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Abstract

Throughout their lifetime, infrastructure network systems face unplanned events that impose pres-

sures on their integrity, functionality, and ability to deliver value. Most of the existing infrastructure

is designed to deal with the challenges imposed by uncertain external phenomena. Authors from

different backgrounds have identified flexibility, changeability, and adaptability as key attributes

that modern systems should have to face uncertain scenarios. Specifically, flexibility is an ability

that allows a system to be easily adapted when necessary. The concept of flexibility is compelling,

but it is not clear how to measure the value it may provide. Determining how much to pay to

introduce flexibility is an essential aspect of designing flexible systems, but the dependence of this

value on the future evolution of the system results in a complex decision process. The sequential

nature of the process can be modeled using multistage stochastic programming. The model explic-

itly considers the flexibility built into the network components as a decision variable at the initial

stage. The model is tested in a generic infrastructure network that must meet a stochastic demand.

The results show the relationship between the value of flexibility and the life-cycle costs at the

construction and operation stages.
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1. Introduction1

1.1. Background2

Infrastructure networks, as any infrastructure system, are constantly exposed to ever-changing3

conditions. Changes in the demand, the supply sources (in the case of water and energy distribution4

systems), and regulations may impose large stresses on the system [1, 2, 3, 4]. This uncertainty5

can either challenge or boost the ability of the network to perform at required levels [5]. In the6

former case, networks usually rely on the robustness provided by over-dimensioned designs which7

can be largely inefficient, as in the case of sanitation systems [6]. In the latter case, even if the8

new conditions are favorable, the network may not have the tools to take advantage of the new9

opportunities [7]. To face these challenges, many authors have identified the need to develop flexible10

and adaptable systems, which have the potential to improve the sustainability and efficiency of the11

system under highly uncertain conditions [8, 9, 10, 11, 12].12

Specifically, flexible systems are defined as systems with the ability to change as “easily” as13

possible [13, 14, 15, 4, 16]. This can be measured as the money or time investment required to14

modify the system. In the case of infrastructure networks, adaptations can be usually seen as the15

addition (or removal) of nodes and links or the expansion (or downgrade) of their capacity. Other16

changes, mostly managerial, may be possible (e.g. reversal of the flow direction). Flexibility is17

introduced by investing a number of resources during the design and construction phase to enable18

the option of deploying future adaptations at lower costs and shorter lead times. This investment is19

usually called the value of flexibility and is defined as the amount the system stakeholders’ are willing20

to pay to introduce flexibility into the system [7, 8]. It is assumed that the enabled adaptations21

are capped at a certain value that depends on the amount invested at the initial stages of the22

project [16]. This interpretation of flexibility is similar to the concept of shell capacity described23

by Angelus et al. [17].24

1.2. Previous works and applications25

While flexibility is not limited to capacity expansion, this type of problem is the most common26

and has been extensively studied in the manufacturing sector [18, 19, 20]. The first work comes27

from Manne [21], who modeled the optimal excess capacity of pipelines, highways, and steel plants28

subject to a random walk demand. Luss [18] further detailed the problem as determining the size,29

location, and timing of future adaptations while minimizing the discounted costs of the expansion30
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processes. This author also identified the modeling of the demand, the representation of the capacity31

as a continuous or discrete variable, the selection of the discount rate, and the presence of economies32

of scale as key elements of the problem formulation. Mathematical programming rapidly became33

one of the preferred methods to solve this type of problem, as shown by the work of Rajagopalan34

[22], who formulated a mathematical programming model to determine the optimal initial capacity35

and the technology acquisition decisions, for increasing demands. Later came the work of Ahmed36

and Sahinidis [23] who developed a multistage stochastic (MS) integer program to analyze a multi-37

period investment model for capacity expansion under uncertain demand and costs, and including38

the effect of economies of scale. Singh et al. [24] also developed an MS integer programming model39

for planning discrete capacity expansion of production facilities. Similarly, Huang and Ahmed [25]40

formulated a general MS capacity planning model with discrete capacity for the semiconductor41

industry.42

The prevalence of stochastic and dynamic programming models to solve capacity expansion43

problems in the manufacturing sector led to the adoption of these techniques in other areas such44

as planning and design of infrastructure networks. For instance, in the context of transportation45

networks, Marín and Jaramillo [26] formulated a multi-period capacity expansion problem for rapid46

transit network design. Karoonsoontawong and Waller [27] developed a robust optimization model47

for the problem of continuous traffic network capacity expansion with dynamic traffic assignment48

and traffic signal optimization. Gao et al. [28] considered the case where a road network is expanded49

either by adding new links or by increasing the capacity of the existing links, integrated with the50

road maintenance problem using a mixed-integer, non-linear, bi-level optimization program, using51

multi-period decisions. In the area of water and sewage distribution systems, Mortazavi-Naeini52

et al. [9] developed a multi-objective optimization approach for the planning of urban water system53

expansions that considers the combined effect of operating rules and infrastructure conditions. Saif54

and Almansoori [29] developed a model for the expansion of water desalination and power supply55

infrastructure using a deterministic multi-period mixed-integer linear programming formulation.56

Similarly, Fraga et al. [10] used dynamic programming to develop an integrated framework for57

the optimization of water supply system expansions, considering short and long-term water supply58

sources. In the case of energy production and transmission networks, Loureiro et al. [30] used the59

concept of real options combined with a mixed-integer linear programming model for multistage60

expansion planning. Cardin et al. [31] combined decision rules and stochastic programming to model61
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flexibility in a nuclear infrastructure system, considering a random demand and including the social62

acceptance of nuclear power as a limitation to the system expansion capabilities. For networks in63

general, Taghavi and Huang [32] applied the concepts of spot market and contract capacity combined64

with an MS integer program to model a network with multiple sources of capacity.65

In both manufacturing systems and infrastructure networks, the adaptation process requires66

large capital investments (in proportion with the total system size), which are sometimes irre-67

versible [33], and are susceptible to the negative consequences of large lead times. In both cases,68

there is a contradictory effect from economies of scale, which may favor both large initial designs69

and large future adaptations. However, infrastructure networks are subject to more strict gov-70

ernmental regulations, where failure to comply with minimum levels of performance can result in71

heavy societal costs. This poses an additional problem of strategically selecting the extent to which72

flexibility should be incorporated. Besides, infrastructure networks are usually planned for longer73

service horizons, which favors delayed deployments due to discounting [34]. Furthermore, the nature74

of stakeholders affects the management and adaptation strategies. While manufacturing systems75

are generally completely privately owned, infrastructure network ownership can range from com-76

pletely public to completely private, which may create conflicting interests. For instance, in energy77

infrastructure, maintaining a determined level of excess capacity may be valuable for society but78

not for profit maximization [35]. Finally, the frequency of adaptation is considerably different: in79

manufacturing systems is not uncommon to see changes every one or two years, while infrastructure80

networks may see changes in periods of five to ten years.81

1.3. Objectives and scope82

The works discussed in the previous section show the potential of (and the preference for) MS83

programming as a tool to model and solve complex sequential decision problems. Considering that84

the problem of designing and managing flexible infrastructure networks is in itself a sequence of85

decisions under uncertainty, this paper proposes a multistage stochastic program (MSP) to analyze86

the problem of flexibility. Operational and maintenance costs are explicitly considered, to take87

into account the relative importance of these costs in the systems modeled and the impact these88

costs may have on the preference of the model for flexible solutions. The model uses scenario89

trees generated by Monte-Carlo simulation and k-medoids clustering to simulate and discretize90

the random process. The novelty of the model is that it explicitly considers the flexibility range91
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introduced by design as a decision variable, which will restrict all the future planned adaptations.92

The proposed model results in an alternative methodology to real options as a tool to determine the93

value of flexibility. By modeling flexibility as a decision variable, the program decides how much94

should be paid at the initial stage to lower future expenses.95

The article is organized as follows: 2 gives an overview of the concept of flexibility in infras-96

tructure systems and its numerical representation. A review of the theory behind two-stage and97

MSPs is presented in 3. 4 provides the formulation of the proposed MSP. 5 presents a methodology98

to solve the MSP using an approximate approach. Finally, ?? provide a numerical example with a99

generic network and a summary of the key results.100

2. Designing for Flexibility101

The concept of flexibility is considered to be not "academically mature" [14] due to the lack of a102

precise and universally accepted definition. In this study, flexibility will be understood as defined103

by [7, 15], and [16]. The authors define flexibility as the ability of a system to easily adapt any of104

its components (or subsystems). The effort necessary to complete an adaptation is measured as the105

number of required resources, which are usually represented as a monetary quantity. Furthermore,106

any adaptation will be limited to a maximum value given by the system’s context and the resources107

invested to make the system flexible. These additional costs may be incurred at the initial stage108

of the project to introduce the option to adapt some of the system components. These expenses109

may come from research and development activities or by installing physical elements that will110

facilitate future adaptations. For instance, the floating platforms used in offshore wind farms could111

be designed to be expanded or be built larger-than-required to facilitate future adaptations to the112

turbine sizes.113

The problem of determining how much should be invested to have flexibility in the system is114

usually known as measuring the value of flexibility. This is a complex problem because capturing the115

value of having the option to modify the system under certain circumstances is not a straightforward116

process [8]. Different approaches have been developed based on different assumptions and modeling117

frameworks. For instance, the Real Options Analysis (ROA) method was developed by adapting the118

concept of options in financial markets to physical assets [36, 37]. Under this approach, the value119

of flexibility is measured as the pricing of an option that provides the right but not the obligation120

to modify the system in some predefined way. In a different approach, Cardin et al. [7] defined the121
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value of flexibility as the difference between the expected net present value (ENPV) of a flexible122

system and an inflexible system subjected to the same conditions. Similarly, Špačková and Straub123

