
HAL Id: hal-03154573
https://hal.science/hal-03154573v1

Submitted on 1 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Geometry of Interaction for ZX-Diagrams
Kostia Chardonnet, Benoît Valiron, Renaud Vilmart

To cite this version:
Kostia Chardonnet, Benoît Valiron, Renaud Vilmart. Geometry of Interaction for ZX-Diagrams.
MFCS 2021 - 46th International Symposium on Mathematical Foundations of Computer Science, Aug
2021, Tallinn, Estonia. pp.30:1–30:16, �10.4230/LIPIcs.MFCS.2021.30�. �hal-03154573�

https://hal.science/hal-03154573v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Geometry of Interaction for ZX-Diagrams1

Kostia Chardonnet2

LMF – Université Paris Saclay / IRIF – Université de Paris, France3

Benoît Valiron4

LMF, CentraleSupélec, Université Paris Saclay, France5

Renaud Vilmart6

LMF, Inria, Université Paris-Saclay, France7

Abstract8

ZX-Calculus is a versatile graphical language for quantum computation equipped with an equational9

theory. Getting inspiration from Geometry of Interaction, in this paper we propose a token-machine-10

based asynchronous model of both pure ZX-Calculus and its extension to mixed processes. We11

also show how to connect this new semantics to the usual standard interpretation of ZX-diagrams.12

This model allows us to have a new look at what ZX-diagrams compute, and give a more local,13

operational view of the semantics of ZX-diagrams.14

2012 ACM Subject Classification Theory of computation → Quantum computation theory; Theory15

of computation → Linear logic; Theory of computation → Equational logic and rewriting16

Keywords and phrases Quantum Computation, Linear Logic, ZX-Calculus, Geometry of Interaction17

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2318

1 Introduction19

Quantum computing is a model of computation where data is stored on the state of particles20

governed by the law of quantum physics. The theory is well established enough to have21

allowed the design of quantum algorithms whose applications are gathering interests from22

both public and private actors [34, 36, 16] Together with the progresses in physical capabilities,23

quantum computers are envisioned as a disruptive technology in the coming years [28].24

One of the fundamental properties of quantum objects is to have a dual interpretations.25

In the first one, the quantum object is understood as a particle: with a definite, localized26

point in space, distinct from the other particles. Light can be for instance regarded as a set27

of photons. In the other interpretation, the object is understood as a wave: it is “spread-out”28

in space, possibly featuring interference. This is for instance the interpretation of light as an29

electromagnetic wave.30

The standard model of computation uses quantum bits (qubits) for storing information and31

quantum circuits [35] for describing quantum operations with quantum gates, the quantum32

version of Boolean gates. In this model, on one hand quantum bits are intuitively seen33

as tokens flowing inside the wires of the circuit. On the other hand, the state of all of34

the quantum bits of the memory is mathematically represented as a vector in a (finite35

dimensional) Hilbert: the set of quantum bits is a wave flowing in the circuit, from the inputs36

to the output, while the computation generated by the list of quantum gates is a linear map37

from the Hilbert space of inputs to the Hilbert space of outputs. Although the pervasive38

model for quantum computation, quantum circuits’ operational semantics is only given in an39

intuitive manner. A quantum circuit informally describes a series of “gate applications”, akin40

to some sequential, low-level assembly language where quantum gates are opaque black-boxes.41

Quantum circuits do not feature any native formal operational semantics giving rise to42

abstract reasoning, equational theory or well-founded rewrite system. To be able to reason on43

quantum circuits, until recently the only choice was to rely on the unitary-matrix semantics44

© Kostia Chardonnet and Benoît Valiron and Renaud Vilmart;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Geometry of Interaction for ZX-Diagrams

of circuits. However, because the dimension of the matrix corresponding to a circuit is45

exponential on the number of qubits involved, this solution is very expensive and limited to46

simple cases.47

To bring some scalability to the approach, a recent proposal is sum-over-path semantics [1,48

6]. Still based on the original mathematical representation of state-as-a-vector, the sum-49

over-path of a quantum circuit synthesizes the operation described by the circuit into a few50

simple constructs: a Boolean operation as action on the basis states, and a so-called phase51

polynomial, bringing to circuits a formal flavor of wave-style semantics.52

The main line of work formalizing a token-based operational semantics for quantum53

circuit [32] is based on Geometry of Interaction (GoI) [20, 19, 18, 21, 23, 24, 25]. Among its54

many instantiations, GoI can be seen as a procedure to intepret a proof-nets [22] —graphical55

representation of proofs of linear logic [17]— as a token-based automaton [9, 2]. The flow of56

a token inside a proof-net characterizes an invariant of the proof —its computational content.57

This framework is used in [32] to formalize the notion of qubits-as-tokens flowing inside a58

higher-order term representing a quantum computation —that is, computing a quantum59

circuit. However, in this work, quantum gates are still regarded as black-boxes, and tokens60

are purely classical objects requiring synchronicity: to fire, a two-qubit gate needs its two61

arguments to be ready.62

In recent years, an alternative model of quantum computation with better formal prop-63

erties has however emerged: the ZX calculus [7]. Originally motivated by a categorical64

interpretation of quantum theory, the ZX-Calculus is a graphical language that represents65

linear maps as special kinds of graphs called diagrams. The calculus comes with a well-defined66

equational theory making it possible to reason on quantum computation by means of local67

graph rewriting. Unlike the qunatum circuit framework, ZX-Calculus also comes with, a68

small set of canonical generators with a well-defined semantics.69

Reasonning about ZX can therefore be done in two ways: with the linear operator70

semantics (aka matrix semantics), or through graph rewriting. This graphical language has71

been shown to be amenable to many extensions and is being used in a wide spectrum of72

applications ranging from quantum circuit optimization [13, 4], verification [27, 14, 12] and73

representation such as MBQC patterns [15] or error-correction [11, 10].74

As a summary, despite their ad-hoc construction, quantum circuits can be seen from75

two perspectives: computation as a flow of particles (i.e. tokens), and as a wave passing76

through the gates. On the other hand, although ZX-Calculus is a well-founded language, it77

still misses such a perspective.78

In this paper, we aim at providing ZX with a particle-style and a wave-style semantics,79

similarly to what has been done for quantum circuits.80

Following the idea of applying a token machine to proof-nets in order to study its81

computational content, we present in this paper a token machine for the ZX-Calculus and its82

extension to mixed processes [8, 5]. We show how it links to the standard interpretation of83

ZX-diagrams. While the standard interpretation of ZX-diagrams proceeds with conventional84

graph rewriting, the tokens flowing inside the diagram do not modify it, and the computation85

emerges from their ability to enter into superposition. We derive two perspectives on this86

phenomenon: one purely token-based and one based on a sum-over-path interpretation.87

Plan of the paper. The paper is organized as follows : in Section 2 we present the88

ZX-Calculus and its standard interpretation into Qubit, and its axiomatization.89

In Section 3 we present the actual asynchronous token machine and its semantics and90

show that it is sound and complete with regard to the standard interpretation of ZX-diagrams.91

We then modify it in Section 4 to use a Sum-Over-Path interpretation in order to avoid an92

K. Chardonnet and B. Valiron and R. Vilmart 23:3

exponential blow up in the number of state in our Token Machine. Next, in Section 5 we93

present an extension of the ZX-Calculus to mixed processes and adapt the token machine to94

take this extension into account. Finally, in Section 6 we discuss synchronicity and other95

ways to represent the Token Machine. Proofs are in the appendix.96

2 The ZX-Calculus97

The ZX-Calculus is a powerful graphical language for reasoning about quantum computation98

introduced by Bob Coecke and Ross Duncan [7]. A term in this language is a graph —called99

a string diagram— built from a core set of primitives. In the standard interpretation of100

ZX-Calculus, a string diagram is interpreted as a matrix. The language is equipped with an101

equational theory preserving the standard interpretation.102

2.1 Pure Operators103

The so-called pure ZX-diagrams are
generated from a set of primitives,
given on the right: the Identity, Swap,
Cup, Cap, Green-spider and H-gate:

e0,
e0 e1

, e0 e1, e0 e1,

...e1 en

e′
1 e′

m

...
α ,

e0

e1

n,m∈N
α∈R

ei,e′
i∈E

104

We shall be using the following labeling convention: wires (edges) are labeled with ei, taken105

from an infinite set of labels E . We take for granted that distinct wires have distinct labels.106

The real number α attached to the green spiders is called the angle. ZX-diagrams are read107

top-to-bottom: dangling top edges are the input edges and dangling edges at the bottom108

are output edges. For instance, Swap has 2 input and 2 output edges, while Cup has 2 input109

edges and no output edges. We write E(D) for the set of edge labels in the diagram D, and110

I(D) (resp. O(D)) for the list of input edges (resp. output edges) of D. We denote :: the111

concatenation of lists.112

ZX-primitives can be composed as follows.113

Sequentially If E(D1) ∩ E(D2) = ∅, then:114

D2 ◦D1 :=

...

...

...
D2

D1

[I(D2)←O(D1)]
115

E(D2 ◦D1) = E(D1) ∪ E(D2) \ I(D2)116

I(D2 ◦D1) = I(D1)117

O(D2 ◦D1) = O(D2)118

Where [I(D2)← O(D1)] is the substitution of the names of the labels of I(D2) by those119

of O(D1) done left to right.120

In parallel If E(D1) ∩ E(D2) = ∅, then:121

D1 ⊗D2 :=
...

...
D1

...

...
D2122

E(D1 ◦D2) = E(D1) ∪ E(D2)123

I(D1 ⊗D2) = I(D1) :: I(D2)124

O(D1 ⊗D2) = O(D1) :: O(D2)125

We write ZX for the set of all ZX-diagrams.126

Notice that when composing diagrams with (_ ◦ _), we “join” the outputs of the top127

diagram with the inputs of the bottom diagram. This requires that the two sets of edges128

have the same cardinality. The junction is then made by relabeling the input edges of the129

bottom diagram by the output labels of the top diagram (hence the “[I(D2)←O(D1)]” in the130

composition).131

CVIT 2016

23:4 Geometry of Interaction for ZX-Diagrams

▶ Convention 1. We define a second spider, red this time, by
composition of Green-spiders and H-gates, as shown on the right.

α

...
:=α

...

...

...
132

▶ Convention 2. We write σ for a permutation of wires, i.e any diagram generated by{
,

}
with sequential and parallel composition. We write the Cap as η and the Cup as

ϵ. We write Zn
k (α) (resp, Xn

k) for the green-node (resp, red-node) of n inputs, k outputs
and parameter α and H for the H-gate. In the remainder of the paper we omit the edge
labels when not necessary . Finally, by abuse of notation a green or red node with no explicit
parameter holds the angle 0:

n...

