisors as well as with templates and samples were
provided for every artefact.

C. Data collection

To assess the dependent variables (see section II. C) data
was collected throughout the semester and upon final hand-
in.

1) Recurrent data retrieval

Temporal evolution of team cohesion was monitored and
served as a barometer of teamwork quality. Systematic
probing of the measure could potentially give insights into
arising conflicts or periods when the teams struggled to meet
course objectives. To evaluate team cohesion in the context
of software engineering teams, use of The Group
Environment Questionnaire was reported in the past [25, 26].
It is a set of questions reflecting on perception of
collaboration and confidence on the project; its subset applied
in the study is presented in Table 1.

Students were asked to periodically indicate their agreement

with the above statements on a four-degree Likert scale. A

decision to track team cohesion every two weeks was made

as a tradeoff between timely and useful feedback and

avoiding excessively burdening participants with its

administration.

2) End of term data retrieval

Once the students submitted their projects, quality
measures were derived, and the learning outcomes assessed.
The client-side code was evaluated in terms of HTML errors
and warnings indices (1,2) for a common set of five Web
pages, that were not known to the students. An online W3C
validator was used for that purpose.

The server-side code was appraised using a
Maintainability ranking, calculated with a tool integrated at
the level of a GitHub repository and made available by the
metric creators.

Evaluating Functional Correctness (3) and Functional
Completeness (4) of the solutions implied verifying that all
the project requirements described in the Backlog were
implemented and scrutinizing any inconsistencies with the
desired behavior. Upon detection of any issues with a given
functionality, a weight on a scale from 0 to 1 is assigned,
based on instructor’s best judgement. While this method of
ranking bug severity is not extremely accurate, it was
sufficiently reliable for the purpose of this study.

The students were asked to evaluate their learning
outcomes using four-degree rubrics that were distributed
online once the course finished. A decision not to include a
“middle” degree was taken as to avoid neutral response.
Every participant could assess his technical as well as soft
skills. Additionally, it was possible to assess their peers’
ability to collaborate efficiently among 6 underlying skills -
the evaluated soft skills were the same for self and peer-
appraisal.

Finally, a dedicated questionnaire on every development
approach applied was distributed. It consisted of roughly 10
closed questions to be answered with a Likert scale and 1
open question. It was administered to probe students’
perception of the corresponding process organization and
provide qualitative data to address hypotheses.

IV. ANALYSIS AND INTERPRETATION

In this section we present the descriptive statistics and
plots for each response variable and use them to analyze the
results of the study. There are regrouped into three
dimensions of success of student projects and presented
accordingly: project quality, team productivity as well as
human factors (teamwork quality & learning outcomes)

A. Project quality

Internal project quality evaluation is carried out based
on the source code that the team produced. From Fig. 2, it can
be seen that the hybrid laboratory group had the best results
in terms of a median, normalized number (per line of code)
of errors and warnings. This observation could be explained
by the practice linked to the hybrid method - “Align team
structure with project architecture" - that asks every member
to take on responsibility of a part of the project in its integrity,
including the quality of the underlying code. Students’

TABLE I. THE GROUP ENVIRONNENT QUESTIONNAIRE USED

Our team is united in trying to reach the goals of the course.

Our team members have a common vision for the project’s future.

Our team would like to spend time together once the course is over.

Members of our team do stick together outside of the course-related
activities.

I am happy with my team’s level of desire to succeed.

My team gives me enough opportunities to demonstrate my abilities and
skills.

I enjoy being a part of the social activities of this team.

For me, this team is one of the most important social groups to which I
belong.

responses to the end of term questionnaire confirmed that
they respected the practice (93.3% of positive answers).
Nevertheless, only 40% agreed with the statement “I have
verified the HTML code quality with W3C validator
regularly” - the same score as observed for the sequential
group (40,1%) but much higher than those of iterative
students (18,8%). Overall results for the hybrid method could
be considered as empirical evidence to link the team
organization practice with a positive impact of internal
project quality.