[15] defined it as the additional investment that should be made to have a flexible system compared124

with the inflexible alternative, using Markov Decision Processes (MDP) to model the sequential125

decision process. Following these works, the value of flexibility will be understood in this paper126

as the maximum value that should be paid at the start of the system life-cycle to minimize the127

discounted costs of future adaptations and maximize the received utility.128

In the area of chemical processes, the concept of Flexibility Analysis (FA) has been proposed to129

optimize the design and operation of chemical plants under uncertainty [38, 39, 23, 40]. The main130

objective of this approach is to determine the optimal design and control variables that allow feasible131

operation for the whole range of uncertain parameters. If feasible operation is achieved, then the132

process is considered flexible enough. To guarantee feasibility, FA uses the worst-case approach [40]133

as in the case of robust optimization. In fact, FA and robust optimization share many concepts134

and methods, even if historically they evolved separately. One key difference, however, is the use of135

recourse variables (the control variables) to modify the plant’s response to particular realizations of136

the uncertain parameters. While recourse variables are traditionally not used in robust optimization,137

they are a key concept in stochastic optimization. By combining concepts from these optimization138

approaches, FA can be used to determine the optimal design characteristics of flexible chemical139

plants.140

The formulation of the flexibility concept and the optimization models proposed in FA may141

suggest that the approach can be extended to other engineering systems. Indeed, the design and142

management of flexible infrastructure networks can be properly modeled using the representation143

of design, state, and control variables from the FA approach. The recourse options provided via144

control variables can represent adaptation decisions instead. In both cases, flexibility exists to145

face the uncertainty in external phenomena. Despite these similarities, the concept of flexibility in146

infrastructure systems (and networks) is more closely related to the concept of Real Options [36, 37],147

while the definition of flexibility in FA is more similar to the concept of robustness in infrastructure148

systems (as defined in [13]). The problem of how much should be paid today to have the option to149

modify the system in the future is a very important notion in flexibility for infrastructure systems150

that does not exist in FA. Furthermore, the changes implemented using control variables in chemical151

processes are usually reversible, while modifying infrastructure systems involves a sequential decision152
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process that results in incremental modifications. The sequential nature of the decision process153

requires a modeling approach that considers the temporal interdependence of the decisions (such154

as dynamic or stochastic programming) for which the tools developed in FA are insufficient. For155

these reasons and despite the conceptual similarities, the FA approach is not used in this paper and156

rather an MS programming model is proposed.157

2.1. Numerical representation of flexibility158

To formulate and solve the problem of the value of flexibility, it is useful to have a numerical159

representation of flexibility. Unfortunately, the lack of consensus in the conceptual definition is160

also present in the formal description. Various authors have proposed an array of indices with161

different levels of complexity [38, 13, 41, 42] but none has been universally adopted. This study162

will measure flexibility using the flexibility vector defined by Torres-Rincón et al. [16], shown in163

Equation 1. This formulation explicitly represents two characteristics usually associated with the164

concept flexibility: the presence of the option to change, and a measurement of the effort required to165

complete the change. The flexibility vector for the design or operation variable i has two dimensions:166

the first dimension measures the effort necessary to complete an adaptation as the ratio between167

the unitary cost of modifying the component without flexibility (without being specifically designed168

to be adapted) and the unitary cost of performing an adaptation when flexibility was introduced169

cnf,i/cf,i; the second dimension measures the size of the available adaptation space as the ratio170

between the maximum value the design or operation property can take divided by its initial value171

xmax,i/x0,i. Therefore, a system can increase its flexibility by increasing the number of states that172

can reach through low-cost adaptations, or by reducing the cost of such adaptations.173

fvi,t =
[
cnf,i − cf,i

cf,i
,
xmax,t,i − x0,i

x0,i

]
(1)

For instance, Figure 1 shows two flexibility vectors of the same magnitude. Vector A, how-174

ever, has a larger cost component (horizontal axis), while vector B has a larger adaptation space175

component (vertical axis). Clearly, the expected behavior of both designs under the same external176

conditions will be different. The vectorial representation of flexibility allows capturing the complex177

nature of the property.178
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Flexibility vector A

Flexibility vector B

Fig. 1. Flexibility vector representation

2.2. Managing flexibility through policies179

The elements of flexibility described previously are deeply interconnected with the physical180

characteristics of the system. A system is specifically designed and built to be flexible, which181

affects its morphology. Therefore, future management process to decide the optimal timing and182

magnitude of adaptations will be constrained by the limitations of the design [13, 41, 7, 31, 4, 16].183

The management process is also conditioned by external factors and the system’s current state,184

but also on particular preferences of the stakeholders, technical limitations, user requirements, and185

regulatory frameworks. For instance, risk-averse stakeholders may prefer to build large systems from186

the beginning with enough flexibility to perform small adaptations, while stakeholders with a higher187

risk tolerance may favor smaller initial systems with high flexibility to deploy large adaptations.188

These complex interactions between external elements and individual preferences can be modeled189

in the form of policies.190

Policies are functions that map a set of states to decisions [31, 43]. Depending on the modeling191

framework, policies can be deterministic or stochastic with variable degrees of complexity. For192

many applications, however, a simplified framework can be formulated using “if-then” conditionals193

that instruct when to trigger an adaptation process [44]. Under this formulation, the conditional194
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threshold and the size of interventions become the main parameters to be defined. These elements195

can be used to construct more complex policies. For instance, a more complex policy can be196

constructed from the if-then conditional by defining the magnitude of the adaptation as the optimal197

change that minimizes the expected present value of the associated costs and maximizes the expected198

utility, while constraining the desired performance to remain at certain levels.199

Generally, flexibility management requires not one but a complete sequence of decisions. The200

sequence starts with an initial decision to define the design characteristics of the system, i.e., the201

initial dimensions and the flexibility (maximum adaptation range and adaptation costs). Once202

the system is fully commissioned and starts operation, a monitoring process is required to verify203

the adaptation conditions defined by the policy. The successful implementation of any policy is204

conditioned on an inspection and monitoring program. When the conditions are met, a decision is205

made concerning the magnitude of the adaptation. The complexity of this problem lies in that every206

decision made will affect the future state of the system and, in consequence, the input for the policy207

in the future. Furthermore, the future state will also depend on uncertain external conditions that208

may not be stationary (changes in traffic, demand, climate change, etc.) [12]. Thus, the problem of209

managing flexibility is a classic example of sequential decision problems.210

In summary, designing and managing flexible systems requires at least the following tasks (for211

one flexible component):212

1. determine the optimal initial design x0,213

2. determine the optimal initial flexibility level f0,214

3. define the policy π to represent the management decisions,215

4. following π, determine the optimal timing τ1, τ2, . . ., and size yτ1 , yτ2 , . . . of future adaptations.216

The model presented in this paper addresses the first two items. Figure 2 presents a diagram that217

synthesizes this design and management process.218

2.3. Sequential decision-making219

Typical decision-making models require an agent and an environment. At time t, the agent220

observes the state of the environment st and selects an action at according to the policy π. Then,221

the environment produces a reward rt for the agent and evolves to a new state st+1 following a222

probabilist model that depends on the sequence of previous states s1:t and actions a1:t [45]. The223

9



Time

P
ar

am
et

er
 x

i 
(t

) 
(e

.g
.,
 c

ap
ac

it
y
)

Demand, d(t)

Sample-path xi (t)

x0,i

 x(  ) - x(  -     )

ft,i

Outside flexible 

rangezt,i

yt,i

f0,i

xmax,i

Fig. 2. Description of the main elements for flexible designs

agent observes this new state and selects another action at+1. If the new state only depends224

on the previous state and action, then the decision model is referred to as a Markov Decision225

Process (MDP). While the basic version assumes that the probabilistic model is known and the226

environment is fully observable, these conditions are not a requirement. For instance, Partially227

Observable Markov Decision Processes (POMDPs) are a generalized version of MDPs.228