...
m

0

n...

...
m

:= and
n...

...
m

0

n...

...
m

:=

2.2 Standard Interpretation133

In the standard interpretation [7], a diagram D is mapped to a finite dimensional Hilbert134

space of dimensions some powers of 2: JDK ∈ Qubit := {C2n → C2m | n,m ∈ N}.135

If D has n inputs and m outputs, its interpretation is a map JDK : C2n → C2m (by abuse136

of notation we shall use the notation JDK : n→ m). It is defined inductively as follows.137
u

ww
v

...

...

...
D2

D1

}

��
~ =

t ...

...
D2

|

◦

t ...

...
D1

| t ...

...
D1

...

...
D2

|

=
t ...

...
D1

|

⊗

t ...

...
D2

|

138

r z
= idC2 = |0⟩⟨0|+ |1⟩⟨1|

r z
=

∑
i,j∈{0,1}

|ji⟩⟨ij|139

q y
=

q y† = |00⟩ + |11⟩
r z

= |+⟩⟨0|+ |−⟩⟨1|140

t

α

n...

...
m

|

= |0m⟩⟨0n|+ eiα |1m⟩⟨1n|

t

α

n...

...
m

|

= |+m⟩⟨+n|+ eiα |−m⟩⟨−n|141

Wires are interpreted with the two-dimensional Hilbert space, with orthonormal basis142

written as {|0⟩ , |1⟩}, in Dirac notation [35]. Vectors of the form |.⟩ (called “kets”) are143

considered as vector columns, and therefore |0⟩ = (1
0), |1⟩ = (0

1), and α |0⟩ + β |1⟩ = (α
β).144

Horizontal juxtaposition of wires is interpreted with the Kronecker, or tensor product. The145

tensor product of spaces V and W whose bases are respectively {vi}i and {wj}j is the vector146

space of basis {vi ⊗ wj}i,j , where vi ⊗ wj is a formal object consisting of a pair of vi and147

wj . We denote |x⟩ ⊗ |y⟩ as |xy⟩. In the interpretation of spiders, we use the notation |0m⟩ to148

represent an m-fold tensor of |0⟩. As a shortcut notation, we write |ϕ⟩ for column vectors149

consisting of a linear combinations of kets. Shortcut notations are also used for two very150

useful states: |+⟩ := |0⟩+|1⟩√
2 and |−⟩ := |0⟩−|1⟩√

2 . Dirac also introduced the notation “bra” ⟨x|,151

standing for a row vector. So for instance, α ⟨0|+ β ⟨1| is (α β). If |ϕ⟩ = α |0⟩+ β |1⟩, we152

then write ⟨ϕ| for the vector α ⟨0|+ β ⟨1| (with (.) the complex conjugation). The notation153

for tensors of bras is similar to the one for kets. For instance, ⟨x| ⊗ ⟨y| = ⟨xy|. Using this154

notation, the scalar product is transparently the product of a row and a column vector:155 〈
ϕ ψ

〉
, and matrices can be written as sums of elements of the form |ϕ⟩⟨ψ|. For instance,156

the identity on C2 is (1 0
0 1) = (1 0

0 0) + (0 0
0 1) = (1

0) (1 0) + (0
1) (0 1) = |0⟩⟨0| + |1⟩⟨1|. For157

more information on how Hilbert spaces, tensors, compositions and bras and kets work, we158

invite the reader to consult e.g. [35].159

K. Chardonnet and B. Valiron and R. Vilmart 23:5

=
D

=...
...

......
D

...
...

... ...
= =

α

...

...
= α

...

...

σ
...

σ′
...

...

...
α =

...

...
α =

Figure 1 Connectivity rules. D represents any ZX-diagram, and σ, σ′ any permutation of wires.

2.3 Properties and structure160

In this section, we list several definitions and known results that we shall be using in the161

remainder of the paper. See e.g. [39] for more information. Universality. ZX-diagrams are162

universal in the sense that for any linear map f : n→ m, there exists a diagram D of ZX163

such that JDK = f .164

The price to pay for universality is that different diagrams can possibly represent the165

same quantum operator. There exists however a way to deal with this problem: an equational166

theory. Several equational theories have been designed for various fragments of the language167

[3, 29, 26, 30, 31, 38].168

Core axiomatization. Despite this variety, any ZX axiomatization builds upon the core169

set of equations provided in Figure 1, meaning that edges really behave as wires that can be170

bent, tangled and untangled. They also enforce the irrelevance on the ordering of inputs171

and outputs for spiders. Most importantly, these rules preserve the standard interpretation172

given in Section 2.2. We will use these rules —sometimes referred to as “only connectivity173

matters”—, and the fact that they preserve the semantics extensively in the proofs of the174

results of the paper.175

In particular, diagrams are always considered modulo the equivalence relation presented176

in Figure 1.177

Completeness. The ability to transform a diagram D1 into a diagram D2 using the rules178

of some axiomatization zx (e.g. the core one presented in Figure 1) is denoted zx ⊢ D1 = D2.179

The axiomatization is said complete whenever any two diagrams representing the same180

operator can be turned into one another using this axiomatization. Formally:181

JD1K = JD2K ⇐⇒ zx ⊢ D1 = D2182

It is common in quantum computing to work with restrictions of quantum mechanics. Such183

restrictions translate to restrictions to particular sets of diagrams – e.g. the π
4 -fragment which184

consists of all ZX-diagrams where the angles are multiples of π
4 . There exist axiomatization185

that were proven to be complete for the corresponding fragment (all the aforementioned186

references tackle the problem of completeness).187

The developments of this paper are given for the ZX-Calculus in its most general form,188

but everything in the following also works for fragments of the language.189

Input and output wires. An important result which will be used in the rest of the paper190

is the following:191

▶ Theorem 3. There are isomorphisms between {D ∈ ZX | D : n→ m} and {D ∈ ZX | D :192

n− k → k +m} (when k ≤ n). ◀193

CVIT 2016

23:6 Geometry of Interaction for ZX-Diagrams

To see how this can be true, simply add cups or caps to turn input edges to output edges (or194

vice versa), and use the fact that we work modulo the rules of Figure 1.195

When k = n, this isomorphism is referred to as the map/state duality. A related but196

more obvious isomorphism between ZX-diagrams is obtained by permutation of input wires197

(resp. output wires).198

2.4 Notions of Graph Theory in ZX199

Theorem 3 is essential: it allows us to transpose notions of graphs into ZX-Calculus. It is for200

instance possible to define a notion of connectivity.201

▶ Definition 4 (Connected Components). Let D be a non-empty ZX-diagram. Consider all202

of the possible decompositions with D1, ..., Dk ∈ ZX and σ, σ′ permutations of wires:203

D =
...
D1

σ′...

... σ
...

...
Dk

...
...

The largest such k is called the number of connected components of D. It
induces a unique decomposition up to permutation of wires. The induced
D1, ..., Dn are called the connected components of D. If D has only one
connected component, we say that D is connected.

204

▶ Definition 5 (Paths). Let D be a ZX-diagram. A path in D between the edges e0 and en205

is a sequence (e0, ..., en) of edges of D such that206

there exists a sequence (g1, ..., gn) of atomic (generator) sub-diagrams of D,207

for 1 ≤ i, j ≤ n, gi = gj if and only if i = j,208

for 0 ≤ i < n, ei, ei+1 ∈ E(gi+1).209

If ei ∈ I(gi) (resp. ei ∈ O(gi+1)), we say that ei is ↑-oriented (resp. ↓-oriented) in the path.210

We denote with Paths(e0, en) the set of paths between e0 and en in D, and Paths(D) the211

set of all paths in D. If Paths(e0, en) = ∅, we say that e0 and en are disconnected. Finally,212

the length of the path p = (e0, ..., en) is |p| = n.213

▶ Definition 6 (Distance). Let e and e′ be connected edges in a ZX-diagram D. We define:214

d(e, e′) := min
p∈Paths(e,e′)

(|p|)

▶ Definition 7 (Cycles). A cycle is defined as a path (e0, ..., en) where e0 = en. We denote215

Cycles(D) the set of all cycles in D.216

3 A Token Machine for ZX-diagrams217

Inspired by the Geometry of Interaction [20, 19, 18, 21, 23, 24, 25] and the associated notion218

of token machine [9, 2] for proof nets [22], we define here a first token machine on pure219

ZX-diagrams. The token consists of an edge of the diagram, a direction (either going up,220

noted ↑, or down, noted ↓) and a bit (state). The idea is that, starting from an input edge221

the token will traverse the graph and duplicate itself when encountering an n-ary node (such222

as the green and red) into each of the input / output edges of the node. Notice that it223

is not the case for token machines for proof-nets where the token never duplicates itself.224

This duplication is necessary to make sure we capture the whole linear map encoded by the225

ZX-diagram. Due to this duplication, two tokens might collide together when they are on226

the same edge and going in different directions. The result of such a collision will depend on227

the states held by both tokens. For a cup, cap or identity diagram, the token will simply228

traverse it. As for the Hadamard node the token will traverse it and become a superposition229

of two tokens with opposite states. Therefore, as tokens move through a diagram, some may230

be added, multiplied together, or annihilated.231

K. Chardonnet and B. Valiron and R. Vilmart 23:7

▶ Definition 8 (Tokens and Token States). Let D be a ZX-diagram. A token in D is a triplet232

(e, d, b) ∈ E(D)×{↓, ↑}×{0, 1}. We shall omit the commas and simply write (e d b). The set233

of tokens on D is written tk(D). A token state s is then a multivariate polynomial over C,234

evaluated in tk(D). We define tkS(D) := C[tk(D)] the algebra of multivariate polynomials235

over tk(D).236

In the token state t =
∑

i αi t1,i · · · tni,i, where the tk,i’s are tokens, the components237

αi t1,i · · · tni,i are called the terms of t.238

A monomial (e1 d1, b1) · · · (en dn, bn) encodes the state of n tokens in the process of flowing239

in the diagram D. A token state is understood as a superposition —a linear combination—240

of multi-tokens flowing in the diagram.241

▶ Convention 9. In token states, the sum (+) stands for the superposition and the product242

for additional tokens within a given diagram. We follow the usual convention of algebras of243

polynomials: for instance, if ti stands for some token (ei di bi), then (t1+t2)t3 = (t1t2)+(t1t3),244

that is, the superposition of t1,t2 flowing in D and t1,t3 flowing in D. Similarly, we consider245

token states modulo commutativity of sum and product, so that for instance the monomial246

t1t2 is the same as t2t1.247

3.1 Diffusion and Collision Rules248

The tokens in a ZX-diagram D are meant to move inside D. The set of rules presented in249

this section describes an asynchronous evolution, meaning that given a token state, we will250

rewrite only one token at a time. The synchronous setting is discussed in Section 6.251