Findings relating to the second measure of internal project
quality are not in line with the results concerning HTML
code. Hybrid teams scored lowest with regards to PHP code
quality in terms of the Maintainability rating (50.8%) while
sequential and iterative groups demonstrated very similar
results - 61,9%, 60,3% respectively. The lowest performance
of the hybrid group can be linked to the fact that many teams
following a hybrid approach did not work on that aspect of
the project – only 20% of students confirmed regular use of
the supporting tool - BetterCodeHub. That is a score lower
than that of sequential (25%) and iterative teams (37,6%).

External project quality was assessed using the Functional
Adequacy (FA) metric, which is a measure of the severity of
bugs (in terms of deviation from the project specification)
detected in the final software. Fig. 3 presents scores for every
team participating in the experiment, regrouped by the
development approach used. What can be observed is that by
excluding the outlier of GA (iterative teams), the FA results
for both sequential and iterative approaches are almost
identical. The hybrid teams exhibited the highest median
(94.3%) and average (93.5%) values of FA, both scores being
roughly 5% above the other two groups. This stems from the
underpinning testing process of different approaches, which
directly influences the Functional Adequacy.

Although all groups were expected to produce the same
test deliverables, the means of execution differed between the
approaches. Iterative teams were to test the delivered
functionalities as part of Definition of Done and reflect the
outcome in the Requirements Traceability Matrix (RTM)
gradually; for sequential and hybrid groups it was a one-off
effort as part of a dedicated testing phase. The above could
imply that for iterative teams errors could have been
introduced along with new functionalities and possibly teams
did not re-test the entire solution before the hand-in.
Secondly, the degree of respect of the conditions of
Definition of Done varied among teams and reflected their
strive for high quality - the RTM was assessed only at the end
of the semester hence potentially not all teams consistently
tested the functionalities delivered at the end of an iteration.
These hypotheses were addressed in a questionnaire, where a

large majority of students stated having rigorously tested
requirements before the increment delivery (87.5%) and
another round of tests before the final hand-in (93.7%). The
highest values of hybrid teams can be explained by the fact
that it combined both an incremental delivery and a dedicated
verification phase. The first practice ensured more value was
provided for the last follow up classes (five out of seven
groups reported delivering 100% of the functionality in RTM
while only three did so for the sequential group) thus more
functionality was tested systematically and in turn the final
deliverable demonstrated higher external quality.

B. Team productivity

In a professional context, team productivity relates to
resources utilization and efficiency [19] and as a consequence
is tracked by metrics measuring teams’ efforts in terms of
time and development estimations. However, the number of
logged hours did not prove to be a representative measure of
team productivity in academic projects [20, 21], thus in our
experiment the output of students’ work is used as a proxy in
this area instead. Functional Completeness (FC) of all teams,
which represents the ratio of functional requirements
delivered and the total number described in the assignment
specification, is depicted on Fig. 4.

It can be clearly seen that the median value for the
iterative approach (80%) is much lower than that of
sequential (92%) and hybrid way of working (100%). What
probably greatly contributed to the final score of FC is an
intermediary milestone present for the latter two approaches.
Two weeks prior to the final deadline, the testing phase
started and during the last follow up classes, students were
expected to execute defined test cases on a nearly complete
solution. This naturally shifted the peak of their
implementation efforts earlier, so that they could test a semi-
finalized project as requested by course instructors. Iterative
teams, despite a regular, partial hand-in could have had an
impression of more time due to a distant deadline for final
delivery (which was the same among all laboratory groups).
As a consequence, they did not advance swiftly enough
throughout the semester and delivered the smallest number of
functionalities (apart from the highest performer in the group
that finished off the application two weeks before the end of
the classes, however disregarded some of the functions thus
yielding a score of 93%).

While results of Functional Completeness for sequential
and hybrid approaches seem very similar, the latter scored
slightly higher in terms of the median value (even when
excluding the outlier for the sequential group) as all teams
except one delivered 93% of requirements or more. Similar
to the outcomes of the project in terms of Functional
Adequacy, this phenomenon can be explained by the iterative

nature of coding activities. They resulted in a higher degree
of project completion prior to the testing phase, thus leaving
less work for the last two weeks and increasing chances of
handing in a finalized assignment.