Solving a sequential decision problem is not a unique problem; each model may have many229

different elements that need to be determined, which requires different methods. For instance, a230

key problem is finding the optimal policy, i.e., the optimal function that selects an action at for231

each pair of action and state history a1:t−1, s1:t−1. Problems of optimal policy are usually solved232

using methods such as dynamic programming (DP), approximate dynamic programming (APD),233

reinforcement learning, genetic algorithms, and Monte Carlo tree searches. A different problem234

is finding the optimal initial decisions that optimize a certain performance measurement over the235

system lifetime, i.e., the optimal design that minimizes discounted adaptation costs. In this case,236

the optimal initial decisions are determined considering future sequences of decisions that may result237

from a particular decision rule and a probability model, even if the optimal sequence of decisions238
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is not determined. Decision problems focused on finding a robust, optimal initial decision can be239

solved using MS programming [46, 47, 48].240

The problem of flexibility and the value of flexibility as presented before is better suited to be241

solved using MS programming. The next section presents an overview of the theory behind MSPs242

and 4 presents the proposed MS model for the problem of flexibility.243

3. Stochastic Programming244

3.1. Two-stage program with fixed recourse245

The simplest stochastic programming model is the linear two-stages model with recourse shown246

in Equation 2 [48], where the objective is to minimize the costs at the initial stage t = 0 and at the247

recourse stage t = 1:248

min
x0

f = cTx0︸ ︷︷ ︸
Initial stage costs

+ Eξ[min q(ω)Tx1(ω)]︸ ︷︷ ︸
Recourse costs

s.t. Ax0 = b

H(ω)x0 + Jx1(ω) = h(ω)

x0 ≥ 0, x1 ≥ 0

(2)

At the initial stage, the decision x0 ∈ Rn1 is made considering that the first stage data is249

known: matrix A ∈ Rm1×n1 and vector b ∈ Rm1 . At the second stage, a random event ω ∈ Ω is250

realized (Ω represents the set of all random outcomes) and the second stage information is revealed:251

technology matrix H(ω) ∈ Rm2×n1 , recourse cost vector q(ω) ∈ Rn2 , and right-hand side vector252

h(ω) ∈ Rm2 . Then, the second stage decision x1(ω) ∈ Rn2 , the recourse decision, is made. This253

model is classified as with fixed recourse because the recourse matrix J ∈ Rm2×n2 is assumed254

deterministic. This assumption implies that the effect of the recourse decision x1 in the constraints255

is known, which greatly simplifies the solution of the problem and still can be used to model a wide256

range of real life situations.257

Each element in the random matrix and vectors H(ω), q(ω), and h(ω) is a random variable.258

Therefore, the random vector ξ = (q(ω),h(ω), vec(H(ω))) with support Ξ ⊂ Rd can be constructed259

to represent all the data that depends on the random event ω. By taking the expectation with260

respect to ξ, the estimation of the second stage costs is considering all possible realizations of ω (at261

least those with non-zero probability).262
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A key characteristic of stochastic programs (two-stages or multistage) is that the recourse de-263

cisions x1 will be different for each realization of the random event ω. Therefore, if the random264

parameter distribution is discretized into r intervals, there will be r different x1 solutions, which is265

not very useful from a planning perspective. The true value of stochastic programs lies in the ini-266

tial stage solutions x0 because they are unique for all trajectories of the random parameter. These267

decisions are being selected to guarantee that the expected value of future costs (which depend268

on ξ and x1) will be minimal. The next section presents how this model can be extended to the269

multistage case.270

3.2. Multistage stochastic programs271

Multistage stochastic programming is a modeling framework that generalizes the two-stage272

problem to a sequence of recourse decisions. In the two-stage problem, the realization of the273

uncertain parameter becomes known at the second stage and the decision-maker has the option to274

make a second decision x1 -the recourse- to adjust the initial decision x0. When the approach is275

extended to the multistage case, every recourse decision xt will be selected based on the expected276

value of this decision for stage t+ 1 assuming that every future decision will be optimal [48]. This277

results in a particular sequence of recourse decisions for every sequence of uncertain parameters.278

The general MS programming model can be formulated as follows [47]:279

min
x1∈X1

f1(x1) + E[ inf
x2∈X2(x1,ξ2)

f2(x2, ξ2) + E[. . .

+ E[ inf
xT∈XT (xT −1,ξT )

fT (xT , ξT )] . . .]
(3)

where xt ∈ Rnt is the vector of decisions variables at time t; ξt ∈ RMt is the vector of uncertain280

parameters at time t (with Mt as large as nt +mt +nt×mt); functions ft(xt, ξt) define the cost of281

making the decision xt; and Xt represent the set of constraints that define the feasibility regions.282

By using an expectation functional in the recourse functions, it is being assumed that the283

decision-maker is risk-neutral. Risk-averse attitudes can be modeled by replacing the expectation284

functional with risk functionals that consider both the mean and the variance of the random out-285

come in the optimization process. Functionals such as mean-variance, semi-deviations, weighted286

mean deviations from quantiles, and average value at risk can be used to generate solutions with287

limited risk [47]. Nonetheless, for the case of infrastructure networks where the performance is con-288

sidered long-term and the structural integrity is not being subject to optimization, the expectation289

12



functional can be used as long as the number of scenarios considered is large enough for the Law290

of Large Numbers to apply. Other requirements defined by the decision-maker, e.g. performance291

levels, can be specified either as hard constraints in the feasibility set Xt or the deviations can be292

penalized in the cost function.293

In an MSP there may be four uncertain elements: future costs, right-hand side vector, technol-294

ogy matrix, and recourse matrix. The right-hand side vector is usually associated with demand, the295

technology matrix with the initial decision response, and the recourse matrix with the recourse de-296

cisions response. For instance, the technology matrix could represent the productivity of the initial297

conditions while the recourse matrix could represent the productivity of the recourse decisions, and298

both affect the system’s ability to serve the random demand given by the right-hand side vector.299

Clearly, the decision of which elements are considered random in the model depends on the type of300

system and the modeler’s assumptions.301

The decision on how to model the random parameters depends entirely on the type of problem.302

Historical data, econometric projections, experts’ opinions, all can be used to define the probability303

distributions of the elements selected to be random. The scenario generation techniques discussed304

in the following section are used to transform these probability distributions and the filtration305

structure of the information into discrete approximations in the form of scenario trees that can be306

used to solve numerically the MSP.307

An important property of MSPs is that the information available is represented as σ-algebras308

Ft. As the stages move forward, the information available increases, which is modeled as a sequence309

of increasing σ-algebras: Ft ⊆ Ft+1. This growing sequence of σ-algebras is known as a filtration.310

This is an important property of the problem because it implies that decisions at each stage xt can311

only consider the information available up to that stage [49]. This requirement can be explicitly or312

implicitly modeled in the constraint set and it is known as non-anticipativity constraints.313

3.3. Challenges in stochastic programming314

The MS programming approach, while useful to capture the presence of uncertainty in planning315

problems, faces limitations due to its computational complexity. The first limitation is defined by316

the representation of the uncertain parameters in the model. Regardless of whether the distribution317

of the random processes is known or if only sample paths are available, this information has to be318

transformed somehow to be entered as an input to the model. Scenario trees are the usual approach319
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to represent the uncertain elements in MSP and constructing them implies the finite discretization320

of the original distributions (if they are continuous in the first place).321

To properly represent the original distribution a large number of points are required. Further-322

more, the nested structure of scenario trees results in exponential growth of the number of scenarios323

with the number of stages. These two issues (many points and exponential growth) render the prob-324

lem intractable if a detailed representation of the underlying distribution is desired in a model with325

many stages. For this reason, methods for the generation and reduction of scenario trees constitute326

a very active area of research. Høyland and Wallace [50] developed an approach based on mini-327

mizing a distance measure (e.g. squared norm) between a predefined statistical property and the328

statistical property from the approximation. This approach is known as moment matching and has329

been further expanded in various works (e.g. [51]). However, as shown in [50], matching some mo-330

ments of the distributions is not enough to guarantee that the solutions of the stochastic program331

will be similar. For this reason, Heitsch and Römisch [52] developed scenario generation heuristics332

based on the concept of stability. Stability is a property in stochastic programs that guarantees333

that the optimal value does not change excessively by changing the scenario tree if both come from334

the same distribution. The approaches developed by Heitsch and Römisch [52] recursively reduce335

and bundle scenarios using the concept of filtration distance. The more recent approach developed336

by Pflug and Pichler [53], based on the concept of nested distance, allows generating the structure337

of the tree dynamically to meet a prescribed precision.338

The second limitation is associated with the solution of the optimization problem. The nested339

structure found in MSPs severely complicates the problem and special algorithms are sometimes340

required to provide a solution. Two general approaches are usually recognized in the literature341

[54, 55, 56]: Primal and Dual decomposition. In the primal decomposition approach, the problem342

is divided into a master problem for the current stage and sub-problems for the previous stages.343

During each iteration, cuts are generated to linearly approximate the recourse function and generate344

a candidate solution x∗ [48]. Examples of primal decomposition algorithms can be found in the345

works of Birge [57], Ruszczyński [58], and Ruszczyński [59]. In the dual decomposition approach,346

non-anticipativity constraints are relaxed and moved to the Lagrangian. The division between a347

master problem and many sub-problems also exists in this approach, but here the sub-problems348

are connected with scenarios instead of stages. As in the case of primal decomposition, most of the349

advances came during the late 80s and early 90s with the Progressive Hedging Algorithm [60] and350
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the Diagonal Quadratic Approximation [61]. Most recent efforts have focused on extending these351

approaches to mixed-integer problems, as in the Branch and Price approach from Lulli and Sen352