▶ Definition 10 (Asynchronous Evolution). Token states on a diagram D are equipped with252

two transition systems:253

a collision system (⇝c), whose effect is to annihilate tokens;254

a diffusion sub-system (⇝d), defining the flow of tokens within D.255

The two systems are defined as follows. With X ∈ {d, c} and 1 ≤ j ≤ ni, if ti,j are tokens in256

tk(D), then using Convention 9,257 ∑
i

αiti,1 · · · ti,j · · · ti,ni
⇝X

∑
i

αiti,1 · · ·

(∑
k

βkt
′
k

)
· · · ti,ni

258

provided that ti,j ⇝X

∑
k βkt

′
k according to the rules of Table 1. In the table, each rule259

corresponds to the interaction with the primitive diagram constructor on the left-hand-side.260

Variables x and b span {0, 1}, and ¬ stands for the negation. In the green-spider rules, eiαx
261

stands for the the complex number cos(αx) + i sin(αx) and not an edge label.262

Finally, as it is customary for rewrite systems, if (→) is a step in a transition system,263

(→∗) stands for the reflexive, transitive closure of (→).264

We aim at a transition system marrying both collision and diffusion steps. However, for265

consistency of the system, the order in which we apply them is important as illustrated by266

the following example.267

▶ Example 11. Consider the equality given by the ZX equational theory: = .268

If we drop a token with bit 0 at the top, we hence expect to get a single token with bit 0
at the bottom. We underline the token that is being rewriting at each step. This is what we
get when giving the priority to collisions:

a

d

b c :: (a ↓ 0)⇝d (b ↓ 0)(c ↓ 0)⇝c (d ↓ 0)(c ↑ 0)(c ↓ 0)⇝ (d ↓ 0)

CVIT 2016

23:8 Geometry of Interaction for ZX-Diagrams

e0 (e0 ↓ x)(e0 ↑ x)⇝c 1 (Positive Collision)

e0 (e0 ↓ x)(e0 ↑ ¬x)⇝c 0 (Negative Collision)
e0 e1 (eb ↓ x)⇝d (e¬b ↑ x) (-diffusion)
e0 e1 (eb ↑ x)⇝d (e¬b ↓ x) (-diffusion)

(ek ↓ x)⇝d e
iαx
∏
i ̸=k

(ei ↑ x)
∏

j

(e′j ↓ x)

(e′k ↑ x)⇝d e
iαx
∏
j ̸=k

(e′j ↓ x)
∏

i

(ei ↑ x)

(e0 ↓ x)⇝d (−1)x 1√
2

(e1 ↓ x) + 1√
2

(e1 ↓ ¬x)

(e1 ↑ x)⇝d (−1)x 1√
2

(e0 ↑ x) + 1√
2

(e0 ↑ ¬x)

...e1 en

e′
1 e′

m

...
α

e0

e1

(-Diffusion)

(
...
... -Diffusion)

Table 1 Asynchronous token-state evolution, for all x, b ∈ {0, 1}

If however we decide to ignore the priority of collisions, we may end up with a non-terminating
run, unable to converge to (d ↓ 0):

(a ↓ 0)⇝d (b ↓ 0)(c ↓ 0)⇝d (d ↓ 0)(c ↑ 0)(c ↓ 0)⇝d (d ↓ 0)(a ↑ 0)(b ↓ 0)(c ↓ 0)⇝d . . .

We therefore set a rewriting strategy as follows.269

▶ Definition 12 (Collision-Free). A token state s of tkS(D) is called collision-free if:

∀s′ ∈ tkS(D), s ̸⇝c s
′

▶ Definition 13 (Token Machine Rewriting System). We define a transition system ⇝ as
exactly one ⇝d rule followed by all possible ⇝c rules. In other words,

t⇝ u iff (∃t′ · t⇝d t
′ ⇝∗c u and u is collision-free)

3.2 Strong Normalization and Confluence270

The token machine Rewrite System of Definition 13 ensures that the collisions that can271

happen always happen. The system does not a priori forbid two tokens on the same edge,272

provided that they have the same direction. However this is something we want to avoid as273

there is no good intuition behind it: We want to link the token machine to the standard274

interpretation, which is not possible if two tokens can appear on the same edge.275

In this section we show that, under a notion of well-formedness characterizing token276

uniqueness on each edge, the Token State Rewrite System (⇝) is strongly normalizing and277

confluent.278

▶ Definition 14 (Polarity of a Term in a Path). Let D be a ZX-diagram, and p ∈ Paths(D)279

be a path in D. Let t = (e, d, x) ∈ tk(D). Then:280

P (p, t) =

1 if e ∈ p and e is d-oriented
−1 if e ∈ p and e is ¬d-oriented
0 if e /∈ p

281

We extend the definition to subterms α t1...tm of a token-states t:282

K. Chardonnet and B. Valiron and R. Vilmart 23:9

P (p, 0) = P (p, 1) = 0, P (p, α t1...tm) = P (p, t1) + ...+ P (p, tm).283

In the following, we shall simply refer to such subterms as “terms of t”.284

▶ Example 15. In the (piece of) diagram presented on the right,
the blue directed line p = (e0, e1, e2, e3, e4) is a path. The orient-
ation of the edges in the path is represented by the arrow heads,
and e3 for instance is ↓-oriented in p which implies that we have
P (p, (e3 ↑ x)) = −1.

e0
e1

e2 e3
e4285

▶ Definition 16 (Well-formedness). Let D be a ZX-diagram, and s ∈ tkS(D) a token state286

on D. We say that s is well-formed if for every term t in s and every path p ∈ Paths(D) we287

have P (p, t) ∈ {−1, 0, 1}.288

▶ Proposition 17 (Invariance of Well-Formedness). Well-formedness is preserved by (⇝): if289

s⇝∗ s′ and s is well-formed, then s′ is well-formed. ◀290

Well-formedness prevents the unwanted scenario of having two tokens on the same wire,291

and oriented in the same direction (e.g. (e0 ↓ x)(e0 ↓ y)). As shown in the Proposition 18,292

this property is in fact stronger.293

▶ Proposition 18 (Full Characterisation of Well-Formed Terms). Let D be a ZX-diagram, and294

s ∈ tkS(D) be not well-formed, i.e. there exists a term t in s, and p ∈ Paths(D) such that295

|P (p, t)| ≥ 2. Then we can rewrite s ⇝ s′ such that a term in s′ has a product of at least296

two tokens of the form (e0, d,_). ◀297

Although well-formedness prevents products of tokens on the same wire, it does not298

guarantee termination: for this we need to consider polarities along cycles.299

▶ Proposition 19 (Invariant on Cycles). Let D be a ZX-diagram, and c ∈ Cycles(D) a cycle.300

Let t1, . . . , tn be tokens, and s be a token state such that t1...tn ⇝∗ s. Then for every non-null301

term t in s we have P (c, t1...tn) = P (c, t). ◀302

This proposition tells us that the polarity is preserved inside a cycle. By requiring the303

polarity to be 0, we can show that the token machine terminates. This property is defined304

formally in the following.305

▶ Definition 20 (Cycle-Balanced Token State). Let D be a ZX-diagram, and t a term in a306

token state on D. We say that t is cycle-balanced if for all cycles c ∈ Cycles(D) we have307

P (c, t) = 0. We say that a token state is cycle-balanced if all its terms are cycle-balanced.308

To show that being cycle-balanced implies termination, we need the following intermediate309

lemma. This essentially captures the fact that a token in the diagram comes from some other310

token that “traveled” in the diagram earlier on.311

▶ Lemma 21 (Rewinding). Let D be a ZX-diagram, and t be a term in a well-formed token312

state on D, and such that t⇝∗
∑

i λiti, with (en, d, x) ∈ t1. If t is cycle-balanced, then there313

exists a path p = (e0, ..., en) ∈ Paths(D) such that en is d-oriented in p, and P (p, t) = 1. ◀314

We can now prove strong-normalization.315

▶ Theorem 22 (Termination of well-formed, cycle-balanced token state). Let D be a ZX-316

diagram, and s ∈ tkS(D) be well-formed. The token state s is strongly normalizing if and317

only if it is cycle-balanced. ◀318

CVIT 2016

23:10 Geometry of Interaction for ZX-Diagrams

Intuitively, this means that tokens inside a cycle will cancel themselves out if the token319

state is cycle-balanced. Since cycles are the only way to have a non-terminating token320

machine, we are sure that our machine will always terminate.321

▶ Proposition 23 (Local Confluence). Let D be a ZX-diagram, and s ∈ tkS(D) be well-322

formed and collision-free. Then, for all s1, s2 ∈ tkS(D) such that s1

⇝s⇝ s2, there exists323

s′ ∈ tkS(D) such that s1 ⇝∗ s′ ∗ ⇝s2. ◀324

▶ Corollary 24 (Confluence). Let D be a ZX-diagram. The rewrite system ⇝ is confluent325

for well-formed and cycle-balanced token states. ◀326

▶ Corollary 25 (Uniqueness of Normal Forms). Let D be a ZX-diagram. A well-formed and327

cycle-balanced token state admits a unique normal form under the rewrite system ⇝. ◀328

3.3 Semantics and Structure of Normal Forms329

In this section, we discuss the structure of normal forms, and relate the system to the330

standard interpretation presented in Section 2.331

▶ Proposition 26 (Single-Token Input). Let D : n → m be a connected ZX-diagram with332

I(D) = [ai]0<i≤n and O(D) = [bi]0<i≤m, 0 < k ≤ n and x ∈ {0, 1}, such that:333

JDK ◦ (idk−1 ⊗ |x⟩ ⊗ idn−k) =
2m+n−1∑

q=1
λq |y1,q, ..., ym,q⟩⟨x1,q, ..., xk−1,q, xk+1,q, ..., xn,q|334

Then: (ak ↓ x)⇝∗
2m+n−1∑

q=1
λq

∏
i

(bi ↓ yi,q)
∏
i̸=k

(ai ↑ xi,q) ◀335

This proposition conveys the fact that dropping a single token in state x on wire ak gives336

the same semantics as the one obtained from the standard interpretation on the ZX-diagram,337

with wire ak connected to the state |x⟩.338

Proposition 26 can be made more general. However, we first need the following result on339

ZX-diagrams:340

▶ Lemma 27 (Universality of Connected ZX-Diagrams). Let f : C2n → C2m . There exists a341

connected ZX-diagram Df : n→ m such that JDf K = f . ◀342

▶ Proposition 28 (Multi-Token Input). Let D be a connected ZX-diagram with I(D) =343

