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Abstract

We address here the construction of wrapped probability densities on Lie groups
and quotient of Lie groups using the exponential map. The paper starts by briefly
reviewing the different approaches to build densities on a manifold and shows the interest
of wrapped distributions. We then construct wrapped densities on SE(n) and discuss
their statistical estimation. We conclude by an opening to the case of symmetric spaces.

Non-Euclidean statistics, wrapped distributions, exponential map, moment matching
estimator

1 Introduction

Consider X, .., X} i.i.d. random variables {2 — M on the manifold M endowed with the
volume measure v. Given a realisation of these variables we would like to estimate the
underlying distribution.

An important problem in density estimation on manifolds is that most algorithms lead
to heavy computations, partially because the standard probability densities do not enjoy the
same properties as in the vector space case. Hence the motivation for building statistical
models leading to algorithms with reduced amount of computation.

Wrapped models for directional statistics are constructed from distributions on R or R"”
wrapped around the circle or the torus by the exponential map. Define informally wrapped
models on manifolds as densities pushed from tangent spaces to the manifold. Due to their
interesting properties in terms of computational complexity and invariances, we chose to
focus on wrapped models based on the exponential map of Lie groups or on the exponential
of Riemannian manifolds arising as quotients of Lie groups. Though in most wrapped



Figure 1: A set of i.i.d. draws z1,..,z; and the level lines of the estimated density.

distributions for directional statistics the densities are expressed as series, we will restrict
our study to the case where distributions in tangent spaces are contained in injectivity
domains of the exponential maps. Hence densities on the manifold are expressed using the
Jacobian of the exponential map at only one point of the tangent space, and not by series.

In section [2] we present some classical probability densities on manifolds. In section 3], we
review the relevant properties of probability densities and statistical models on manifolds,
and describe wrapped statistical models. In section , we summarize results of [4] and
describe the case SE(n). The last section is an opening towards the general case of symmetric
spaces.

2 Some classical probability densities on manifolds

Families of densities on manifolds are often defined in order to verify particular properties
like maximizing an entropy constraint, having a particular form for the maximum likelihood
estimator or verifying a particular pde. For instance Gaussian distributions defined in [§]
on Riemannian manifolds,

_d(m,xO)Q
fao(®) = a(y,m0)e  27° (1)
and
fr () = (T e (%8 (105, (41 @

were v € R and I' is a positive definite bilinear form, are the maximal entropy distri-
butions given their first and second moments, see section for the definition of moments.
As shown in [I1], on non-compact symmetric spaces distributions are also such that the
maximum likelihood estimator of parameter zg is the empirical mean.

Another usual way of defining Gaussian distributions on manifolds is by using a Laplacian
operator: Gaussian distributions defined as heat kernels, i.e. Green functions of the heat
equation %t = —-Af.



Due to its practical importance several distributions have also been proposed on spheres,
such as the Fisher distributions and their anisotropic counterpart, the Kent distributions:

R .
VM, S SQ, K € Ra f#,l{(x) = A Sinh(ﬁ;) eﬁ:,u,TJ? (FlSher) (3)
1
Vo €So,k,8ER, fo,nplz)= — e TtA 0’ ~(52)%)  (Kent) (4)

c(x, B)
where 71 L vo L v3 € Sy, see [5] and [6].

None of the previous distributions are naturally interpreted as wrapped distributions.
Wrapped distributions are not defined by a theoretical property but by the procedure to
construct them: given a measurable map ¢ from a tangent space T,,M to the manifold,
wrapped densities are densities which are first defined on a tangent space and pushed forward
by ¢. In the present paper, we only address the case where ¢ is a diffeomorphism on a
neighborhood U of 0 € T,,M. Given a Lebesgue measure on 7,, M and a probability
density h on T,,M whose support is included in U, the density of the push forward at
x € ¢(U) is given by
h(z)

(@) = (6:)(w) = 58S

where J is the Jacobian determinant of ¢. Among choices of ¢ an interesting candidate is
the exponential map, due to its algebraic and geometric properties. Recall that on a Lie
group, the exponential map at identity is extended to arbitrary points g as

exp, = LgoexpodLy-1,

where L, is the left multiplication by g and dL, its differential. Since Lg o Ry-1 o exp =
expodLy o dR,-1, the definition remains the same if left multiplication are replaced by
right multiplications. Extending the Lie group exponential in this way enables to push
densities from arbitrary tangent spaces to the group. On specific manifolds, other projection-
retraction maps might present computational advantages over the exponential map while
preserving the desired invariances, especially when the Riemannian exponential cannot be
computed explicitly, see [I]. Nonetheless, we chose focus on the exponential map.