[62].353

Nonetheless, not all the MSP required special algorithms to be solved. Alternative approaches354

exist to exploit particular structures of the problem. For instance, if Block-Separability Recourse355

(BSR) exists, the MSP can be analyzed as a two-stage problem with aggregate-level decisions being356

made at the first stage and planning-level decisions happening during the second stage. Commercial357

solvers are also capable of handling MSPs with linear constraints and non-linear objectives [63] while358

state-of-the-art solvers can handle problems in the deterministic equivalent formulation [56].359

4. Multistage Stochastic Programming Model for Flexibility360

4.1. Problem description361

An important challenge faced by infrastructure network systems consists of managing changes362

in demand such as traffic, consumption, or population growth efficiently. This can be accomplished363

with sporadic adaptations in size, capacity, or any other performance parameter to maintain min-364

imum safety and operational standards. Decisions on the timing and sizes of these interventions365

should be carefully made to maintain an acceptable level of performance while keeping the costs366

minimal. In this section, an MSP has been adapted to model this problem.367

Consider a network represented as a directed graph G(E, V ), where E is the set of edges and368

V a set of nodes, such that every edge euv ∈ E connects nodes u and v with u, v ∈ V . Each edge369

is associated with a flow wt(u, v) occurring at time t. This flow can represent traffic, electricity,370

water, information, etc., moving through typical infrastructure network systems such as highways,371

power distribution networks, water supply and sewage distribution networks, and telecommunica-372

tion networks. Simplifying the notation, each edge e can be characterized by a vector of design and373

operational variables xt,e ∈ Rne that may change over time (e.g., number of lanes in a highway or374

capacity in a power transmission network), where ne represents the number of variables considered375

for edge e. These potential changes may occur as a result of some external random phenomena376

(e.g., change in traffic demand or flow), described by event ω ∈ Ω, and are represented by the377

variables yt,e ∈ Rne , in the case of flexible adaptations, and zt,e ∈ Rne for unplanned adaptations.378

An additional element is the flexibility built into each design or operational variable, which379

is represented in the model as f0,e ∈ Rne (a decision variable), the maximum range of change380
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allowed by design for xt,e. This is not the flexibility vector fv presented in Equation 1, but the381

difference between xmax and x0. For simplicity, f0,e will be regarded as the flexibility from now on.382

The flexibility decisions are made at the initial stage, together with the decision concerning initial383

design and operation properties x0,e, and their purpose is to restrict the flexible adaptations yt,e384

that can occur in the future. These modeling decisions allow introducing the problem of balancing385

three approaches: investing at the initial stage to reduce future adaptation costs, investing at386

the initial stage to have robust/unchangeable systems, and not investing and risking larger future387

adaptation costs. This is, deciding the optimal values of x0,e, f0,e, yt,e, and zt,e. It is expected that388

most solutions will involve a combination of the three strategies.389

4.2. Definition of costs390

Each decision variable of the model has a cost function associated. These cost functions can391

represent costs related with activities of design, construction, adaptation, operation, and mainte-392

nance of the network edges. The model considers the initial stage costs (design and construction) as393

known, while the costs associated with future activities (adaptation, operation, and maintenance)394

can be affected by uncertainty. This distinction is represented in the following cost functions: for395

the initial stage, ae is the cost function of building edge e with the initial design parameters x0,e,396

and be is the cost function of adding features to network edge e that facilitate future changes,397

i.e., the cost of adding flexibility to the system. For example, be can represent the additional398

construction costs for a larger foundation in a building to facilitate future expansions. For the399

recourse stages, ce(yt,e, ω) is the cost function of adapting the network edge parameters by yt,e400

units within the flexible range f0,e (i.e., the initial design value of variable i plus the sum of all the401

flexible adaptations over the lifetime must be less or equal than the initial value plus the flexibil-402

ity x0,e(i) +
∑T
t=1 yt,e(i) ≤ x0,e(i) + f0,e(i)), and de(zt,e, ω) is the cost function of performing an403

adaptation zt,e outside the flexible range. This option is included in the model to represent the404

fact that any infrastructure network can be modified if enough resources are invested; however, this405

does not mean that the alternative will be efficient. Additional costs related with operation are the406

flow cost q(we, ω), the operation and maintenance (O&M) cost ge(xt,e(i), ω), and the function of407

revenue received from exploiting the network he(ω).408

The parameters of these cost functions depend on, first, the type of function used for the409

representation and, second, the procedure performed to obtain the data. For many applications,410
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a linear or convex function is enough to represent the required behavior. However, to represent411

specific conditions, e.g. economies of scale [7], concave functions may be needed. The values of412

these parameters can be obtained from autoregressive models, reports in the literature, experts’413

opinions, industry surveys, and sensitivity analyses. If the model considers random costs, then the414

cost function parameters become random variables and additional parameters for their distributions415

must be defined (using historical data, available literature, surveys, etc.).416

In the model proposed, all the cost functions can be represented using convex functions. If a417

typical linear cost representation is used, then the only cost parameter is the unitary cost coefficient.418

In this case, the only requirement is that the unitary costs of functions de (unplanned adaptations)419

must be larger than the unitary costs of functions ce(planned adaptations); otherwise, the model420

will never assign value to the flexible option. If a different convex function is used, then it must be421

guaranteed that de(x) > ce(x) ∀ x > 0. This does not mean that flexibility will always be preferred422

due to the additional cost be of introducing flexibility at the initial stage. However, if the condition423

is not met, then flexibility will never be a viable option from a cost standpoint.424

4.3. MSP problem formulation425

The elements described in the previous sections are combined in the following objective function426

for an MSP to analyze flexible infrastructure networks:427
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min
x0,f0

∑
e∈E

ne∑
i=1

ae(x0,e(i))︸ ︷︷ ︸
Initial design costs

+
∑
e∈E

ne∑
i=1

be(f0,e(i))︸ ︷︷ ︸
Flexibility introd. cost

+ Eξ1

min γ1


∑
e∈E

ne∑
i=1

ce(y1,e(i), ω)︸ ︷︷ ︸
Flexible adaptations cost

+
∑
e∈E

ne∑
i=1

de(z1,e(i), ω)︸ ︷︷ ︸
Unplanned adaptations cost

+
∑
e∈E

q(w1,e, ω)︸ ︷︷ ︸
Flow cost

+
∑
e∈E

ne∑
i=1

ge(x1,e(i), ω)︸ ︷︷ ︸
O&M cost

± h(ω)︸︷︷︸
Exploitation cost/revenue

+ . . .

+ EξT

[
min γT

(∑
e∈E

ne∑
i=1

ce(yT,e(i), ω) +
∑
e∈E

ne∑
i=1

de(zT,e(i), ω) +
∑
e∈E

q(wT,e, ω)

+
∑
e∈E

ne∑
i=1

ge(xT,e(i), ω)± h(ω)
)]

. . .

]

(4)

where i indexes the design and operational parameters being considered for each edge e, ne is428

the number of design and operational parameters, and γt is the discount factor. To represent the429

limitations and special conditions associated with the management of flexibility and the optimal430

flow distribution inside the network, the following constraints are formulated:431

First, the constraints for flow conservation between converging and diverging links at a node k432

are:433 ∑
v

w(k,v) −
∑
u

w(u,k) = φk(ω) ∀u, v, k ∈ V, (5)

where φk = 0 if k is a transshipment node and φk 6= 0 if k is either a supply or a demand node.434

Second, the constraints for the minimum and maximum flow that can move through each link435

e are:436

`lower,t,e ≤ wt,e ≤ `upper,t,e t = 1 . . . T, ∀e ∈ E (6)

where the lower and upper limits `lower, `upper are part of the design and operational variables437

vector xt,e and may have a flexibility value associated (can be adapted).438

Third, the constraints that control the trigger of an adaptation process:439

V (xt,e, ξt) ≥ πt,e t = 1 . . . T, ∀e ∈ E (7)
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where the performance function V provides a quality measure of the design and operation440

variables xt,e in comparison with the pressure caused by the random parameters ξt. This set of441

constraints establishes that the performance measure must be larger than a certain value πt,e given442

by the management policy. In this way, the constraints defines the criteria to make a change. For443

example, it can define the maximum ratio flow/capacity in an edge before it has to be expanded.444

Fourth, the constraints for the maximum planned adaptation in a design or operation variable445

in an edge are:446

t∑
j=1

yj,e(i) ≤ f0,e(i) t = 1, . . . , T, i = 1, . . . , ne, ∀e ∈ E (8)

These constraints establish that the sum of the total planned changes for a design/operation variable447

i in an edge e must be, at most, the flexibility built for that variable i and edge e.448

Fifth, the constraints to update the state variables of an edge in accordance with the available449

actions are:450

xt,e(i) = xt−1,e(i) + yt−1,e(i) + zt−1,e(i) t = 1, . . . , T, i = 1, . . . , ne, ∀e ∈ E (9)