[ai]1≤i≤n and O(D) = [bi]1≤i≤m; with n ≥ 1.344

If: JDK ◦

(2n∑
q=1

λq |x1,q, ..., xn,q⟩

)
=

2m∑
q=1

λ′q |y1,q, ..., ym,q⟩345

then:
2n∑

q=1
λq

n∏
i=1

(ai ↓ xi,q)⇝∗
2m∑
q=1

λ′q

m∏
i=1

(bi ↓ yi,q) ◀346

This proposition is a direct generalization of the proposition 26. Thanks to all of that, we can347

show that we can start evaluating not only on a single or even multiple input wires, but in fact348

on any wire in the ZX-diagram, as long as we respect well-formedness and cycle-balancedness.349

But we need to be careful about collisions. For that to hold, we need to rewrite each part of350

the sum independently before computing the sum.351

▶ Theorem 29 (Arbitrary Wire Initialisation). Let D be a connected ZX-diagram, with I(D) =352

[ai]1≤i≤n, O(D) = [bi]1≤i≤m, and e ∈ E(D) ̸= ∅ such that (e ↓ x)(e ↑ x)⇝∗ tx for x ∈ {0, 1}353

K. Chardonnet and B. Valiron and R. Vilmart 23:11

with tx terminal (the rewriting terminate by Corollary 25). Then:354

JDK =
2m+n∑
q=1

λq |y1,q . . . ym,q⟩⟨x1,q . . . xn,q| =⇒ t0 + t1 =
2m+n∑
q=1

λq

∏
i

(bi ↓yi,q)
∏

i

(ai ↑xi,q) ◀355

4 Sum-Over-Paths Token Machine356

A serious drawback of the previous token machine is that the token state grows exponentially357

quickly in the number of nodes in the diagram. A more compact representation (linear358

in the size of the diagram as we will see in Prop. 36) can be obtained by adapting the359

concept of sums-over-paths (SOP) [1] to our machine. This can be obtained naturally, as360

strong links between ZX-Calculus and SOP morphisms were already shown to exist [33, 40].361

Intuitively, SOP will allow us to manipulate token states in a symbolic way, where for instance362

(e ↓ 0) + (e ↓ 1) will be represented by (e ↓ y).363

▶ Definition 30. Let D be a ZX-diagram. A SOP-token is a triplet (p, d,B) belonging to
E(D) × {↓, ↑} × F2[y⃗] where y⃗ := (yi)0≤i<n are n variables from a set of variables V; and
where F2 := Z/2Z is the Galois field of order 2. We denote the set of SOP-tokens on D with
variables y⃗ by tkSOP(D)[y⃗]. A SOP-token-state is a quadruplet:

(s, y⃗, P, {tj}0≤j<p) ∈ R× Vn × R[y⃗]/(1, {y2
i − yi}0≤i<n)× tkSOP(D)[y⃗]p

where R[y⃗]/(1, {y2
i − yi}0≤i<n) is the set of real-valued multivariate polynomials (whose364

variables are y⃗), modulo 1 and modulo (y2
i − yi) for all variables yi. For any valuation of y⃗,365

2πP (y⃗) represents an angle, hence P is taken modulo 1. Since each yi is a boolean variable,366

we can consider y2
i − yi = 0. To better reflect what this quadruplet represents, we usually367

write it as:368

s
∑

y⃗

e2iπP (y⃗)(p0, d0, B0(y⃗))...(pm−1, dm−1, Bm−1(y⃗))369

We denote the set of SOP-token-states on D by tkSSOP(D).370

▶ Example 31. Let D =
e0

e1

, then 1√
2

∑
y0,y1

e2iπ
y0y1

2 (e0 ↑ y0)(e1 ↓ y1) ∈ tkSSOP(D).371

We can link this formalism back to the previous one, by defining a map that associates372

any SOP-token-state to a “usual” token-state. This map simply evaluates the term by373

having all its variables span {0, 1}:374

▶ Definition 32. We define [.]tk : tkSSOP(D)→ tkS(D) by:375 s∑
y⃗

e2iπP (y⃗)
∏

j

(pj , dj , Bj(y⃗))

tk

:= s
∑

y⃗∈{0,1}n

e2iπP (y⃗)
∏

j

(pj , dj , Bj(y⃗))376

▶ Example 33.377 [
1√
2

∑
y0,y1

e2iπ
y0y1

2 (e0 ↑ y0)(e1 ↓ y1)
]tk

= 1√
2

(
(e0 ↑ 0)(e1 ↓ 0) + (e0 ↑ 1)(e1 ↓ 0)

+(e0 ↑ 0)(e1 ↓ 1)− (e0 ↑ 1)(e1 ↓ 1)

)
378

We give the adapted set of rewrite rules for our SOP-token-machine in Table 2. In379

the rewrite rules of our token machine, we have to map elements of F2[y⃗] to elements of380

R[y⃗]/(1, {y2
i − yi}) for the Boolean polynomials to be sent to the phase polynomial. The map381

(̂.) : F2[y⃗]→ R[y⃗]/1(1, {y2
i − yi}) that does this is defined as:382

B̂ ⊕B′ = B̂ + B̂′ − 2B̂B′ B̂B′ = B̂B̂′ ŷi = yi 0̂ = 0 1̂ = 1383

CVIT 2016

23:12 Geometry of Interaction for ZX-Diagrams

e0 (e0 ↓ B)(e0 ↑ B′)⇝c
1
2
∑

z

e2iπ z
2 (B̂⊕B′) (Collision)

e0 e1 (eb ↓ B)⇝d (e¬b ↑ B) (-diffusion)
e0 e1 (eb ↑ B)⇝d (e¬b ↓ B) (-diffusion)

(ek ↓ B)⇝d e
2iπ(α

2π B̂)
∏
j ̸=k

(ej ↑ B)
∏

j

(e′j ↓ B)

(e′k ↑ B)⇝d e
2iπ(α

2π B̂)
∏

j

(ej ↑ B)
∏
j ̸=k

(e′j ↓ B)

(e0 ↓ B)⇝d
1√
2

∑
z

e2iπ(z
2 B̂)(e1 ↓ z)

(e1 ↑ B)⇝d
1√
2

∑
z

e2iπ(z
2 B̂)(e0 ↑ z)

...e1 en

e′
1 e′

m

...
α

e0

e1

(-Diffusion)

(
...
... -Diffusion)

Table 2 Rewrite rules for ⇝sop.

The provided rewrite rules do not give the full picture, for simplicity. If a rule gives384

(e, d, b) ⇝sop s′
∑

y⃗′ e2iπP ′ ∏
j(e′j , d′j , b′j), we have to apply it to a full SOP-token-state385

as follows: s
∑

y⃗

e2iπP (e, d, b)
∏

j

(ej , dj , bj)⇝ ss′
∑
y⃗,y⃗′

e2iπ(P +P ′)
∏

j

(e′j , d′j , b′j)
∏

j

(ej , dj , bj).386

Just as before, the rewrite system is defined by first applying a diffusion rule then all possible387

collision rules.388

This set of rules mimics the previous one for SOP-token-states, except that it “synchron-389

izes” rewrites on all the terms at once (but not on all tokens).390

▶ Example 34. Let us compare the behavior of the previous token machine to the SOP391

machine. We send tokens in states 0 and 1 down the wire a in the diagram
a

b c

. In the392

former machine, this leads to393

(a ↓ 0) + (a ↓ 1)⇝ (b ↓ 0)(c ↓ 0) + (a ↓ 1)⇝ (b ↓ 0)(c ↓ 0) + (b ↓ 1)(c ↓ 1).394

while in the latter:
∑

y

(a ↓ y)⇝sop
∑

y

(b ↓ y)(c ↓ y)395

In both cases the result is the same when interpreted as usual token states. We notice396

that the ⇝sop token machine only took one step compared to the standard one, which leads397

to the following proposition:398

▶ Proposition 35. For any D ∈ ZX and s, s′ ∈ tkSSOP(D), whenever s⇝sop s
′ we have399

[s]tk ⇝∗ [s′]tk. ◀400

We can show a result on the growth size of the token-state as it rewrites, which was the401

motivation for the use of this formalism.402

▶ Proposition 36. Let D ∈ ZX and s, s′ ∈ tkSSOP(D) such that all Boolean polynomials403

Bj in s are reduced to a single term of degree ≤ 1, and such that s⇝sop s
′. Then, the size404

of s′ is bounded by: S(s′) ≤ S(s) + ∆(D) where S denotes the cumulative number of terms in405

the phase polynomial and the number of tokens in the token-state, and where ∆(D) represents406

the maximum arity of generators in D. ◀407

K. Chardonnet and B. Valiron and R. Vilmart 23:13

The requirement on Boolean polynomials may seem overly restrictive. However, it is invariant408

under rewriting: starting with a token-state in this form ensures polynomial growth.409

Polarity can be defined in this setting (and is even more natural, as we do not need410

to consider each term individually) providing the notions of well-formedness and cycle-411

balancedness. The main results from Section 4 are valid in this setting. We recover strong412

normalization for well-formed, cycle-balanced token-states (Theorem 22), Local Confluence413

(Proposition 23) and their corollaries, such as uniqueness of normal forms (Corollary 25).414

Non-empty terminal token states can also be interpreted as SOP-morphisms. Suppose415

an SOP-token state S = s
∑

y⃗′ e2iπP
∏

i(bi ↓ Bi(y⃗′))
∏

i(ai ↑ Ai(y⃗′)) on a diagram D with416

I(D) = [ai]1≤i≤n and O(D) = [bi]1≤i≤m. Then [S]SOP := s
∑

y⃗ e
2iπP (y⃗) |B0(y⃗), ...⟩⟨A0(y⃗), ...|417

is the SOP morphism associated to S. We have the following commutative diagram:418

tkSSOP ↓ tkS ↓

SOP Qubit

[.]tk

[.]SOP J.K

J.K

where tkSSOP ↓ (resp. tkS ↓) is the set of non-empty well-
formed terminal SOP-token states (resp. token states), and
tkS ↓ J.K→ Qubit is the interpretation obtained from The-
orem 29.

419

5 Extension to Mixed Processes420

The token machines presented so far worked for so-called pure quantum processes i.e. with421

no interaction with the environment. To demonstrate how generic our approach is, we show422

how to adapt it to the natural extension of mixed processes, represented with completely423

positive maps (CPM). This in particular allows us to represent quantum measurements.424

5.1 ZX-diagrams for Mixed Processes425

The interaction with the environment can be modeled in the ZX-Calculus by adding a unary426

generator to the language [8, 5], intuitively enforcing the state of the wire to be classical.427

We denote with ZX the set of diagrams obtained by adding to the usual generators of428

the ZX-Calculus.429

Similar to what is done in quantum computation, the standard interpretation J.K for430

ZX maps diagrams to CPMs. If D ∈ ZX we define JDK as ρ 7→ JDK† ◦ ρ ◦ JDK, and we431

set J K as ρ 7→ Tr(ρ), where Tr(ρ) is the trace of ρ.432

There is a canonical way to map a ZX -diagram to a ZX-diagram in a way that preserves433

the semantics: the so-called CPM-construction [37]. We define the map (conveniently named)434

CPM as the map that preserves compositions (_ ◦_) and (_⊗_) and such that:435

CPM
()

= CPM
()

=436

CPM
()

= CPM
()

= CPM () =437

CPM
(

α

n...