3 Some important characteristics of statistical models on man-
ifolds

3.1 Expression of the density functions

Many of the common probability densities on manifolds do not have explicit expressions. For
Gaussian distributions defined in Eq[l]and Eq[2] or for the Kent distribution on spheres, the
normalizing constant has an explicit expression only in exceptional cases. Even though this



factor can be numerically estimated, it is interesting to construct densities whose expressions
are fully known.

Heat kernels have a similar problem: they can be computed only on a few exceptional
manifolds. Furthermore while being a natural object on Riemannian manifolds, there is
usually not a canonical Laplacian on Lie groups.

For wrapped distributions, the expressions require knowing ¢~! and J. It turns out that
when ¢ is an exponential map restricted to an injective domain, ¢! and J can be computed
on numerous Lie groups and quotients of Lie groups.

3.2 Moments

Let M be a Lie group or a Riemannian manifold endowed with the Haar or Riemannian
measure v. Following [9], we say that Z is a mean of the density f when

By (10g5(x) = [ Toga(a) [ (w)u(a) = 0.

Hence Z is an mean if the vectorial mean on the distribution lifted in T3 M is zero. This
expression assumes the existence of E (log;(x)), hence the existence of a mean is related to
the injectivity and surjectivity of the exponential map.

Given the expression of a density f, computing the mean is not always easy. Hence, an
important property of Gaussians of Eq is that when exp,, is a bijection between T3, M
and M the parameter x is the unique mean of the distribution. Due to the symmetry of the
sphere, it can also be checked that p and ; are means of the Fisher and Kent distributions.

When a mean Z exists, we define the corresponding higher order moments as in the
vectorial case after lifting the distribution in T3z M,

T, = Ey (logg(2)®") € (TzM)*".

The covariance being the second order moment, we have

S = By (log,(2) © log, (¢)) (5)

Note that when the mean is not unique, higher-order moments are defined with respect to
a mean.

Unfortunately, the parameters « or I' of Gaussians of the form — do not have an
explicit link with the second moments of the distributions, see [§, [I1I]. Similarly, to our
knowledge the covariance of the Kent distribution is not explicitly related to v;, x and £.

An advantage of wrapped distribution is that they can have prescribed moments, which
is rarely the case for other distributions. Let h be a probability density on T3z M such that,
its support is included in an injectivity domain of expz, its barycenter is 0, its covariance is
Y and such that h(x) = h(—z). Let

h(z)

f(z) = (expz,h)(z) = T(log())

(6)



be the push forward. It can be shown (it is clear) that Z is a mean of the probability density
f. Tt follows, by definition (f]), that the covariance of f with respect to Z is ¥. Under some
assumptions on X, it can also be shown that Z is unique.

3.3 Invariances and estimation

Given a statistical model S of densities on M, the construction of estimators from a set of
i.i.d. samples is a central problem. Let T be an estimator, that is to say a function which
maps sets of samples x1,..,zy € M to elements in §. There are mostly three criteria to
evaluate the interest of 1" as an estimator (the quality of an estimator 7"). The first criterion
is how fast T'(x1,..,xx) converges to f as the number of samples increases, when samples
are i.i.d. from f € §. The second criterion is the ease of evaluation of T. And the third
criterion is the invariance by symmetry: when a group G acts on M, T should commute
with the action. Implicitely, this assumes that the statistical model S is invariant under the
pushforward action of G on densities, and that

T(g.x1,..,9.x%) = g«. T (21, ..,21) € S.

For instance, when M is a Riemannian manifold, G is the group of isometries and when
M is a Lie group, G = M is the group itself acting by left or right multiplications.

As mentioned in Section Gaussians of Eq on non-compact symmetric spaces parametrized
by their mean and variance verify the interesting properties: the maximum likelihood es-
timation of the mean is the empirical mean and the variance is a simple function of the
empirical covariance. The set of Gaussians is invariant under isometries and the densities
are easily computed once the normalizing constant has been numerically estimated. Hence
statistical models on non-compact symmetric spaces based on Gaussians of Eq[I|have several
desirable properties, their main limitation being that they only contain isotropic densities.
On the other hand Gaussians of Eq[2] can model anisotropy but no results have been shown
on maximum likelihood estimation and the relations between the covariance parameter I and
the normalizing factor is more involved than in the isotropic case. Beyond this limitation,
Gaussians of types and lose many of their properties when the exponential maps are
not bijections, for instance on sphere and more generally on non-compact symmetric spaces.
On the other hand, the estimation of parameters of the Kent distributions on spheres is not
straightforward. Hence our motivation for studying wrapped statistical models.

3.3.1 Wrapped statistical models

In this section we introduce the wrapped statistical models defined by a kernel K. Let
K : Ry — R4 be a function such that

Kazn=0, [ K(el)=1, [ aK(lal)=0.