C. Human factors

Teamwork quality can have a great impact on the end-
result of a group undertaking, therefore effective team
functioning is cited as one of the success factors in project
management [22]. In order to consider a university course
successful, students’ learning outcomes should be examined.
Consequently, both aspects are taken into consideration in the
experiment to evaluate the impact of development
approaches under study on the success of the projects from a
human perspective.

1) Teamwork quality

Longitudinal data on team cohesion, which is taken as a

proxy of teamwork quality, are presented on Fig. 5. The

evaluation of its perception probed on a four-Likert scale,

was regrouped into positive and negative impressions, and

represented on the graph as a function of course progression.

What can be seen is that all teams started off with a very
similar level of team cohesion (in the range of 82.5-85%),
after two weeks of group work. The metric then degrades
over time for the iterative and sequential approaches. The
evolution of team cohesion level for these groups resembled
a downward spiral which probably reflected more and more
deviation from the target progress which naturally lowers
students’ satisfaction with teamwork. It should be noted that
two teams working in an iterative manner reported issues
(health problems and uneven contribution to the project
respectively) to the course instructor. These could have had a
negative impact on their perception of team cohesion
lowering the scores for the whole study group as a result.

The hybrid approach did best over time, despite a sharp dip
(and lowest score from all groups) at the end of the first
iteration. From then on, the team cohesion level bounced
back, surpassing the initial high while the other two groups
(iterative and sequential) continued the decline. Explanation
is that week five marked the first demo for the hybrid teams
hence extra efforts were needed to integrate different
components and finish off something demonstrable.
Sequential teams also exhibited the highest decrease in team

cohesion that week (as compared to other weeks), suggesting
that the first two weeks of implementation efforts were rocky
for all teams who had to switch from design to coding
activities (hybrid and sequential). The end of term
questionnaire supports this hypothesis as 33,4% and 22,3%
of students in hybrid and sequential groups respectively
reported difficulties in switching from design to
implementation as part of a formal phase transition.

2) Learning outcomes

A total of 10 course learning objectives were evaluated
using a rubrics system: five technical and five soft skills.

Results collected for different facets of effective
collaboration (which are described in more detail in section
II.D) are presented on Figure 6. What can be observed is that
the hybrid teams scored highest in all of the evaluated aspects
of conditions of collaboration, consistently securing the
highest share of soft skills rated as “excellent”. For most of
the categories, the sequential group came in second and the
iterative third. Similarly to the results of team cohesion, the
low scores of iterative teams could be an aftermath of the
health and work distribution issues reported by two teams
during one of the classes.

TABLE III. STUDENTS’ VIEW OF THE IMPACT OF A GIVEN

PROCESS ON SOFT AND TECHNICAL SKILLS DEVELOPMENT

 Strongly disagree Disagree Agree Strongly agree

The development approach applied during the project, helped me to
collaborate efficiently with the team

GA 0% 31.3% 37.5% 31.3%

GB 11.8% 29.4% 41.2% 17.6%

GC 0% 6.3% 31.3% 62.5%

The development approach applied during the project, helped me
developed technical skills in Web programming (PHP, HTML)

GA 0% 6.3% 37.5% 56.3%

GB 0% 17.6% 41.2% 41.2%

GC 0% 0% 31.3% 68.8%

TABLE II. PERCEPTION OF TECHNICAL SKILLS
ACQUISITION. 4-LIKERT RESPONSES WERE REGROUPED IN
TWO CATEGORIES: POSITIVE AND NEGATIVE IMPRESSIONS

 Iterative (GA) Sequential (GB) Hybrid (GC)