...
m

)
= α

...
m

-α
n...

CPM
(

α

n...

...
m

)
= α

...
m

-α
n...

CPM
()

=438

With respect to what happens to edge labels, notice that every edge in D can be mapped439

to 2 edges in CPM(D). We propose that label e induces label e in the first copy, and e in440

the second, e.g, for the identity diagram:
e0
7−→

e0 e0
441

In the general ZX-Calculus, it has been shown that the axiomatization itself could be442

extended to a complete one by adding only 4 axioms [5].443

CVIT 2016

23:14 Geometry of Interaction for ZX-Diagrams

▶ Example 37. A ZX -diagram and its associated CPM
construction is shown on the right.

α

7→

α −α

444

5.2 Token Machine for Mixed Processes445

We now aim to adapt the token machine to ZX , the formalism for completely positive maps.446

Since the formalism of sum-over-paths gave us an easier machine to work with, where terms447

are smaller while guaranteeing a simulation result with respect to the first token machine,448

we will use it to define the token machine for completely positive maps.449

▶ Definition 38. Let D be a ZX-diagram. A SOP -token is a quadruplet (p, d,B,B′) ∈
E(D)× {↓, ↑} × F2[y⃗]× F2[y⃗] where y⃗ := (yi)0≤i<n are variables from a set of variables V.
We denote the set of SOP -tokens on D with variables y⃗ by tkSOP(D)[y⃗]. Similar to what
was done in Definition 30, a SOP -token-state is a quadruplet

(s, y⃗, P, {tj}0≤j<p) ∈ R× Vn × R[y⃗]/(1, {y2
i − yi}0≤i<n)× tkSOP(D)[y⃗]p

To better reflect what this quadruplet represents, we usually write it as:450

s
∑

y⃗

e2iπP (y⃗)(p0, d0, B0(y⃗), B′0(y⃗))...(pm−1, dm−1, Bm−1(y⃗), B′m−1(y⃗))451

We denote the set of SOP -token-states on D by tkSSOP(D)452

In other words, the difference with the previous machine is that tokens here have an453

additional Boolean function (e.g. (a ↓ x, y)). The rewrite rules are given in Table 3.

e0
(e0 ↓ B0, B1)

×
(e0 ↑ B′0, B′1)

⇝c
1
4
∑
z0,z1

e2iπ(z0
2 B̂0⊕B1+ z1

2 B̂′
0⊕B′

1) (Collision)

e0 e1 (eb ↓ B,B′)⇝d (e¬b ↑ B,B′) (-diffusion)
e0 e1 (eb ↑ B,B′)⇝d (e¬b ↓ B,B′) (-diffusion)

(ek ↓ B0, B1)⇝d e
2iπ α

2π (B̂0−B̂1)

∏
j ̸=k(ej ↑ B0, B1)
×∏

j(e′j ↓ B0, B1)

(e′k ↑ B0, B1)⇝d e
2iπ α

2π (B̂0−B̂1)

∏
j(ej ↑ B0, B1)
×∏

j ̸=k(e′j ↓ B0, B1)

(e0 ↓ B,B′)⇝d
1
2
∑
z,z′

e2iπ(z
2 B̂+ z′

2 B̂′)(e1 ↓ z, z′)

(e1 ↑ B,B′)⇝d
1
2
∑
z,z′

e2iπ(z
2 B̂+ z′

2 B̂′)(e0 ↑ z, z′)

e0
(e0 ↓ B,B′)⇝d

1
2
∑

z

e2iπ z
2 (B̂⊕B′) (Trace-Out)

...e1 en

e′
1 e′

m

...
α

e0

e1

(-Diffusion)

(
...
... -Diffusion)

Table 3 The rewrite rules for ⇝ .

454

K. Chardonnet and B. Valiron and R. Vilmart 23:15

It is possible to link this formalism back to the mixed processes-free SOP-token-states,455

using the existing CPM construction for ZX-diagrams. We extend this map by CPM :456

tkSSOP(D)→ tkSSOP(CPM(D)), defined as:457

s
∑

y⃗

e2iπP (y⃗)
∏

j

(pj , dj , Bj(y⃗), B′j(y⃗)) 7→ s
∑

y⃗

e2iπP (y⃗)
∏

j

(pj , dj , Bj(y⃗))(pj , dj , B
′
j(y⃗))

CPM(D) can be seen as two copies of D where is replaced. Each token in D corresponds458

to two tokens in CPM(D), at the same spot but in the two copies of D. The two Boolean459

polynomials B and B′ represent the Boolean polynomials of the two corresponding tokens.460

We can then show that this rewriting system is consistent:461

▶ Theorem 39. Let D be a ZX -diagram, and t1, t2 ∈ tkSSOP(D). Then whenever462

t1 ⇝ t2 we have CPM(t1)⇝{1,2}
sop CPM(t2). ◀463

In fact, the ⇝ rewriting rule will only be simulated by 2 rewriting rules (⇝sop), except in464

the case of the Trace-out where (⇝sop) only needs to apply one rule.465

Again, the notions of polarity, well-formedness and cycle-balancedness can be adapted, and466

again, we get strong normalization(Theorem 22), confluence (Corollary 24), and uniqueness467

of normal forms (Corollary 25) for well-formed and cycle-balanced token states.468

6 Conclusion and Future Work469

Since quantum circuits can be mapped to ZX-diagrams, our token machines induce a notion470

of asynchronicity for quantum circuits. This contrasts with the notion of token machine471

defined in [32] where some form of synchronicity is enforced.472

Our token machine can however be made synchronous: all tokens in a token state then473

move at once. This implies adapting the rules to take into account all incoming tokens for474

each generator. For instance, in the
[...

... -Diffusion
]
-rule the product

∏
i(ei ↓ xi) rewrites475

into δx1,...,xne
iαx1

∏
i(e′i ↓ x1). This notion of synchronicity is to be contrasted with [32]476

where tokens have to wait for all other incoming tokens before going through a gate.477

The presentation we followed clearly distinguishes between ZX-diagrams and token states478

on them. We could instead see tokens as part of the ZX-diagram. For instance, (e ↓ x)479

on D could be a literal node ↓ x
e

on D. For our first token machine, this would imply480

representing a token state by a sum of diagrams with tokens on them. In the SOP framework,481

however, we would simply get a single diagram with tokens on them and global scalar and482

polynomial in the variables.483

In this paper, we showed that our tokens could start at any edge, in a configuration that484

respects well-formedness and cycle-balancedness. We may also consider a “pulse” version,485

in which each node emits one token in all of its edges at once, during the evaluation of the486

token machine. This pulse version can be seen as a generalization of the initialization of the487

token state in Theorem 29: the intuition is
↑ x

= ⇝
↓ x

∑
x .488

References489

1 Matthew Amy. Towards large-scale functional verification of universal quantum circuits. In490

Peter Selinger and Giulio Chiribella, editors, Proceedings 15th International Conference on491

Quantum Physics and Logic, QPL 2018, Halifax, Canada, 3-7th June 2018, volume 287 of492

EPTCS, pages 1–21, 2018. doi:10.4204/EPTCS.287.1.493

CVIT 2016

https://doi.org/10.4204/EPTCS.287.1

23:16 Geometry of Interaction for ZX-Diagrams

2 Andrea Asperti and Cosimo Laneve. Paths, computations and labels in the λ-calculus.494

Theoretical Computer Science, 142(2):277–297, 1995.495

3 Miriam Backens. The ZX-calculus is complete for stabilizer quantum mechanics. New Journal496

of Physics, 16(9):093021, 2014. doi:10.1088/1367-2630/16/9/093021.497

4 Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski, and John van de498

Wetering. There and back again: A circuit extraction tale, 2020. arXiv:2003.01664.499

5 Titouan Carette, Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Completeness500

of Graphical Languages for Mixed States Quantum Mechanics. In Christel Baier, Ioannis501

Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium502

on Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz Interna-503

tional Proceedings in Informatics (LIPIcs), pages 108:1–108:15, Dagstuhl, Germany, 2019.504

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/505

volltexte/2019/10684, doi:10.4230/LIPIcs.ICALP.2019.108.506

6 Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoît Valiron.507

A deductive verification framework for circuit-building quantum programs. arXiv:2003.05841.508

To appear in Proceedings of ESOP’21.509

7 Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra and510

diagrammatics. New Journal of Physics, 13(4):043016, 2011.511

8 Bob Coecke and Simon Perdrix. Environment and Classical Channels in Categorical Quantum512

Mechanics. Logical Methods in Computer Science, Volume 8, Issue 4, Nov 2012. URL:513

https://lmcs.episciences.org/719, doi:10.2168/LMCS-8(4:14)2012.514

9 Vincent Danos and Laurent Regnier. Reversible, irreversible and optimal λ-machines. Theor-515

etical Computer Science, 227(1-2):79–97, 1999.516

10 Niel de Beaudrap, Ross Duncan, Dominic Horsman, and Simon Perdrix. Pauli Fusion:517

a computational model to realise quantum transformations from ZX terms. In QPL’19 :518

International Conference on Quantum Physics and Logic, Los Angeles, United States, June519

2019. 12 pages + appendices. URL: https://hal.archives-ouvertes.fr/hal-02413388.520

11 Niel de Beaudrap and Dominic Horsman. The ZX calculus is a language for surface code521

lattice surgery. Quantum, 4:218, January 2020. doi:10.22331/q-2020-01-09-218.522

12 Ross Duncan and Liam Garvie. Verifying the smallest interesting colour code with quantomatic.523

In Bob Coecke and Aleks Kissinger, editors, Proceedings 14th International Conference on524

Quantum Physics and Logic, Nijmegen, The Netherlands, 3-7 July 2017, volume 266 of525

Electronic Proceedings in Theoretical Computer Science, pages 147–163, 2018. doi:10.4204/526

EPTCS.266.10.527

13 Ross Duncan, Aleks Kissinger, Simon Perdrix, and John Van De Wetering. Graph-theoretic528

simplification of quantum circuits with the zx-calculus. Quantum, 4:279, 2020.529