Let
| as' (el = 1.

where n is the dimension of M and I is the identity matrix. Since K(z > 1) = 0, we have
0 < B < 1. Given a symmetric positive definite bilinear form B on T, M, we define the

density h, g by
hy.B(uw) = K(\/BB(u,u)).

It can be checked that h; g is a probability density on 7T, M with respect to the Lebesgue
measure normalized by 8B. Since B is definite it induces an isomorphism between T, M
and T, M™*. B itself can thus be mapped to a bilinear map ¥ on T, M*. If M is the matrix
of B in a basis, M ! is the matrix of ¥ on the dual basis. Again, it can be checked that
Y is the covariance of h; g, and we will now write h;y.. The push forward of h, s by the
exponential is now a density

fzx = expy,(hex)

on M. If the support of h, x; is contained in an injectivity domain we have Eq@

hxz(w)
J(log(x))

In many examples there is an injectivity domain in the tangent space of the form U =
B+ E C T, M where B is an open ball in a vector space F' and F a vector space such that
TyM = E®@F. It is for instance on case on SE(n), see section Imposing that the density
is supported in U can then be done in the following way. Note I the bilinear form associated
with the ball B and define the admissible set of covariance A, as

fx,E =

A, ={Xe€T,MT,M| Yué€F,BBy (u,u) > I(u,u)},

where as previously By is the bilinear form on T, M ® T, M associated with X. The statistical
model on M constructed from the function K is then defined by

S={fox|lr e M,2 € A,}. (7)

As mentionned in x is not always the unique mean of f, s, nonetheless it is true for
sufficiently small .

An important strength of this approach is that it only depends on the exponential and
its Jacobian, which are known on many Lie groups and quotient of Lie groups. Thus, it
can be applied to numerous manifolds, it is for instance a natural way to build models on
compact symmetric spaces.



3.3.2 Estimators in wrapped statistical models

By construction, the exponential map commutes with the action of isometries on a Rie-
mannian manifold, and with the action of group multiplications on a Lie group. Hence by
construction the model S has the desired symmetry properties. Maximum likelihood esti-
mation in S is unfortunately non trivial in most cases. On the other hand, § is constructed
such that the moment matching estimator has a simple form.

The first step of the moment matching estimator consists in computing the empirical
mean & of the sample and is achieved with a gradient descent. The second step consists
in computing the empirical covariance S in T3 M and choosing a covariance p(f]) in A; as
close as possible to 3 . This choice can be achieved in the following way. As in section
consider an injectivity domain of the form U = B+ E C T, M. Let I be the bilinear
form associated with B on the vector space F' generated by B and let f be the self-adjoint
endomorphism on F' defined by

Vu,v € F, BB (u,v) = I(u, f(v)).
Note X the smallest eigenvalue of f. If A > 1 then S € A;z. If A < 1, we have

BB (u,u) = M (u,u) < I(u,u),

for some u € F, and & ¢ A,. It is easy to see that the smallest multiple of B compatible
with Az is %B, hence a simple choice in A; is
) 1. . .
p(B) = 1B, p(E) =%

Currently, there are only few results on moments estimation on manifolds. In [2], authors
proved a central limit theorem for the empirical mean on Riemannian manifolds, and the
author of [I0] establishes results on the moments of the empirical mean on manifolds with
an affine connection. To our knowledge, there are still no results on the estimation of the
higher order moments, either on Riemannian manifolds, on Lie groups, or more generally
on manifolds with an affine connection.

We have seen that the moment matching estimator is easy to compute, has the desired
invariances, but convergence properties remain to be shown.

4 Probability densities on SFE(n)

In this section we summarize results from [4] and describe the construction of wrapped
models on the special Euclidean group SE(n).



4.1 Wrapped models on SE(n)

As a manifold SE(n) is a product between SO(n) and R™ but the group structure is a
semi-direct product:
SE(n) =S0(n) x R"
(R,t)(R,t") = (RR',Rt' +1t)
and elements of its Lie algebra are parametrized by couples (A,7T) where A is a skew-
symmetric matrix and 7' € R™. Recall that a skew-symmetric matrix can be block-diagonalized
with 2 by 2 rotations on the diagonal, followed by a 0 when the dimension is odd. For each n

by n skew-symmetric matrix A, we note 64, ..., HL%J the set of angles of the 2 by 2 rotations.
Let U be the subset in T.SFE(n) defined by

U={u=(AT)| 6¢€l-mn}i=1,... "2y

It can be checked that the exponential map on U is a bijection. Hence we can define the
logarithm on SE(n) as the inverse of the exponential on U. Isometries (R,t) of SE(n) can

be embedded in GL(n + 1) as
Rt
(0 1> € GLnJrl(R)

which enable to compute the exponential map of SE(n) using the matrix exponential of
GL(n+ 1) and the logarithm using the matrix principal logarithm.