 HTML

POSITIVE 100.00% 100.00% 94.74%

NEGATIVE 0.00% 0.00% 5.26%

 CSS

POSITIVE 61.54% 82.35% 73.68%

NEGATIVE 38.46% 17.65% 26.32%

 BDD

POSITIVE 84.62% 94.12% 89.47%

NEGATIVE 15.38% 5.88% 10.53%

 SQL

POSITIVE 100.00% 94.12% 94.74%

NEGATIVE 0.00% 5.88% 5.26%

 PHP

POSITIVE 84.62% 94.12% 94.74%

NEGATIVE 15.38% 5.88% 5.26%

OVERALL Iterative (GA) Sequential (GB) Hybrid (GC)

POSITIVE 86.15% 92.94% 89.47%

NEGATIVE 13.85% 7.06% 10.53%

Acquisition of technical skills is based on a self-
evaluation of every student, thus much higher rates of
positive answers are reported as compared to soft skills
(which combines self and peer assessment) - refer to Table II.
Each development approach recorded the highest value at
least once but there are no consistent patterns across the
competencies probed. Furthermore, the differences among
the average values of all skills per group are negligible - a
spread of less than 7% can be observed between highest and
lowest performer. Given the variation in the findings, a link
between a development approach and acquisition of technical
skills cannot be established.

When it comes to students’ judgement of a given soft-
ware development process and its impact on the skills
acquisition, the hybrid approach scored highest for both soft
and technical skills. A summary of the results is presented in
Table III.

 It is important to note that no statistical analysis of the
results was performed due to a relatively small number of
data points.

V. THREATS TO VALIDITY

As empirical research, this study is subject to different
types of threats - they are described according to the
classification suggested by Wohlin et al [23].

A comprehensive, metrics-based approach to the
evaluation of the experiment, which in principle limits bias
and uncertainty in the assessment process, ensures a
relatively high internal validity. Furthermore, random
assignment of students among groups is a suitable way to
distribute study sample in a controlled experiment.
Nevertheless, there is a risk that project success is influenced
by uncontrolled factors other than the development approach
used, such as varying student affinity or motivation. While
these aspects were not accounted for, they are inherent to a
university setting hence should not pose a problem as an
internal threat.

Concerning the external threats, it is highly probable
that comparable results should be obtained when running the

same course in subsequent years. Likely a similar project
assignment and class set up at a different university would
yield comparable results, granted a balanced distribution of
skillsets across the teams. However, we have no arguments
to assess the generalizability of setting - impact of a given
development approach can vary for more experimented
students, larger team size, longer courses and other
Information Technology domains that Web programming.

 Construct validity includes a major threat concerning the
teamwork quality assessment. Team cohesion is just one of
many measures of conditions of collaboration in teams, thus
provides a partial picture of the phenomenon. However, in
order not to excessively burden participants with surveys, no
other teamwork quality facets were assessed.

Regarding the conclusion validity, some of the tools used
in the experiment suffer from a certain degree of subjectivity.
Functional correctness metric mirrors the evaluator’s
judgement of severity of the detected anomalies, whereas
team cohesion questionnaires and skills assessment rubrics
fully rely on students’ shifting perceptions of collaboration
on a given day and can be impacted by team conflicts, which
are not process-bound. To systematize the external quality
verification, all anomalies detected were noted down so that
whenever a similar problem was detected in any other
solution, the same score would be given. To avoid bias in
feedback collected via questionnaires/rubrics, it was recalled
that they were not considered for the grading scheme. The
intention was to avoid skewed responses giving a positive
impression of team cohesion or their/peers’ skills.

The reliability of treatment implementation was
addressed by an appraisal of team conformance to a given
development approach. Indeed, timely delivery of all
expected artefacts (project code; documentation, meeting
summary, work progress KPI, demo etc.) was tracked and a
mark was given to every team, which contributed to the final
grade for the project. On top of that, special efforts were made
to avoid introducing bias to any of the laboratory groups, as
more than one instructor intervened during the experiment
(iterative and hybrid teams shared the same supervisor,
whereas the sequential ones were accompanied by another

professor). Instructor’s role in every class activity was
detailed prior to the experiment and documented in its
protocol. For example, as part of the hybrid method, the
course instructor provided his feedback only on the design
artefact and iteration demos were meant as checkpoint on the
progress rather than sharing enhancement suggestions (as
opposed to the iterative approach, where there was no formal
design review and feedback on the effects was provided
during demos). Likewise, all the teams received the same
guidance and level of instructions as well as samples with
regards to planning, tasks identification and testing.