14 Ross Duncan and Maxime Lucas. Verifying the Steane code with Quantomatic. In Bob Coecke530

and Matty Hoban, editors, Proceedings of the 10th International Workshop on Quantum531

Physics and Logic, Castelldefels (Barcelona), Spain, 17th to 19th July 2013, volume 171532

of Electronic Proceedings in Theoretical Computer Science, pages 33–49. Open Publishing533

Association, 2014. doi:10.4204/EPTCS.171.4.534

15 Ross Duncan and Simon Perdrix. Rewriting measurement-based quantum computations with535

generalised flow. Lecture Notes in Computer Science, 6199:285–296, 2010. doi:10.1007/536

978-3-642-14162-1_24.537

16 Elizabeth Gibney. Quantum gold rush: the private funding pouring into quantum start-ups.538

Nature, 574:22–24, 2019. doi:10.1038/d41586-019-02935-4.539

17 Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–101, 1987.540

18 Jean-Yves Girard. Geometry of interaction II: deadlock-free algorithms. In International541

Conference on Computer Logic, pages 76–93. Springer, 1988.542

19 Jean-Yves Girard. Geometry of interaction I: interpretation of system f. In Studies in Logic543

and the Foundations of Mathematics, volume 127, pages 221–260. Elsevier, 1989.544

https://doi.org/10.1088/1367-2630/16/9/093021
http://arxiv.org/abs/2003.01664
http://drops.dagstuhl.de/opus/volltexte/2019/10684
http://drops.dagstuhl.de/opus/volltexte/2019/10684
http://drops.dagstuhl.de/opus/volltexte/2019/10684
https://doi.org/10.4230/LIPIcs.ICALP.2019.108
https://lmcs.episciences.org/719
https://doi.org/10.2168/LMCS-8(4:14)2012
https://hal.archives-ouvertes.fr/hal-02413388
https://doi.org/10.22331/q-2020-01-09-218
https://doi.org/10.4204/EPTCS.266.10
https://doi.org/10.4204/EPTCS.266.10
https://doi.org/10.4204/EPTCS.266.10
https://doi.org/10.4204/EPTCS.171.4
https://doi.org/10.1007/978-3-642-14162-1_24
https://doi.org/10.1007/978-3-642-14162-1_24
https://doi.org/10.1007/978-3-642-14162-1_24
https://doi.org/10.1038/d41586-019-02935-4

K. Chardonnet and B. Valiron and R. Vilmart 23:17

20 Jean-Yves Girard. Towards a geometry of interaction. Contemporary Mathematics, 92(69-108):6,545

1989.546

21 Jean-Yves Girard. Geometry of interaction III: accommodating the additives. London547

Mathematical Society Lecture Note Series, pages 329–389, 1995.548

22 Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. Lecture Notes in Pure and549

Applied Mathematics, pages 97–124, 1996.550

23 Jean-Yves Girard. Geometry of interaction IV: the feedback equation. In Logic Colloquium,551

volume 3, pages 76–117, 2006.552

24 Jean-Yves Girard. Geometry of interaction V: logic in the hyperfinite factor. Theoretical553

Computer Science, 412(20):1860–1883, 2011.554

25 Jean-Yves Girard. Geometry of interaction VI: a blueprint for transcendental syntax. preprint,555

2013.556

26 Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. Two complete axiomatisations557

of pure-state qubit quantum computing. In Proceedings of the 33rd Annual ACM/IEEE558

Symposium on Logic in Computer Science, LICS ’18, pages 502–511, New York, NY, USA,559

2018. ACM. URL: http://doi.acm.org/10.1145/3209108.3209128, doi:10.1145/3209108.560

3209128.561

27 Anne Hillebrand. Quantum protocols involving multiparticle entanglement and their rep-562

resentations. Master’s thesis, University of Oxford, 2011. URL: https://www.cs.ox.ac.uk/563

people/bob.coecke/Anne.pdf.564

28 Lars Jaeger. The Second Quantum Revolution. Springer, 2018.565

29 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A complete axiomatisation of the566

ZX-calculus for Clifford+T quantum mechanics. In Proceedings of the 33rd Annual ACM/IEEE567

Symposium on Logic in Computer Science, LICS ’18, pages 559–568, New York, NY, USA,568

2018. ACM. URL: http://doi.acm.org/10.1145/3209108.3209131, doi:10.1145/3209108.569

3209131.570

30 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Diagrammatic reasoning beyond571

Clifford+T quantum mechanics. In Proceedings of the 33rd Annual ACM/IEEE Symposium572

on Logic in Computer Science, LICS ’18, pages 569–578, New York, NY, USA, 2018. ACM.573

URL: http://doi.acm.org/10.1145/3209108.3209139, doi:10.1145/3209108.3209139.574

31 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A generic normal form for zx-575

diagrams and application to the rational angle completeness. In 2019 34th Annual ACM/IEEE576

Symposium on Logic in Computer Science (LICS), pages 1–10, June 2019. doi:10.1109/LICS.577

2019.8785754.578

32 Ugo Dal Lago, Claudia Faggian, Benoît Valiron, and Akira Yoshimizu. The geometry of579

parallelism. classical, probabilistic, and quantum effects. CoRR, abs/1610.09629, 2016. URL:580

http://arxiv.org/abs/1610.09629, arXiv:1610.09629.581

33 Louis Lemonnier, John van de Wetering, and Aleks Kissinger. Hypergraph simplification:582

Linking the path-sum approach to the zh-calculus, 2020. arXiv:2003.13564. arXiv:2003.13564.583

34 Alexandre Ménard, Ivan Ostojic, Mark Patel, , and Daniel Volz. A game plan for quantum584

computing. McKinsey Quaterly, February 2020.585

35 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.586

Cambridge University Press, 2002.587

36 Qureca.com. Overview on quantum initiatives worldwide. https://www.qureca.com/588

overview-on-quantum-initiatives-worldwide/, January 2021.589

37 Peter Selinger. Dagger compact closed categories and completely positive maps. Electronic590

Notes in Theoretical computer science, 170:139–163, 2007.591

38 Renaud Vilmart. A near-minimal axiomatisation of zx-calculus for pure qubit quantum592

mechanics. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science593

(LICS), pages 1–10, June 2019. doi:10.1109/LICS.2019.8785765.594

CVIT 2016

http://doi.acm.org/10.1145/3209108.3209128
https://doi.org/10.1145/3209108.3209128
https://doi.org/10.1145/3209108.3209128
https://doi.org/10.1145/3209108.3209128
https://www.cs.ox.ac.uk/people/bob.coecke/Anne.pdf
https://www.cs.ox.ac.uk/people/bob.coecke/Anne.pdf
https://www.cs.ox.ac.uk/people/bob.coecke/Anne.pdf
http://doi.acm.org/10.1145/3209108.3209131
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.1145/3209108.3209131
http://doi.acm.org/10.1145/3209108.3209139
https://doi.org/10.1145/3209108.3209139
https://doi.org/10.1109/LICS.2019.8785754
https://doi.org/10.1109/LICS.2019.8785754
https://doi.org/10.1109/LICS.2019.8785754
http://arxiv.org/abs/1610.09629
http://arxiv.org/abs/1610.09629
https://arxiv.org/abs/2003.13564
http://arxiv.org/abs/2003.13564
https://www.qureca.com/overview-on-quantum-initiatives-worldwide/
https://www.qureca.com/overview-on-quantum-initiatives-worldwide/
https://www.qureca.com/overview-on-quantum-initiatives-worldwide/
https://doi.org/10.1109/LICS.2019.8785765

23:18 Geometry of Interaction for ZX-Diagrams

39 Renaud Vilmart. ZX-Calculi for Quantum Computing and their Completeness. Theses,595

Université de Lorraine, September 2019. URL: https://hal.archives-ouvertes.fr/596

tel-02395443.597

40 Renaud Vilmart. The Structure of Sum-Over-Paths, its Consequences, and Completeness for598

Clifford, March 2020. arXiv:2003.05678. arXiv:2003.05678.599

A Proofs of Section 3600

Proof of Proposition 17. Let D be a ZX-diagram, and s be a well-formed token state on D.601

Let t be a term of s, and e0 be the edge where a rewriting occurs. If the rewriting does not602

affect t, then the well-formedness of t obviously holds. If it does, and t⇝c,d

∑
q tq, we have603

to check two cases:604

Collision: let p ∈ Paths(D). If no tokens remain in the term tq, then P (p, tq) = 0.605

Otherwise:606

if e0 /∈ p, then P (p, tq) = P (p, t)607

if e0 ∈ p, then P (p, tq) = P (p, t) + 1 − 1 because the two tokens have alternating608

polarity609

Diffusion: let p ∈ Paths(D), and (e0, d, x)⇝d

∑
q λq

∏
i∈S(ei, di, xi,q) (this captures all610

possible diffusion rules).611

if e0 /∈ p and ∀i, ei /∈ p, then P (p, tq) = P (p, t)612

if e0 ∈ p and ∃k ∈ S, ek ∈ p, then ∀i ̸= k, ei /∈ p, because the generator can only be613

passed through once by the path p. We have P (p, (e0, d, x)) = P (p, (ek, dk, xk,q) by614

the definition of orientation in a path, which means that ∀q, P (p, tq) = P (p, t)615

if e0 ∈ p and ∀i, ei /∈ p, then, either i) p ends with e0 and e0 is d-oriented in p, or ii) p616

starts with e0 and e0 is ¬d-oriented in p. In both cases, since that p \ {e0} is still a617

path, we have P (p \ {e0}, t) ∈ {−1, 0, 1} and since P (p, tq) = P (p \ {e0}, t), we deduce618

that tq is still well-formed619

if e0 /∈ p but ∃k ∈ S, ek ∈ p, either ek is an extremity of p, or ∃k′, ek′ ∈ p. In the latter620

case, the tokens in ek and ek′ will have alternating polarity in p, so ∀q, P (p, tq) =621

P (p, t) + 1− 1. In the first case, we can show in a way similar to the previous point,622

that P (p, tq) = P (p \ {ek}, t) ∈ {−1, 0, 1}623

◀624

Proof of Proposition 18. Let t be a term in s, and p = (e0, ..., en) such that P (p, t) ≥ 2.625

We can show that we can rewrite t into a token state with term t′ = (ei, d,_)(ei, d,_)t′′. We626

do so by induction on n = |p| − 1.627

If n = 0, we have a path constituted of one edge, such that |P (p, t)| ≥ 2. Even after628

doing all possible collisions, we are left with |P (p, t)| tokens on e0, and oriented accordingly.629

For n + 1, we look at e0, build p′ := (e1, ..., en), and distinguish four cases. If there is630

no token on e0, we have P (p′, t) = P (p, t), so the result is true by induction hypothesis on631

p′. If we have a product of at least two tokens going in the same direction, the result is632

directly true. If we have exactly one token going in each direction, we apply the collision633

rules, and still have P (p′, t) = P (p, t), so the result is true by induction hypothesis on p′.634