In order to be consistent with the previous section |3.3.1] U should in fact be restricted
to a domain U of the form B x E,

U={u=(AT)| +/trace(AAT) < }.

The differential of the exponential map on Lie groups at u in the Lie algebra is given by
the following formula:

(—1)k adk
k1) "%

dexpu = dLexpu o Z
k>0

It can be checked that on SE(n), volume forms induced by left invariant fields of basis are
also right invariant: the group has a bi-invariant Haar measures. Fix an arbitrary reference
basis ey, .., e, of the Lie algebra T.SE(n) and consider the corresponding left invariant field
of basis. The computation of the Jacobian determinant .J in a left (or right) invariant basis
field gives,

J =det(dexp,) = <H21_(;;S(91)) X ..

1+ cos(0; +6;) 14 cos(0; —0;)
IO e =

1<j



where o = 1 when n is even and @ = 2 when n is odd and #; are the angles of the planar

rotations of the block diagonalization of A. This simplifies to J(0,T) = ‘21_%028(9)‘ on SE(2).

Given a kernel K on R, we can define the wrapped probability distribution

funlexpy ) = oI (VA T),

J(u)/det

where u and X are respectively a coordinate vector and a positive definite matrix expressed
in the reference left invariant basis field.

4.2 Density estimation on SFE(n)

As noted in section there are no theoretical results on the convergence the moment
matching estimator. Hence we will only mention the empirical results obtained in [4] for the
case SE(2). Samples are drawn from a uniform distribution fe . on a ball in the injectivity
domain in the Lie algebra. The empirical moments are then computed using the Python
package geomstats, see [7], and the error between the original density and the estimated
densities are computed using the L' distance between densities || fe s — fislli. The L
distance between densities is the total variation between measures and present the interest
of being independent of the reference measure. The L! error is compared to the same
estimation error in R? where the density is estimated directly in T.SE(2) ~ R3 using a
vectorial moment matching estimator. Results displayed in Figl2] indicate that the errors of
the SE(2) and R3 problems are asymptotically related by a factor close to 1.

5 Towards a generalization to symmetric spaces

As seen in previous sections, the main challenges in building wrapped models are to compute
the Jacobian determinants and to find injectivity domains for the exponential maps. We
show here that symmetric spaces are an interesting class of manifolds regarding the com-
putation of the Jacobian determinant. Consider a manifold M with a connection V. The
manifold M is said to be locally symmetric when

VR =0

where R is the curvature tensor of V. Recall that Jacobi fields Y (¢) along a geodesic «y are
solution of the Jacobi equation,

VA (VAY)(8) + R(Y' (1), Y (£)y'(t) = 0

or

V(5 Y)(0) + R() (Y (1) = 0



L1 estimate of the density estimation error on SE2 L1 estimate of the density estimation error on R3
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Figure 2: L! errors and their ratios on SE(2) and T,SE(2) ~ R?, see ([4]).
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where R(t) is the linear map Y (t) — R(v/(t),Y(t))7'(t). Let u be a tangent vector in
T, M and Y, be the Jacobi Field along v with initial condition Y (0) = 0 € T, M and
(VoY) (0) = u. For t > 0, the differential of the exponential at t7/(0) in the direction u
is given by,
0 exp ; 1
L (t4'(0)) = =Y ().
5. (7 (0) =Y ()

Hence the Jacobian determinant along t4/(0) is given by

J(t) = det (A(t))
where A follows the second order differential equation
V., (V,A)(t) + R(t)A(t) = 0.

When the space is locally symmetric, the coefficient f?,(t) is constant. Hence the symmetric
property is a natural framework to study the Jacobian of the exponential map.

6 Conclusion

Across the paper, we have seen how wrapped models can be constructed on manifolds with
an exponential map. We have analysed the case of the Lie group SE(n) and mentioned
Riemannian manifolds, though such wrapped models can be considered on any manifold with
an affine connection. The main limitation of these models is that the underlying manifold
should have an exponential map, a log map and a Jacobian which can be computed at a
reasonable cost. Note that this is often the case when the manifold is a homogeneous space.
Future efforts should focus on three problems. The first one is to obtain convergence results
for the density estimation using wrapped models. The second one is to understand and
characterize the shape of the injectivity domains in the different possible settings, such as
Lie groups and Riemannian symmetric spaces, see [12]. And the third problem is to identify
on which manifolds with an affine connection the Jacobian of the exponential map can be
computed explicitly. As shown in section [ symmetric spaces seem to be an interesting
setting to study this property. Note however that there are known examples outside of this
class where the Jacobian is explicit, see for instance the Wasserstein metric on Gaussian
distributions [3].
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