VI. CONCLUSIONS

With this work, we aimed to investigate how the choice
of an iterative and sequential development method influences
success of student team computing projects as contrasted to a
hybrid way of working that combines both approaches. Three
axes of evaluation that encompassed 16 metrics bring
forward certain patterns and provided quantitative data to
answer the research question raised.

Indeed, the first hypothesis turned out to be true as the use
of the hybrid approach contributed to a considerable
improvement of team productivity in terms of the number of
functionalities handed in - all teams except one delivered
93% of requirements or more. According to our observations,
this success was mostly due to the introduction of a dedicated
testing phase. It effectively advanced the peak of coding
activity as compared to the iterative approach, and in turn
more functionality was completed two weeks before the final
deadline. Both sequential and hybrid approaches scored
significantly higher in terms of Functional Completeness as
compared to the iterative one. The hybrid way of working,
which incorporated incremental delivery, helped to bring
about a further gain in team productivity as compared to the
sequential development. This was reflected by higher scores
of system completion during the last follow up class - they
were reported by students in the tests results (reflected in the
Requirements Traceability Matrix).

Moreover, the external quality of the projects measured
in terms of Functional Adequacy (FA) seems to partially
confirm the second hypothesis. The hybrid teams scored
highest in that regard, approximately 5% more than the other
two approaches. It seems that having a dedicated testing
phase is not the only success factor here given that the FA
values were very similar for iterative and sequential
approaches: median of 88.8 vs 88.9 and average of 87.4 vs
89.0 respectively. It is a mix of iterative development and a
formalized testing phase that yield the best results in our
study.

Based on the data collected, it is difficult to address the
two hypotheses concerning the practice “Align team structure
with system architecture” (characteristic of the hybrid
approach) which was meant to support the technical skills
acquisition and positively impact the code quality. While the
teams working with that method scored highest in terms of
HTML code quality, the differences between the groups were
relatively small. Furthermore, the hybrid teams scored lowest
when it comes to PHP code quality which was due to the
failure to use the supporting tool (56.3% of students in the
group reported never using it).

In the study we also considered the impacts of a
development approach from a human perspective - the team-
work quality as well as acquisition of soft and technical skills.

The highest levels of team cohesion for hybrid teams were
observed; additionally, it was the only group not to
experience a decline as compared to the beginning of the
project. Positive perception of teamwork quality for hybrid
teams was further confirmed by the end of term questionnaire
where students were to evaluate the evolution of team
collaboration over time. There were 93.3% of positive
impressions of it among hybrid students, 62.5% among
iterative team members and 58,8% among the sequential
ones. The low team cohesion levels exhibited by the iterative
group seem to counter the human-centric angle of the agile
way of working reported in the past [24, 25, 11]. This could
be partially explained by the fact that two iterative teams
reported health and work distribution issues to the course
instructor. Nevertheless, teams in sequential and/or hybrid
group could have experienced similar obstacles without
voicing them.

Finally, working with the hybrid approach brought about
a much more positive perception of soft skills acquisition
among the team members. These students reported
consistently higher values than those working with other
approaches in the rubrics that assessed six facets of efficient
collaboration. While it is difficult to establish a direct link
with a specific aspect of the hybrid way of working, students
that followed it exhibited the highest values of most of the
“human-centric” variables tracked (that excludes technical
skills acquisition, where inconsistent results among groups
were reported)