Other constraints can be added depending on the nature of the network, or to properly charac-451

terize the adaptations (e.g. non-negativity constraints restrict adaptations to expansions; integrality452

changes the nature of the adaptations from modular to continuous). There are non-anticipativity453

constraints implicitly formulated in the other constraints to restrict the knowledge available to make454

a decision at each stage; this is, at each time t, the decisions can only depend on the information455

available up to t.456

The decision stages t are selected considering the frequency of the decision process. This fre-457

quency may not coincide with the frequency of the random processes, in which case one decision458

stage may encompass many random process periods. For instance, it is not expected for an infras-459

tructure network to be expanded every year, even if the demand is reported every month. In such460

a case, the decision stage t can consider the average, the maximum, or a quantile of the demand461

periods clustered in t. It is also not required for the decision stages t1, t2, . . . to be equal in size.462

Considerations regarding the life-cycle of the network and the reliability of the uncertain data may463

result in a higher frequency of decisions during the first years of the network. It must also be con-464

sidered that increasing the frequency of the decision stages also increases the size of the problem.465
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In brief, it is a modeling decision that depends on the purpose of the model and the experience of466

the modeler.467

5. Approximate Solution of MSPs468

5.1. Criteria for approximating the solution469

Solving a multistage stochastic program using the original distribution of the uncertain param-470

eters ξt may not be feasible in many real applications because the set of possible paths (realizations471

of the demand) is infinite. For this reason, several methods have been developed to approximate472

the distribution of the random phenomena [52, 49, 64]. Overall, the available methods focus on:473

minimizing some measure of the distance between the original and the approximated distribution474

(e.g. Wasserstein distance) [52, 65], matching moments between the distributions [50], and generat-475

ing samples (e.g. Monte-Carlo sampling [66]. As a result, the original distribution becomes a set of476

scenarios (each with an associated probability), usually organized in a tree structure. This scenario477

tree represents the increasing finite filtrations of available information, as shown in Figure 3.478

Fig. 3. Scenario tree representation of increasing finite filtrations

The accuracy of the stochastic program solution highly depends on the quality of the resulting479

discretization [67]. However, it is important to keep in mind that the main objective is to optimize480

the quality of the solution obtained by the stochastic program and not necessarily to produce an481
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optimal discretization of the original distribution. This can be achieved by having stability and482

low bias in the solution [68]. Stability means that the variation in the optimal value is minimal483

among different scenario trees (obtained from the same distribution). Low bias refers to a small484

gap between the real (unobtainable) and the approximated solution. The most direct approach to485

achieve both stability and low bias is to simulate a large number of scenarios [69, 68]. A trial and486

error procedure is usually necessary to achieve these objectives with the smaller scenario tree as487

possible.488

5.2. Discretization method by clustering489

As explained before, it is generally not possible to solve an MSP using the real distribution490

of ξt; instead, an approximation is required. Typical approximate distributions are represented491

in the form of scenario trees. In this paper, the discretization process is performed by combining492

Monte-Carlo sampling and a k-medoids clustering algorithm (see Figure 4).493

The methodology requires listing the properties of the random process to be simulated, which494

can include values such as the mean and the standard deviation, or additional shape parameters.495

Then, the time mission is divided in a finite set of time steps (stages) t = 1, . . . , T , and a large496

number N of random trajectories are generated (see Figure 4(a)). At the first time stage t = 1,497

the coefficient k1 is defined to represent the number of clusters in which the trajectories will be498

aggregated; this coefficient is known as the branching factor. Then, the trajectories are combined499

into k1 clusters using a k-medoids clustering algorithm. At the next time stage, the trajectories500

grouped inside each cluster are further divided into k2 clusters using the same algorithm. This501

process is repeated until the end of the time mission when a total of K =
∏T
t=1 kt clusters are502

generated. This process results in a symmetric scenario tree.503

This method requires a large number of trajectories per cluster to avoid clustering single tra-504

jectories. Considering that the number of scenarios grows exponentially with the number of stages,505

the number of required trajectories may be difficult to generate for large scale applications. While506

it works well for problems with a number of scenario paths of order 105 to be clustered in trees507

with a number of scenarios of order 103, problems of larger scale may require more complex ap-508

proaches. For instance, a larger number of clusters can be used at the initial stages to obtain a509

finer discretization due to the importance of the prediction at these early stages (Figure 4(b)).510

Fortunately, in most cases, flexibility problems in infrastructure networks usually involve a small511
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Fig. 4. (a) realization of system path trajectories; (b) clustering of sample paths at different stages.

number of variables and stages due to the limited number of characteristics that can be adapted512

and the low frequency of changes.513

5.3. Approximated flexibility MSP model514

The approximation of the distribution of ξt using a scenario tree can be combined with the515

original flexibility MS approach ((4)) to produce an approximated MSP that can be solved with516

numerical solvers. By replacing the probability model with an approximate, simpler, model with517

finite support [65], the original filtration becomes a finite filtration with a tree structure (scenario518

tree). This approximation leads to the formulation of an equivalent deterministic program, as shown519

in Equation 10:520
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min
x0,f0

∑
e∈E

ne∑
i=1

ae(x0,e(i)) +
∑
e∈E

ne∑
i=1

be(f0,e(i))

+
s∑

k=1
pk︸ ︷︷ ︸

Scenario probability

[
γ1

(∑
e∈E

ne∑
i=1

ce,k(y1,e,k(i)) +
∑
e∈E

ne∑
i=1

de,k(z1,e,k(i)) +
∑
e∈E

qk(w1,k)

+
∑
e∈E

ne∑
i=1

ge,k(x1,e,k(i))± h1,k

)
+ . . .

+ γT

(∑
e∈E

ne∑
i=1

ce,k(yT,e,k(i)) +
∑
e∈E

ne∑
i=1

de,k(zT,e,k(i)) +
∑
e∈E

qk(wT,k)

+
∑
e∈E

ne∑
i=1

ge,k(xT,e,k(i))± hT,k

)]

(10)

where s indicates the number of scenarios and pk is the individual probability of each scenario.521

Scenarios are understood as a complete path from the root node to a leaf node in the scenario tree.522

This formulation of the objective function clearly shows that a particular solution is obtained for523

each scenario k except for the initial stage variables (x0 and f0) which are the same for all scenarios.524

Formulating the MSP in this form requires to explicitly develop the non-anticipativity con-525

straints. The objective of these constraints is to ensure that scenarios with the same history up to526

stage t are indistinguishable [47].527

xt,e,j(i) = xt,e,k(i)

yt,e,j(i) = yt,e,k(i)

zt,e,j(i) = zt,e,k(i) ∀ j, k for which ξt,j = ξt,k, t = 1, . . . , T, i = 1, . . . , ne, ∀e ∈ E

(11)

To illustrate the non-anticipativity conditions, Figure 5 shows a fragment of a scenario tree. The528

figure shows that Scenario s1,tr and Scenario s2,tr are identical up to stage tq, same as Scenario529

s3,tr and Scenario s4,tr . Furthermore, the four scenarios are indistinguishable up to stage tp. The530

restrictions in Equation 11 ensure that the decision variables comply with the non-anticipativity531

conditions given by the scenario tree of the random process.532

The procedures described in Sections 5.1-5.3 to formulate and solve the proposed MSP are533

summarized in the chart presented in Figure 6.534
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Fig. 5. Non-anticipativity conditions in scenario tree

5.4. Model scalability535

The scalability of the proposed model can be analyzed for two elements: the scenario tree536

generation algorithm and the solution method. First, the scenario generation algorithm is based on537

the general approach described by Dupačová et al. [63] where a set of scenario paths are generated538

according to a probabilistic model (based on, for instance, historical data series), a scenario tree539

structure is predefined according to some heuristic (e.g. detailed branching for early stages and540

coarse branching for later stages), and a clustering algorithm is applied to the scenario paths based541

on some dissimilarity measure. The scenario path generation process, even for the multivariate542

case, scales linearly in the worst case, and it is never regarded in the literature as a worrisome543

source of computational complexity. The clustering algorithms, however, do not scale as well due544

to the required comparisons between all the data points (distance or dissimilarity measures).545

The k-medoid algorithms used in this paper are the Partitioning Around Medoids (PAM) and546

the Clustering LARge Applications (CLARA) implementations in Matlab®. The CLARA algorithm547

is used to cluster the first 2-3 stages of the scenario tree where the number of data points is large548

(> 5000). This algorithm is of order O(k3) [70] and can be used for large data sets to be bundled in549
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Fig. 6. General procedure to formulate and solve proposed MSP model

a small number of clusters. The subsequent stages require clustering progressively smaller number550

of points in an also small number of clusters, which can be done using the PAM algorithm of order551

O(k(n− k)2). While these clustering algorithms work well for a wide range of data set sizes and a552

limited number of branching factors, the structure of the scenario tree requires that the algorithms553

have to be executed an increasing number of times at each stage. This is, the number of calls for554

the clustering algorithms grows exponentially with the number of stages. Therefore, the scalability555

of the scenario generation procedure depends on both the scalability of the clustering algorithms556

and the size of the scenario tree.557

The second element that affects the scalability of the model is the solution method. As explained558

in Section 3.3, solving an MSP is challenging due to the considerable number of variables, the559

interdependence between them, and possible non-linear constraints. While special methods have560
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been developed to solve MSPs, in some cases commercial solvers are enough to obtain a solution561

in reasonable times for problems with hundreds of thousands of variables. One of these cases is562

when the problem has a linear (or non-linear) objective and linear constraints [63]. By introducing563

the scenario tree representation to formulate the deterministic equivalent problem, the result is a564

large scale linear (or non-linear) optimization problem that can be solved efficiently by commercial565

solvers. The model presented in Section 5.3 has linear constraints and the cost functions can be566

properly represented as linear or quadratic functions for many applications. Therefore, commercial567

solvers can be used to solve the proposed model, as is shown in the example in Section 6.568