Finally, if we have exactly one token (e0, d,_) on e0, either e0 is not d-oriented, in which635

case P (p′, t) = P (p, t) + 1, or e0 is d-oriented, in which case the adequate diffusion rule on636

(e0, d,_) will rewrite t⇝
∑

q tq with P (p′, tq) = P (p, t). ◀637

Proof of Proposition 19. The proof can be adapted from the previous one, by forgetting638

the cases related to the extremity of the paths, as well as the null terms (which can arise639

https://hal.archives-ouvertes.fr/tel-02395443
https://hal.archives-ouvertes.fr/tel-02395443
https://hal.archives-ouvertes.fr/tel-02395443
https://arxiv.org/abs/2003.05678
http://arxiv.org/abs/2003.05678

K. Chardonnet and B. Valiron and R. Vilmart 23:19

from collisions). It can then be observed that the quantity P in this simplified setting is640

more than bounded to {−1, 0, 1}, but preserved. ◀641

Proof of Lemma 21. We reason by induction on the length k of the rewrite that leads from642

t to
∑

i λiti.643

If k = 0, we have (en, d, x) ∈ t, so the path p := (en) is sufficient.644

For k + 1, suppose t⇝
∑

i λiti, and t1 ⇝k
∑

j λ
′
jt
′
j (hence t⇝k+1 ∑

i ̸=1 λiti +
∑

j λ
′
jt
′
j),645

with (en, d, x) ∈ t′1. By induction hypothesis, there is p = (e0, ..., en) such that P (p, t1) = 1.646

We now need to look at the first rewrite from t.647

if the rewrite concerns a generator not in p, then P (p, t) = P (p, t1) = 1648

if the rewrite is a collision, then P (p, t) = P (p, t1) = 1649

if the rewrite is (e, de, xe)⇝
∑

q λq

∏
i(e′i, di, xi,q)650

if e ∈ p and e′1 ∈ p, then P (p, t) = P (p, t1) = 1651

if e′1 ∈ p and e′2 ∈ p, then P (p, t) = P (p, t1)− 1 + 1 = 1652

the case e ∈ p and ∀i, e′i /∈ p is impossible:653

∗ if e is not de-oriented in p, it means e = e0, hence P ((e1, ..., en), t) = P (p, t) + 1 = 2654

which is forbidden by well-formedness655

∗ if e is de-oriented in p, it means e = en, which would imply that P (p, t1) = 0656

if e /∈ p and e′1 ∈ p and ∀i ≠ 1, e′i /∈ p, then P (e :: p, t) = P (p, t1) = 1, since well-657

formedness prevents the otherwise possible situation P (e :: p, t) = P (p, t1) + 1 = 2.658

However, e :: p may not be a path anymore. If c = (e, e0, ..., eℓ) forms a cycle, then,659

since P (c, t) = 0, we can simply keep the path p′ := (eℓ+1, ..., en) with P (p′, t) = 1660

◀661

Proof of Theorem 22. [⇒]: Suppose ∃c ∈ Cycles(D) and t a term of s such that P (c, t) ̸=662

0. By well-formedness, P (c, t) ∈ {−1, 1}. Any terminal term t′ has P (c, t′) = 0, so by663

preservation of the quantity P (c,_), t (and henceforth s) cannot terminate.664

[⇐]: We are going to show for the reciprocal that, if t is well-formed, and if the constraint665

P (c, t) = 0 is verified for every cycle c, then any generator in the diagram can be visited at666

most once. More precisely, we show that if a generator is visited in a term t, then it cannot667

be visited anymore in all the terms derived from t. However, the same generator can be668

visited once for each superposed term (e.g. once in t1 and once in t2 for the token state669

t1 + t2).670

Consider an edge e with token exiting generator g in the term t. Suppose, by reductio ad671

absurdum, that a token will visit g again in t′ (obtained from t), by edge en with orientation d.672

By Lemma 21, there exists a path p = (e0, ..., en) such that P (p, t) = 1 and en is d-oriented.673

Since e /∈ p (we would not have a path then), then p′ := (e0, ..., en, e) is a path (or possibly a674

cycle) such that P (p′, t) = 2. This is forbidden by well-formedness. Hence, every generator675

can be visited at most once. As a consequence, the lexicographic order (#g,#tk) (where #g676

is the number of non-visited generators in the diagram, and #tk the number of tokens in the677

diagram) strictly reduces with each rewrite. This finishes the proof of termination. ◀678

Proof of Proposition 23. We are going to reason on every possible pairs of rewrite rules
that can be applied from a single token state s. Notice first, that if the two rules are applied
on two different terms of s, such that the rewriting of a term creates a copy of the other,

they obviously commute, so
s ⇝ s2⇝ ⇝

s1 ⇝ s′
.

CVIT 2016

23:20 Geometry of Interaction for ZX-Diagrams

In the case where s = αt+ βt1 + s0 such that t1 ⇝ s′ and t⇝
∑

i λiti, we have:

⇝ αt+ βs′ + s0 ⇝
∑

i αλiti + βs′ + s0
s

⇝

⇝ (αλ1 + β)t1 +
∑

i ̸=1 αλiti + s0 ⇝ (αλ1 + β)s′ +
∑

i ̸=1 αλiti + s0

Then, we can, in the following, focus on pairs of rules applied on the same term.679

The term we focus on is obviously collision-free, by hypothesis and by preservation of680

collision-freeness by ⇝.681

Suppose the two rewrites are applied on tokens at positions e and e′. We may reason682

using the distance between the two edges.683

the case d(e, e′) = 0 would imply a collision, which is impossible by collision-freeness684

if d(e, e′) ≥ 3, the two rules still don’t interfere, they commute (up to collisions which do685

not change the result)686

if d(e, e′) = 2, there will be common collisions (i.e. collisions between tokens created by687

each of the diffusions), however, the order of application of the rules will not change the688

bits in the tokens we will apply a collision on, so the result holds689

if d(e, e′) = 1, then the two tokens have to point to the same generator. If they didn’t,690

(e, e′) would form a path such that |P ((e, e′), t)| = 2 which is forbidden by well-formedness.691

We can then show the property for all generators:692

Case e0 e1.693

(e0 ↓ x)(e1 ↓ x′) ⇝d (e1 ↑ x)(e1 ↓ x′)⇝

d

⇝

c

(e0 ↓ x)(e0 ↑ x′) ⇝c

〈
x x′

〉
Case e0 e1: similar.694

Case
...e1 en

e′
1 e′

m

...
α .695

eiαx
∏

i ̸=1(ei ↑ x)
∏

i(e′i ↓ x)(e′1 ↑ x′) ⇝ c

⇝d
〈
x x′

〉
eiαx

∏
i̸=1(ei ↑ x)

∏
i̸=1(e′i ↓ x)

(e1 ↓ x)(e′1 ↑ x′) | |

⇝

d

〈
x x′

〉
eiαx′ ∏

i ̸=1(ei ↑ x′)
∏

i ̸=1(e′i ↓ x′)
eiαx′ ∏

i(ei ↑ x′)
∏

i̸=1(e′i ↓ x)(e1 ↓ x) ⇝c

Case
e0

e1

.696

1√
2 ((−1)x(e1 ↓ x)(e1 ↑ x′) + (e1 ↓ ¬x)(e1 ↑ x′)) ⇝ 2

c

⇝d
1√
2

(
(−1)x

〈
x x′

〉
+
〈
¬x x′

〉)
(e0 ↓ x)(e1 ↑ x′) | |

⇝

d
1√
2

(
(−1)x′ 〈

x x′
〉

+
〈
x ¬x′

〉)
1√
2

(
(−1)x′(e0 ↓ x)(e0 ↑ x′) + (e0 ↓ x)(e0 ↑ ¬x′)

)
⇝

2
c

◀697

Proof of Proposition 26. Let us first notice that, using the map/state duality, we have698

(ak ↓ x)⇝∗
2m+n−1∑

q=1
λq

∏
i

(bi ↓ yi,q)
∏

i ̸=k

(ai ↑ xi,q) in D iff we have (ak ↓ x)⇝∗
2m+n−1∑

q=1
λq

∏
i

(bi ↓699

K. Chardonnet and B. Valiron and R. Vilmart 23:21

yi,q)
∏

i ̸=k

(a′i ↓ xi,q) in D′ where D′
...

:=
...D

... ...

ak ak

a′
1 a′

n

. Hence, we can, w.l.o.g. consider in700

the following that n = 1. We also notice that thanks to the confluence of the rewrite system,701

we can consider diagrams up to "topological deformations", and hence ignore cups and caps.702

We then proceed by induction on the number N of “non-wire generators” (i.e. Z-spider,703

X-spiders and H-gates) of D, using the fact that the diagram is connected:704

If N = 0, then D = , where the result is obvious.705

If N = 1, then D ∈

, , α

...
...

, α

...
...

. The result in this base case is then a706

straightforward verification (self-loops in green and red nodes simply give rise to collisions707

that are handled as expected).708

For N + 1, there exists D′ with N non-wire generators and such that

D ∈

 D′
...

, D′
...

...α

, D′
...

...α

(we should actually take into account the self loops, but they do not change the result). Let709

us look at the first two cases, since the last one can be induced by composition.710

If D = D′
...

a

a′

b1 bm

, then D′ is necessarily connected, by connectivity of D. Then:711

(a ↓ x)⇝ (−1)x

√
2

(a′ ↓ x) + 1√
2

(a′ ↓ ¬x)712

⇝∗
(−1)x

√
2

2m∑
q=1

λq

m∏
i=1

(bi ↓ yi,q) + 1√
2

2m∑
q=1

λ′q

m∏
i=1

(bi ↓ yi,q)713

=
2m∑
q=1

λ′q + (−1)xλq√
2

m∏
i=1

(bi ↓ yi,q)714

715

where by induction hypothesis

JD′K |x⟩ =
2m∑
q=1

λq |y1,q, ..., ym,q⟩

and

JD′K |¬x⟩ =
2m∑
q=1

λ′q |y1,q, ..., ym,q⟩

so:716

JDK |x⟩ = JD′ ◦HK |x⟩ = JD′K ◦ JHK |x⟩ = JD′K ◦
(

(−1)x

√
2
|x⟩+ 1√

2
|¬x⟩

)
717

= (−1)x

√
2

JD′K |x⟩+ 1√
2

JD′K |¬x⟩ =
2m∑
q=1

λ′q + (−1)xλq√
2

|y1,q, ..., ym,q⟩718

719

CVIT 2016

23:22 Geometry of Interaction for ZX-Diagrams

which is the expected result.720

Now, if D = D′
...