In the study we presented the impact of different types of
methodologies on the product, project and people involved.
While the methodologies imitate industrial practices, our
observations cannot be extended to a professional setting
without further research. Instead, the patterns observed serve
as a blueprint for other educators who wish to tailor or design
a software development process for academic needs and
guide students’ computing projects to help ensure a positive
outcome of the project. We therefore recommend putting in
place certain practices, such as incremental project delivery
coupled with formalized quality assurance – as applied by the
hybrid teams – to safeguard high team productivity without
quality shortcomings. Despite anecdotal empirical evidence,
we encourage introducing the practice “align team structure
with system architecture”. We believe that each member’s
full accountability of a given system module and thus a clear
distribution of work could nurture healthy relations among
peers and enable efficient collaboration. Furthermore,
regular, and formalized communication put as part of the
study – team status meetings and progress tracking (see II.C
2) – can address challenges in this area, which stem from
busy schedules, planning issues and lack of experience and
training [24]. Guidelines described in the paper could prove
particularly useful in the context of remote learning.

Ultimately, exploiting a process adapted to the academic
setting to guide students in building an entire operational
software can help address the discrepancies between the skill
set of graduates and employment needs. A recent study [26],
explicitly lists software design and testing among the most
important deficits in Computer Science education. Thus,
providing students with well-defined hands-on experiences
building a software system through design, implementation,
testing and management activities could be a steppingstone
to bridge that gap.

ACKNOWLEDGMENT

We would like to thank Bordeaux INP for their support
through the grant “AAP Initiatives Pédagogiques 2020”.

REFERENCES

[1] M. Kuhrmann, P. Diebold, J. Münch, P. Tell, V. Garousi, M. Felderer,

K. Trektere, F. McCaffery, O. Linssen, E. Hanser, C. R. Prause, Hybrid
Software and System Development in Practice: Waterfall, Scrum, and
Beyond. In Proceedings of the 2017 International Conference on
Software and System Process (ICSSP 2017). ACM, New York, NY,
USA, 30–39. 2017

[2] J. Klünder, R. Hebig, P. Tell, M. Kuhrmann, J. Nakatumba-Nabende,
R. Heldal, S. Krusche, M. Fazal-Baqaie, M. Felderer, M. Fabiana, G.
Bocco, S. Küpper, S. Licorish Xi, G. López, F. Mccaffery, O. Ozden,
O. Top, C. Prause, R. Prikladnicki, K. Schneider, S. Macdonell.
Catching up with Method and Process Practice: An Industry-Informed
Baseline for Researchers. ICSE-SEIP Proceedings of the 41st
International Conference on Software Engineering: Software
Engineering in Practice. 2019

[3] VersionOne. State of agile survey. Available online at
http://stateofagile.versionone.com/ , 2006–2019. retrieved 2020-08-19

[4] M. Kuhrmann, P. Diebold, J. Münch, P. Tell, V. Garousi, M. Felderer,
K. Trektere, F. McCaffery, O. Linssen, E. Hanser, C. R. Prause, Hybrid
Software and System Development in Practice: Waterfall, Scrum, and
Beyond. In Proceedings of the 2017 International Conference on
Software and System Process (ICSSP 2017). ACM, New York, NY,
USA, 30–39. 2017

[5] K. Schmitz, R. Mahapatra, S. Nerur, User Engagement in the Era of
Hybrid Agile Methodology. IEEE Software. PP. 1-1.10.1109. 2018

[6] A. Baird, F.J. Riggins, Planning and sprinting: Use of a hybrid project
use of a hybrid project use of a hybrid project management
methodology within a CIS capstone course. Journal of Information
Systems Education. 23. 243-258. 2012

[7] C. Matthies, Scrum2Kanban: Integrating Kanban and Scrum in a
University Software Engineering Capstone Course. IEEE/ACM 2nd
International Workshop on Software Engineering Education for
Millennials (SEEM’18). 2018

[8] J. Klünder, R. Hebig, P. Tell, M. Kuhrmann, J. Nakatumba-Nabende,
R. Heldal, S. Krusche, M. Fazal-Baqaie, M. Felderer, M. Fabiana, G.
Bocco, S. Küpper, S. Licorish Xi, G. López, F. Mccaffery, O. Ozden,
O. Top, C. Prause, R. Prikladnicki, K. Schneider, S. Macdonell.
Catching up with Method and Process Practice: An Industry-Informed
Baseline for Researchers. ICSE-SEIP '19: Proceedings of the 41st
International Conference on Software Engineering: Software
Engineering in Practice. 2019