Nonetheless, the exponential growth in the number of variables as the number of stages increases569

poses a significant limitation to the frequency of the decision process. This limitation can be570

circumvented as the nature of infrastructure systems makes monthly or even annual adaptation571

plans unrealistic due to the time and resources required to complete an adaptation. The decision572

stages for infrastructure adaptation problems can encompass years and, in consequence, it is possible573

to model the complete or a considerable portion of the system’s lifetime with a limited number of574

stages.575

In addition to the linearity of the constraints and the control to the scenario tree explosion by576

limiting the number of stages, the proposed model has two additional properties that reduce its577

computational complexity. The first property is the diagonal structure in the constraint matrices.578

Limiting the dependence of the decision variables to their immediate predecessor by adding state579

variables results in sparse matrices that are much faster to solve [46]. The second property is580

block-separable recourse. This property allows transforming an MSP into a two-stage problem by581

separating the aggregate level decision variables from the planning level variables. The aggregate582

level decisions can represent capacity expansion decisions while the planning level decisions can583

refer to the use of this capacity [48]. If the aggregate level decisions do not depend on the planning584

level decisions, then the former can be moved to the first stage while the latter are placed on the585

second stage. Specifically, block-separable recourse exists if i) at stage t the cost functions can be586

written as:587

ft(ut) + gt(vt) (12)

where ut represents the aggregated level decisions, vt the planning level decisions, and ft and588

gt are the respective cost functions. And ii) if the constraints can be written as:589
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Tt 0

St 0

ut−1

vt−1

+

Wt 0

0 Dt

ut
vt

 =

at
bt

 (13)

where Tt and St are submatrices of the technology matrix, Wt and Dt are submatrices of the590

recourse matrix, and at and bt are subvectors of the right-hand side vector. This equation clearly591

shows that both current aggregate and current planning level decisions depend only on previous592

aggregate level decisions.593

The model proposed in Equations 4-11 is block-separable for the following reasons: i) the cost594

functions are clearly segregated between the aggregate level variables (xt, yt, zt, and f0) and the595

planning variables wt; ii) the constraints in Equations 5-9 and 11 are not enforcing any dependence596

between the set of aggregate decisions xt, yt, zt, and f0 and the decisions wt−1. Constraints 6 and597

7 do generate a dependence between wt and xt−1 but this relationship is included in the definition598

of block-separability.599

In summary, the proposed model has advantageous characteristics in its structure that can be600

exploited to vastly reduce its computational complexity and allow the use of commercial solvers601

to find a solution. The main bottleneck happens in the scenario tree generation procedure due to602

the combinatorial nature of the process. Despite these advantages, the number of variables in the603

problem still grow exponentially with the number of stages, and even if the MSP can be transformed604

into a large scale linear problem and a simple binary tree structure is used, having more than ∼ 22605

stages implies hundreds of millions of variables.606

6. Numerical Example607

6.1. Case description608

This section presents an example of modeling flexibility in network design and operation using609

the proposed MSP. The purpose of this example is threefold: i) to show how the model can be610

used to make decisions when managing flexible networks; ii) to study how the presence of flexibility611

affects the cost performance of the network; and iii) to identify the elements in the model that have612

the highest impact in the assessment of the value of flexibility.613

The network used in the example is shown in Figure 7; it is a generic network that may describe614

telecommunication, energy, water distribution, or a transportation network. This example only615

considers one element in the random parameters vector ξt = δt to represent the demand that enters616

27



the network through node A and propagates throughout the network until it reaches node F , where617

it exits. This demand is modeled as a stochastic process defined by:618

δ(t) = β1t+ eβ2t β3t sin(β4t) +B(t) (14)

where β1, β2, β3, β4 are normally distributed random variables and B(t) is a Wiener process. Table619

1 shows the values of the parameters used in the example. Figure 8 shows five realizations of this620

process.621

Table 1. Random demand process parameters

Parameter Distribution(µ, σ2)

β1 N (450, 1.26× 104)

β2 N (−0.02, 2.5× 10−5)

β3 N (100, 625)

β4 N (0.9, 5.06× 10−2)

A
F

D

EC

B

x0,(AB)

x0,(AC)

x0,(CE)

x0,(BE)

x0,(BD)

x0,(EF)

x0,(DF)

x0,(DE)

Input (demand)

Fig. 7. Network used in the numerical example.

The design and operation variables vector xt,e of each link in the network only contains the link622

capacity xt,e. The initial capacity is notated as x0,e, and together with the flexibility range f0,e623

define the initial stage decisions. The maximum capacity that can be reached by flexibility for each624

link at any time is given by xmax,e = x0,e + f0,e. However, the system can be modified beyond625

28



Fig. 8. Realizations of the stochastic process

that value but at a larger cost. This may happen, for instance, due to larger times required to626

modify the system, larger material and labor costs that result from last-minute contracts, and the627

related disturbances and damages caused by the unexpected partial or total cease of operation. In628

the example, only capacity expansions are considered.629

The time mission of the network is T = 40 years starting from the date of commissioning. To630

reduce the size of the problem, it is assumed that adaptations can only occur at specific times:631

[6, 12, 18, 24, 32, 40] (except for the sensitivity analysis in Section 7.1.2). This limitation allows632

downsizing the scenario tree, which highly impacts the computational performance. The reduction633

can be justified by the fact that infrastructure networks, and in general infrastructure systems,634

cannot be changed frequently in most of their dimensions without incurring high costs.635

The model uses two families of cost functions. The initial design cost functions ae, flexible636

adaptation cost functions ce, and the unplanned adaptation cost functions de (see Equation 10) are637

assumed linear of the form ae = α0 x0,e, ce = αfa yt,e, and de = αia zt,e, equal for all the edges.638

The linear cost assumption reduces the comparison to a straightforward relationship between the639

cost coefficients. Quadratic functions are used to represent the costs of introducing flexibility of the640

form be = αf f
2
0,e. This non-linear increasing function is used to consider the effect of dis-economies641
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of scale that may exist in systems that cannot be expanded indefinitely without restrictions, such642

as most of infrastructure networks.643

Coefficient α0 is equal to 5 cost units per capacity unit. Coefficients αfa and αia vary for the644

analyses shown in Section 7.2. Operation and maintenance costs (O&M) ge is assumed equal to645

2% of α0 per unit of capacity installed, except for the last analysis. Flow costs qe are function of646

O&M costs ge as shown in Table 2.647

Table 2. Flow costs summary

Link Flow Cost

A-B 0.05ge
A-C 1.2qAB
B-D 1.1qAB
B-E qAB

C-E 1.2qAB
D-E 1.3qAB
D-F 1.1qAB
E-F 1.2qAB

The flow costs vary between links to represent an existing minimal cost route and increase the648

stability of the solution by avoiding a random allocation of initial capacity and flexibility.649

6.2. Discretization of the demand space650

The first task is the discretization of the demand space using the sampling and clustering algo-651

rithm presented in Section 5.2. This requires defining first the scenario tree branching factors which652

vary between [4 4 2 2 2 2] (256 scenarios) and [4 4 4 4 2 2] (1024 scenarios). Then, the algorithm653

generates between 15000 and 25000 demand trajectories according to Equation 14 depending on the654

total number of scenarios. The clustering algorithm processes these inputs to generate a scenario655

tree whose nodes contain the demand values at the decision stages [6, 12, 18, 24, 32, 40] years, with656

an associated probability that depends on the number of trajectories clustered in each node.657
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6.3. MSP solution658

To obtain the optimal network initial conditions, x∗0,e and f∗0,e for every edge e in the network,659

it is necessary to solve the multistage stochastic problem described by Equation 10, subject to the660

restrictions presented in Equations 5 to 11. The model assumes that every time a flexible adaptation661

yt,e occurs, the flexibility built into the system at the initial stage f0,e is reduced until its depletion.662

Once this point is reached only unplanned adaptations zt,(u,v) can be deployed. Finally, adaptations663

(i.e., increments incapacity) can only occur at t ∈ {0, 6, 12, 18, 24, 32, 40}.664

The evolution of the network capacity is controlled by a policy π(ξt, xt,e) based on a safety665

criteria that establishes that the capacity of every edge at time t should be such that xt,e ≥ SF wt,e,666

with wt,e the flow moving through link e, and SF some safety factor. This formulation keeps the667

constraints in Equation 7 linear. Additional flow conservation constraints are formulated for each668

network node according to the topology shown in Figure 7.669

The numerical results were obtained using the CPLEX 12.8 API for Matlab® 2017b and the670