...α

, we can decompose D′ in its connected components:

D = D′
...

...α

= ...
D1

σ...

...

...
Dk

...
...

α

a

a1,1a1,n1
ak,nkak,1

b1 bmbm1bm−mk

with Di connected. Then:721

(a ↓ x)⇝ eiαx
∏

ℓ

∏
i

(aℓ,i ↓ x)722

⇝∗ eiαx
∏

ℓ

2mℓ+nℓ−1∑
q=1

λq,ℓ

∏
i̸=1

(aℓ,i ↓ x)(aℓ,i ↑ xℓ,i,q)
∏

i

(bℓ,i ↓ yℓ,i,q)

723

⇝∗ eiαx
∏

ℓ

2mℓ+nℓ−1∑
q=1

λq,ℓδx,xℓ,i,q

∏
i

(bℓ,i ↓ yℓ,i,q)

724

= eiαx
∏

ℓ

(2mℓ∑
q=1

λ′q,ℓ

∏
i

(bℓ,i ↓ yℓ,i,q)
)

725

= eiαx
2m1∑
q1=1

...

2mk∑
qk=1

λ′q1,1...λ
′
qk,k

∏
i

(b1,i ↓ y1,i,q1)...
∏

i

(bk,i ↓ yk,i,qk
)726

=
2m∑
q=1

λ′q
∏

i

(bi ↓ yi,q)727

728

where the first is the diffusion through a Z-spider, and the second set of rewrites is the729

induction hypothesis applied to each connected component.730

JDK |x⟩ =
q
(D1 ⊗ ...⊗Dk) ◦ Z1

k(α)
y
|x⟩ = (JD1K⊗ ...⊗ JDkK) ◦

q
Z1

k(α)
y
|x⟩731

= eiαx(JD1K⊗ ...⊗ JDkK) ◦ |x, ..., x⟩ = eiαx JD1K |x, ..., x⟩ ⊗ ...⊗ JDkK |x, ..., x⟩732

= eiαx

2m1+n1−1∑
q1

λq1,1 |y1,1,q1 , ..., y1,m1,q1⟩
〈
x1,2,q1 , ..., x1,n1,q1 x, ..., x

〉⊗733

...⊗

2mk+nk−1∑
qk

λqk,k |yk,1,q1 , ..., yk,m1,qk
⟩
〈
xk,2,qk

, ..., xk,n1,qk
x, ..., x

〉734

= eiαx

2m1+n1−1∑
q1

λq1,1
∏

i

δx,x1,i,q1
|y1,1,q1 , ..., y1,m1,q1⟩

⊗735

...⊗

2mk+nk−1∑
qk

λqk,k

∏
i

δx,xk,i,qk
|yk,1,q1 , ..., yk,m1,qk

⟩

736

K. Chardonnet and B. Valiron and R. Vilmart 23:23

= eiαx

(2m1∑
q1

λ′q1,1 |y1,1,q1 , ..., y1,m1,q1⟩

)
⊗ ...⊗

(2mk∑
qk

λ′qk,k |yk,1,q1 , ..., yk,m1,qk
⟩

)
737

=
2m∑
q=1

λ′q |y1,q, ..., ym,q⟩738

739

where the third line is obtained by induction hypothesis, and all λ′ match the ones740

obtained from the rewrite of token states.741

◀742

Proof of Lemma 27. There exist several methods to build a diagram Df such that JDf K = f ,743

using the universality of quantum circuits together with the map/state duality [7], or using744

normal forms [31]. The novelty here is that the diagram should be connected. This problem745

can be fairly simply dealt with:746

Suppose we have such a Df that has several connected components. We can turn it into
an equivalent diagram that is connected. Let us consider two disconnected components of Df .
Each of these disconnected components either has at least one wire, or is one of { α , α}.
In either case, we can use the rules of ZX ((Ig) or (H)) to force the existence of a green node.
These green nodes in each of the connected components can be “joined” together like this:

α β

... ... =
α β

... ...

It is hence possible to connect every different connected components of a diagram in a way747

that preserves the semantics. ◀748

Proof of Proposition 28. Using Lemma 27, there exists a connected ZX-diagram D′ with
I(D′) = [a′] and such that JD′K |0⟩ =

∑2n

q=1 λq |x1,q, ..., xn,q⟩. Consider now a derivation
from the token state (a′ ↓ 0) in D ◦D′:

...

...
D

a1 an

b1 bm

D′

a′

(a′ ↓ 0)⇝∗
∑2n

q=1 λq

∏n
i=1(ai ↓ xi,q)

and
(a′ ↓ 0)⇝∗

∑2m

q=1 λ
′
q

∏m
i=1(bi ↓ yi,q)

The first run comes from Proposition 26 on D′ which is connected. The second run results
from Proposition 26 on D ◦D′ which is also connected. The proposition also gives us that:

JDK ◦

(2n∑
q=1

λq |x1,q, ..., xn,q⟩

)
= JDK ◦ JD′K ◦ |0⟩ = JD ◦D′K ◦ |0⟩ =

2m∑
q=1

λ′q |y1,q, ..., ym,q⟩

Finally, by confluence in D ◦D′, we get
∑2n

q=1 λq

∏n
i=1(ai ↓ xi,q)⇝∗

∑2m

q=1 λ
′
q

∏m
i=1(bi ↓ yi,q)749

in D. ◀750

Proof of Theorem 29. First, let us single out e in the diagram D =
D2

e

D1

...ai

...
bi

... . We can build751

a second diagram by cutting e in half and seeing each piece of wire as an input and an752

CVIT 2016

23:24 Geometry of Interaction for ZX-Diagrams

output:
D2

e0

D1

...ai

...
bi

...

e1

:=
e0

D′
...ai

...
bi

e1

. We can easily see that a rewriting of the token states753

(e ↓ 0)(e ↑ 0) and (e ↓ 1)(e ↑ 1) in D correspond step by step to a rewriting of the token states754

(e0 ↓ 0)(e1 ↑ 0) and (e0 ↓ 1)(e1 ↑ 1) in D′. We can then focus on D′, whose interpretation is755

taken to be756

JD′K =
2m+n+2∑

q=1
λ′q
∣∣y′1,q, ..., y

′
m+1,q

〉〈
x′1,q, ..., x

′
n+1,q

∣∣757

such that758

(id⊗m ⊗ ⟨0|) ◦ JD′K ◦ (id⊗n ⊗ |0⟩) + (id⊗m ⊗ ⟨1|) ◦ JD′K ◦ (id⊗n ⊗ |1⟩) = JDK759

from which we get:760

JDK =
2m+n+2∑

q=1
λ′qδ0,y′

m+1,q
δ0,x′

n+1,q

∣∣y′1,q, ..., y
′
m,q

〉〈
x′1,q, ..., x

′
n,q

∣∣761

+
2m+n+2∑

q=1
λ′qδ1,y′

m+1,q
δ1,x′

n+1,q

∣∣y′1,q, ..., y
′
m,q

〉〈
x′1,q, ..., x

′
n,q

∣∣762

763

We now have to consider two cases:764

D′ is still connected: By Proposition 26, for x ∈ {0, 1}:765

(e0 ↓ x)(e1 ↑ x)⇝∗
2m+n+2∑

q=1
λ′qδx,x′

n+1,q

∏
i

(ai ↑ x′i,q)
∏

i

(bi ↓ y′i,q)(e1 ↓ y′m+1,q)(e1 ↑ x)766

⇝
2m+n+2∑

q=1
λ′qδx,y′

m+1,q
δx,x′

n+1,q

∏
i

(ai ↑ x′i,q)
∏

i

(bi ↓ y′i,q)767

768

We hence have769

(e0 ↓ 0)(e1 ↑ 0)⇝∗ t0 =
2m+n+2∑

q=1
λ′qδ0,y′

m+1,q
δ0,x′

n+1,q

∏
i

(ai ↑ x′i,q)
∏

i

(bi ↓ y′i,q)770

(e0 ↓ 1)(e1 ↑ 1)⇝∗ t1 =
2m+n+2∑

q=1
λ′qδ1,y′

m+1,q
δ1,x′

n+1,q

∏
i

(ai ↑ x′i,q)
∏

i

(bi ↓ y′i,q)771

772

so t0 + t1 corresponds to the interpretation of D.773

D′ is now disconnected: Since D was connected, the two connected components of D774

were connected through e. Hence, D′ only has two connected components, one connected775

to e0 and the other to e1. By applying Proposition 26 to both connected components, we776

get the desired result.777

◀778

B Proof of Section 4779

Proof of Proposition 35. By a straightforward induction on ⇝sop. ◀780

K. Chardonnet and B. Valiron and R. Vilmart 23:25

Proof of Proposition 36. Let D ∈ ZX and s ∈ tkSSOP(D) such that its Bj ∈ {0, 1, y}y∈V781

for all j. Note that all collisions at worst do not change the size of the term (at best reduce782

the size). Indeed, we turn two tokens into at most two terms in the phase polynomial, since783

z
2 (̂Bj1 ⊕Bj2 = z

2 (Bj1 + Bj2 − 2Bj1Bj2) = z
2 (Bj1 + Bj2) because we work modulo 1 in the784

phase polynomial.785

Hence, since a rewrite step consists in a diffusion step followed by some collision rule,786

showing the result only for diffusions is enough.787

Diffusions through Cups and Caps do not change the size.788

A diffusion through H adds a single term in the phase polynomial. However, since H is in789

the diagram, ∆(D) ≥ 2, so the proposition holds.790

A diffusion through a Green-spider with arity δ adds δ − 2 tokens, and a single term in791

the phase polynomial. However, δ ≤ ∆(D).792

◀793

C Proof of Section 5794

Proof of Theorem 39. Diffusion rules are trivial. Beware in the case of the Ground, as795

the CPM will produce a cup, the ⇝ does not produce a new token when applying the796

Trace-Out rule, meanwhile the ⇝sop machine will do two rewriting rules to pass through the797

cup. ◀798

CVIT 2016

	1 Introduction
	2 The ZX-Calculus
	2.1 Pure Operators
	2.2 Standard Interpretation
	2.3 Properties and structure
	2.4 Notions of Graph Theory in ZX

	3 A Token Machine for ZX-diagrams
	3.1 Diffusion and Collision Rules
	3.2 Strong Normalization and Confluence
	3.3 Semantics and Structure of Normal Forms

	4 Sum-Over-Paths Token Machine
	5 Extension to Mixed Processes
	5.1 ZX-diagrams for Mixed Processes
	5.2 Token Machine for Mixed Processes

	6 Conclusion and Future Work
	A Proofs of Section 3
	B Proof of Section 4
	C Proof of Section 5