[9] European Comission, ”ECTS Users’ Guide 2015”,
https://ec.europa.eu/education/ects/users-guide/docs/ects-users-
guide_en.pdf

[10] N. Prenner, C. Unger-Windeler, K. Schneider, How are Hybrid
Development Approaches Organized? - A Systematic Literature
Review. ICSSP 2020: Proceedings of the 14th International
Conference on Software and Systems Process. 2020

[11] R. Wlodarski, A. Poniszewska-Maranda, Measuring dimensions of
Software Engineering projects’ success in Academic context. In
Proceedings of the 2017 Federated Conference on Computer Science
and Information Systems. 2017

[12] D. Bijlsma, M. Ferreira, B. Luijten, J. Visser, Faster Issue Resolution
with Higher Technical Quality of Software, Software Quality Journal,
20(2), 265-285. 2012

[13] International Organization for Standardization. System and software

quality models (ISO/IEC 25010:2011). 2011
[14] M. Casey-Campbell and M. L. Martens, "Sticking it all together:

Acritical assessment of the group cohesion-performance literature",
International Journal of Management Reviews. 2009

[15] Carron and L. Brawley, "Cohesion: Conceptual and
MeasurementIssues", Small Group Research 31, 2000

[16] E. Salas and R. Grossman, "Measuring Team Cohesion:
Observationsfrom the Science", Human Factors, vol. 57, 2015

[17] A. Carron and L. Brawley, ”G.E.Q. The Group Environment
Questionnaire Test Manual”, Fitness Information Technology, 1135
Inc., 200.

[18] R.Wlodarski, J.R. Falleri, A.Poniszewska-Maranda, Comparative Case
Study of Plan-Driven and Agile Approaches in Student Computing
Projects. In proceedings of the 28th International Conference on
Software, Telecommunications and Computer Networks (SoftCOM
2020). 2020

[19] Mathieu J., Maynard M. T., Rapp T., Gilson L., Team Effectiveness
1997-2007: A Review of Recent Advancements and a Glimpse Into the
Future, Journal of Management, Vol. 34 No. 3, June 2008, 410-476.
2008

[20] D.Kember, Interpreting student workload and the factors which shape
students’ perceptions of their workload,” Studies in higher education,
vol. 29, no. 2, 165–184. 2004

[21] P. Ramsden, Learning to teach in higher education. Routledge 2003

[22] A.J. Shenhar, D. Dvir, Project management research - The challenge
and opportunity. Project Management Journal, 38(2), 93–99. 2008

[23] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A.
Wesslén, Experimentation in Software Engineering, Springer-Verlag
Berlin Heidelberg, 10.1007/978-3-642-29044-2. 2012

[24] Z.Masood, R. Hoda, K. Blincoe, “Adapting agile practices in university
contexts” , Journal of Systems and Software, 144, 501-510. 2018

[25] C.A. Wellington, T. Briggs, C. Dudley Girard, Comparison of Student
Experiences with Plan-Driven and Agile Methodologies, Proceedings
of 35th Annual Conference Frontiers in Education. 2005

[26] V. Garousi, G. Giray, E. Tuzun, C. Catal, M. Felderer, Closing the Gap
between Software Engineering Education and Industrial Needs, IEEE
Software 2020 vol: 37 (2) pp: 68-77. 2020

[27] I. Karac, B. Turhan, & N. Juristo, A Controlled Experiment with
Novice Developers on the Impact of Task Description Granularity on
Software Quality in Test-Driven Development. IEEE Transactions on
Software Engineering. PP. 1-1. 10.1109. 2019

[28] A. Tosun, O. Dieste, D. Fucci, S. Vegas, B. Turhan, H. Erdogmus, A.
Santos, An industry experiment on the effects of test-driven
development on external quality and productivity. Empirical Software
Engineering. 22, 6 (Dec. 2016), 2763-2805. 2017