YALMIP toolbox as algebraic interpreter [71] with an Intel®Core™ i5-5200 2.20GHz processor. An671

average run for 1000 scenarios takes approximately 100 seconds of processing time, where 95% of the672

time is spent in the scenario tree generation algorithm and less than 5% in solving the optimization673

program.674

The solver used (CPLEX) automatically selects the barrier optimizer due to the large size and675

sparsity of the problem. This algorithm stops iterating when the primal and dual solution are676

complementary, i.e., when a sum of products between the primal and dual solutions is smaller than677

a predefined tolerance. The tolerance of the complementary used in this numerical example is678

defined as 1−8.679

7. Network Design for Flexibility: Results680

Solving the MSP defined by Equations 5 to 11 a results in an optimal (minimal) value of the681

total present costs C∗total, an optimal value of the initial capacity x∗0,e for each link e, an optimal682

value of the flexibility f∗0,e for each link e, and optimal values each variable y∗t,e,k and z∗t,e,k, that683

represent the evolution process of each network link, for every stage t and scenario k. Figure 9684

shows three realizations of the demand process and the respective evolution of the whole network685

capacity.686
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Fig. 9. Network capacity evolution for three demand scenarios

This figure illustrates one of the main properties of MSPs: The optimal solution for the initial687

capacity, i.e. the initial stage decision, is the same for all scenarios while the recourse decisions688

that expand the system are particular for each scenario. By averaging the optimal costs of all the689

system’s future responses, the model makes an initial decision that is optimal in average for all690

scenarios.691

Considering that the solutions of the recourse decisions y∗t,e,k and z∗t,e,k are generated for each692

scenario, they are not suited for the comparisons intended in the forthcoming analyses. Only the693

initial solutions x∗0,e and f∗0,e are the same for all scenarios. For this reason, only these solutions,694

together with the optimal costs C∗total, will be considered in the analysis of results.695

7.1. Numerical stability of the model696

7.1.1. Stability verification of the demand tree generation697

Stability in the generation of the demand tree is essential for the accuracy of the model. If698

the program is not stable, the solution can vary considerably between scenario trees. To verify699

the stability of the solution, three scenario tree structures were generated using different branching700

factors. These factors determine how many nodes grow from each node at each time stage and,701
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ultimately, the number of scenarios. Furthermore, the demand values in the nodes of the scenario702

tree vary due to the Monte-Carlo generation procedure. To address these sources of variability,703

the MSP was solved in batches of increasing size (from 2 solutions up to 40 solutions) and the704

resulting optimal costs were averaged for each batch. Figure 10 presents the coefficient of variation,705

CV , of the optimal costs for each batch size, and for three sets of branching factors (scenario tree706

structures).707
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Fig. 10. Solution variability as function of number of scenarios and runs

The scenario tree structures compared in Figure 10 were selected starting by the smallest possible708

symmetrical tree [2 2 2 2 2 2]. Additional nodes were increasingly added to the initial stages to709

improve the quality of the short-term predictions. The largest scenario tree considered, [4 4 4 4 2 2],710

showed similar behavior with larger trees but with considerably lower computational times.711

Figure 10 shows that there is variability due to the number of solutions being considered and712

due to the instability in the solution. As the size of the batch increases, the first source decreases713

and only instability remains. It is observed that the optimal costs are relatively stable with a714

CV = 2.5%. It is also observed that a larger number of scenarios reduces the number of solutions715

required to reach a stable CV (branching factor [4 4 4 4 2 2]). This result is expected as a larger716

number of scenarios represent better the underlying distribution, achieving higher stability as a717
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Table 3. Sensitivity analysis results

Decision stages Optimal value f∗0,AB x∗0,AB Processing time(s)

4 361619 2546 14787 45

5 340954 2657 13341 62

6 334664 2614 12798 85

7 339480 2661 12894 95

8 329768 2793 11175 92

9 341655 2664 12618 90

10 341035 2693 12961 110

result. Generally, only the optimal costs are compared in stability analyses and not the optimal718

solutions due to the typical flat objective functions found in MSPs [72].719

7.1.2. Planning horizon discretization into decision stages720

The results from the previous section assumed that the planning horizon is divided into 6 decision721

stages. This section presents a sensitivity analysis to determine how this modeling decision affects722

the MSP results.723

To this end, the planning horizon is divided into 4, 5, . . . , 10 decision stages, and the resulting724

MSP is solved. In the cases when the planning horizon is not a multiple of the number of stages, the725

initial stages encompass fewer years than later stages, but the purpose is to cover the entirety of the726

planning horizon as uniformly as possible. The scenario trees are designed to have the same number727

of scenarios (210) which requires using variable branching factors. Therefore, the discretization of728

the probability space for the intermediate stages will not be equal for all cases, with a difference of729

a factor of 2 at most in the number of scenario tree nodes for similar time instants. For instance,730

for 4 decision stages, there are 64 nodes representing year 20, while for 5 stages there are 32 nodes731

at year 16. Table 3 shows the optimal value, the optimal flexibility solution f∗0,AB for link AB,732

the optimal initial capacity solution x∗0,AB , and the processing time obtained for each number of733

decision stages.734

The results in Table 3 show that when the number of stages that divide the planning horizon is735

5 or larger, only the processing times are affected. For 4 decision stages, the model solutions seem736
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to be significantly different, beyond what could be explained by the random variation present in the737

solutions for the remaining number of stages. This tendency was found in multiple executions. This738

difference could be explained by the relationship between the frequency of the required adaptations739

and the frequency of the decision stages. As shown in Figure 9, the time between adaptations can740

vary between 8 and 12 years on average, with longer times during the first half of the planning hori-741

zon. This means that during the system’s lifetime only 3 or 4 adaptations are expected. Therefore,742

when the planning horizon has 4 decision stages or fewer, it can be expected that an adaptation743

will take place at every stage and that the magnitude of these adaptations (and the initial capacity)744

will be larger to accommodate the changes in the demand during such long time periods.745

In summary, the discretization of the planning horizon into decision stages can affect the solution746

when there is insufficient opportunity to use the recourse to respond to the changes in the external747

conditions.748

7.1.3. Out-of-sample behavior of the model749

The verification of the out-of-sample behavior consists in solving the optimization program with750

a particular tree and using the optimal solution, i.e., x∗0,e and f∗0,e, as the initial solution for MSPs751

with different scenario trees of the same size and generated from the same stochastic process. Figure752

11 compares the optimal costs obtained in the baseline program (horizontal line), with the optimal753

costs found in 10 out-of-sample programs. This figure shows that 70% of the out-of-sample costs754

have a difference of 1.2% or less with the base case, while the remaining 30% has, at most, a755

difference of 3.3%. The results from the stability analysis and the out-of-sample analysis suggest756

that even if there is some instability because the scenario tree is not infinite, it is under control757

and the program exhibits both in and out sample stability, which is a requirement for low bias and758

general stability.759

7.1.4. Value of the stochastic solution760

A second key element in the analysis of MSPs is the value of the stochastic solution (VSS).761

This metric compares how much is gained by solving the stochastic program instead of solving a762

deterministic program where the scenario tree is replaced with the expected value of the random763

process. To calculate the VSS, first, the expected value problem is solved and the optimal solution764

is used as the initial solution for an MSP. The optimal costs obtained for this new program are765
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Fig. 11. Out-of-sample solution comparison

known as the expected value solution (EV). The VSS is obtained as the difference between the766

original MSP optimal costs and the EV.767

Using the scenario tree structure regarded as the most stable from the analysis in Section 7.1.1,768

[4 4 4 4 2 2], generating 50 scenario trees and averaging the VSS, it was obtained a value that is769

16% of the average optimal costs. This result is not negligible and suggests that the VSS is large770

enough to justify solving a stochastic program instead of the much simpler expected value problem.771

7.2. The value of flexibility772

The third element of the analysis focuses on the effects of the cost functions on the value of773

flexibility. Different relationships between α0, αfa, and αia are considered to determine the effect774

on: i) the optimal initial capacity x∗0,e, ii) the optimal flexibility f∗0,e, and iii) the optimal costs.775

Figures 12 and 13 show, respectively, the evolution of the optimal solution for the capacity x∗0,e776

and the flexibility f∗0,e in each link for different ratios αfa/α0. The critical route is highlighted777

with the dotted lines and light shadow. As expected, the larger the cost of future adaptations αfa778

compared with the cost of building the required capacity from the beginning α0, the less flexibility779

is introduced, and the system relies more on the initial capacity to serve the demand. This means780
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that reducing α0 or increasing αfa decreases the value associated with flexibility, and the system781

manager is willing to pay less to have it in the network.782

It is interesting to observe in Figures 12 and 13 that the optimal solution for the initial capacity783

x∗0,e results in larger values for the links in the minimum cost route, while the optimal solution for784

flexibility f∗0,e is similar for all the links in the network, excluding DE. This suggests that the short785

and medium-term demand is mostly met by the minimum cost route until a point where it is less786

expensive to use the flexibility built in other links to expand them and reroute part of the demand.787

Besides, the quadratic cost function used for the introduction of flexibility discourages the approach788

of adding too much flexibility into one link.789
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Fig. 12. Initial capacity evolution for different ratios αfa/α0

Figure 14 compares the optimal costs obtained for different ratios αfa/α0. The figure includes790

in the comparison the flexibility vectors fv (see Equation 1) for each link of the network. The791

horizontal component of the vector fv depends on the ratio between planned and unplanned adap-792
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Fig. 13. Initial flexibility for different ratios αfa/α0

tations, while the vertical component depends on the ratio between the flexibility f0,e and the initial793

design/operation conditions x0,e. It is first observed the increment in optimal costs by increasing794

the ratio αfa/α0; expectedly, increasing the flexible adaptation costs increases the overall costs. As795

shown in Figures 12 and 13, the model reacts by the decreasing the flexibility f0,e and increasing796

the initial capacity x0,e; nonetheless, the model cannot completely offset the increments in costs797

because flexibility is still a cost-efficient strategy. This behavior is replicated in the flexibility vec-798

tors, whose vertical component decreases as αfa/α0 increases (the horizontal component decreases799

by definition).800

It is interesting to observe that the decrement is not uniform for all links. For αfa/α0 = 0.5,801

the vectors are divided into two groups (vector for link DE has a zero vertical component): i)802

links AB,EF , which are part of the critical route, and ii) the remaining. Links AB,EF are key803

for the entrance and exit of the demand to the network, and the model privileges initial capacity,804
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which results in fv with a lower vertical component. Because the demand is free to flow through all805

the remaining links, the program can assign more flexibility. As αfa/α0 increase to 1 and 1.4, the806

vertical component of the fv keeps decreasing non-uniformly, resulting now in three distinct groups:807

i) key input and output links of the critical route AB,EF , with the lowest vertical component; ii)808

internal transit links BD,BE,EF whose vertical component keeps decreasing as flexibility becomes809

less attractive and it is replaced by adding more initial capacity; and iii) the less used links AC,AE,810

which start transporting flow later on the network life-cycle and can keep relying on flexibility.811

This tendency is clearly observed when αfa/α0 = 2 and the vertical component of fv decreases812

considerably for all links except AC,AE.813
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Fig. 14. Optimal costs and flexibility vectors fv for different ratios αfa/α0
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7.3. Effect of the discount rate814

A similar analysis was conducted to examine the effect of the discount rate on the optimal815

values x∗0,e and f∗0,e. Figure 15 compares the capacity and flexibility of link AB (other links follow816

a similar tendency) for three discount rates: dr = {3%, 5%, 8%} as a function of αfa/α0. While the817

values of flexibility are mostly unaffected by the change in the discount rate dr, the initial capacity818

presents a clear decreasing tendency with an increment in the rate. In this case, larger discount819

rates make future adaptations (inside or beyond the flexible range) more attractive in the medium820

and long-term.821

The decision of adding flexibility depends both on the cost of adding flexibility, which is incurred822

at the initial stage and it is not affected by the discount rate, and the costs of performing adap-823

tations, which are discounted. Increasing the discount rate reduces the present value of all future824

cost making both planned and unplanned adaptations more attractive, or at least moves forward825

the time stage where they are the optimal option. As a result, the short and medium-term demand826

is served using planned adaptations (flexibility) and long-term demand is served with unplanned827

adaptations, in detriment of the initial capacity. Therefore, it is expected that for typical ranges of828

the discount rate (∼ 3 − 10%) flexibility will be considered valuable. However, it could be argued829

that for unrealistically large discount rates the model would rely entirely on unplanned adaptations,830

except for the initial demand, abandoning completely the option of flexibility.831

7.4. Costs of adaptation beyond the flexible range832

In this analysis, the effect of the cost of unplanned adaptations αia is determined by using833

different ratios αfa/αia and α0/αia to solve the MSP. Figure 16 shows a similar tendency as Figure834

15, with the optimal initial capacity and flexibility decreasing as the cost of unplanned adaptations835

αia decreases, and the initial capacity being affected by the increasing discount rate, which further836

bolsters the cost-effectiveness of unplanned adaptations. However, in this case, a reversing tendency837

is detected for the 8% discount rate. Upon closer inspection, it is revealed that there is a point838

where the short-term demand must be met before unplanned adaptation can take place. At this839

point it does not matter how much further αia can be reduced; there is a minimum demand that840

must be met.841

For lower discount rates it was cost-effective to use more flexibility to meet this short-term842

demand; however, for large discount rates, the initial cost of flexibility plus the adaptation cost843

40



Fig. 15. Installed capacity and flexibility in link AB as function of ratio αfa/α0 and discount rate

is not as cost-effective as just relying on the initial capacity for the short-term and unplanned844

adaptations for the medium and long-term. This could explain the monotonic decreasing tendency845

for flexibility while the initial capacity behaves asymptotically. This means that reducing the cost846

of unplanned adaptations can only reduce the dependence on initial capacity up to the point where847

there is enough capacity to attend the short-term demand that could not be served in any other848

way. This point is dictated by the initial demand and its growth during the first decision period.849

A final analysis was conducted to examine the effect of the unitary O&M costs on the optimal850

initial capacity and flexibility. By increasing the unitary O&M costs from 2% of α0 to 10% of α0,851

the optimal costs increase approximately 20%. The optimal initial capacity in all links is reduced by852

approximately 12% which is compensated by a similar increment in the optimal installed flexibility.853

If the O&M costs are further increased to 16% of α0, the optimal initial capacity decreases another854

9% with a similar increment in the optimal flexibility. Increasing the O&M costs discourage large855

system configurations in the short and medium-term, which makes flexibility more valuable.856
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Fig. 16. Installed capacity and flexibility in link AB as function of ratios αfa/αia, α0/αia and discount rate

8. Summary and Conclusions857

This paper presented a multistage stochastic programming model for the design and management858

of flexible infrastructure networks. The model considers the initial design characteristics of each859

network link for different design elements as an initial decision that can be modified in future860

stages by implementing planned and unplanned adaptations to face random external conditions.861

By modeling the flexibility built at the initial stage as a decision variable that has an associate cost862

and that limits future planned adaptations, the program can determine the optimal configuration863

that minimizes costs. This formulation also provides an indirect measure of the value of flexibility864

by finding the optimal amount of flexibility that is cost-effective to introduce.865

An approximate solution method was implemented using Monte-Carlo simulation and k-medoids866

clustering to generate the discrete representation of the stochastic process (scenario tree). The de-867

terministic equivalent program was formulated and tested for a generic network with one input and868

one output node for a stochastic demand. The numerical solution showed stability for reasonably869

sized scenario trees and a not negligible VSS of around 16%. Furthermore, the results showed how870

the value of flexibility is affected by the discount rate and the ratios between all the costs involved,871

not just the cost of deploying planned adaptations. If the ratios αfa/α0, and αia/α0 are too large,872
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the system will prefer to meet the short and medium-term demand with the initial capacity, lowering873

the value of flexibility. As these ratios increase, the adaptations are further pushed into the future,874

especially for low discount rates. In the case where the ratio αfa/αia is large, unplanned adapta-875

tions become cost-effective, also decreasing the value of flexibility. In contrast, for a given αfa, as876

the ratio αia/α0 grows, flexibility becomes more desirable. These examples show how the value of877

flexibility constantly evolves due to complex decisions that happen at different time instants.878

The proposed model and the procedure implemented in the numerical example assumed that879

all decision and state variables are continuous. A mixed-integer formulation may require specific880

algorithms (e.g. primal decomposition) to find a solution efficiently. Furthermore, all cost functions881

were assumed convex, which is a reasonable assumption for most applications, but if concave func-882

tions are required, the solution procedure may not efficient nor may guarantee to find a solution.883

The scenario generation procedure can be extended to the multivariate case (for independent vari-884

ables) but the combinatorial nature of the problem restricts the number of decision stages than can885

be modeled. The formulation and solution of the MSP is also restricted by the exponential scala-886

bility. The expectation functional used in the model (Equation 4) enforces a risk-neutral approach887

that may not be appropriate for some applications. Further works should consider a formulation of888

the model with risk-averse functionals.889
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List of symbols and abbreviations894

ae Cost function of building edge e with intial parameters x0,e895

α0 Unitary cost of building initial design x0,e896

αfa Unitary cost of performing flexible adaptation yt,e897

αia Unitary cost of performing unplanned adaptation zt,e898

be Cost function of adding f0,e flexibility to edge e899

ce Cost function of changing edge e by yt,e900
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CV Coefficient of variation901

de Cost function of changing edge e by zt,e902

γt Discount factor at time t903

G Directed graph904

dr Discount rate905

e Edge/link in directed graph G906

f0,e Flexibility range of design/operation parameters for edge e907

wt,e Flow thought edge e at time t908

fv Flexibility vector909

ge Operation and maintenance cost function for edge e910

h(ξt) Revenue function911

MDP Markov decision process912

MS multistage stochastic913

MSP multistage stochastic program914

O&M Operation and Maintenance915

pk Proability of scenario k916

π Policy function917

qe Flow cost function for edge e918

ξt Vector of random, external parameters at time t919

ROA real options analysis920

VSS Value of stochastic solution921

xt,e Vector of design/operation parameters at time t for edge e922

x0,e Vector of initial design/operation parameters for edge e923

yt,e Vector of flexible adaptations at time t for edge e924

zt,e Vector of unplanned adaptations at time t for edge e925
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