

Predicting Contradiction Intensity: Low, Strong or Very Strong?

Ismail Badache, Sébastien Fournier, Adrian Chifu

► To cite this version:

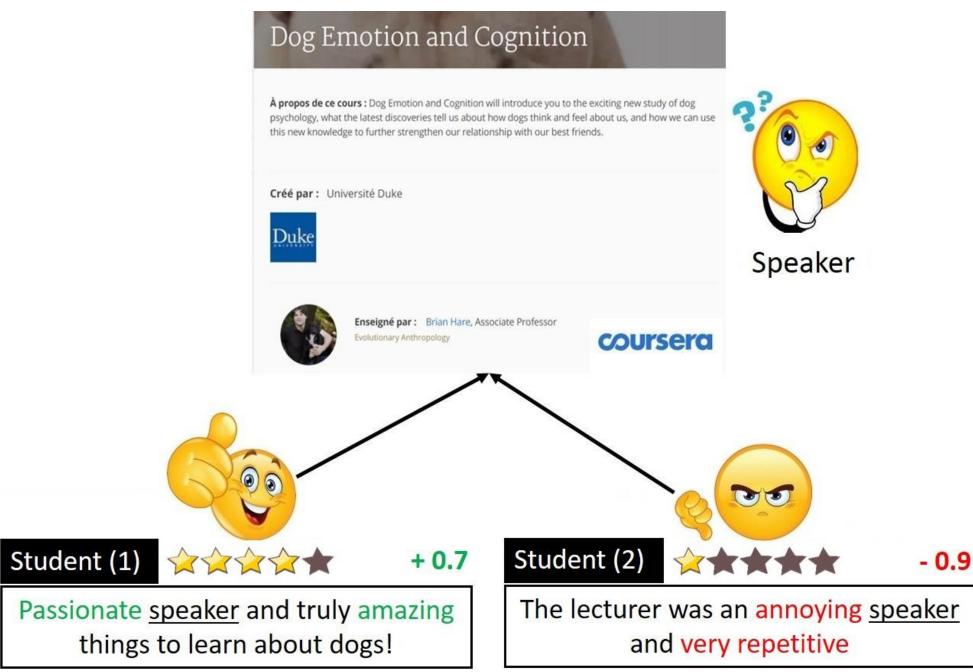
Ismail Badache, Sébastien Fournier, Adrian Chifu. Predicting Contradiction Intensity: Low, Strong or Very Strong?. The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 2018, Ann Arbor Michigan, United States. hal-03154390

HAL Id: hal-03154390 https://hal.science/hal-03154390

Submitted on 28 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LABORATOIRE D'INFORMATIQUE & SYSTÈMES


Predicting Contradiction Intensity: Low, Strong or Very Strong?

Ismail Badache – Sébastien Fournier – Adrian Chifu Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France Ismail.Badache@lis-lab.fr

1. Introduction

► The goal:

Predicting intensity level of the contradiction using 2 dimensions (rating & polarity)

- 2. Contradiction Based-Aspect and Sentiment
- **Extraction of aspects:** The following treatments are applied:
- (1) Term frequency calculation of the reviews corpus,
- (2) Part-of-speech tagging of reviews using Stanford Parser,
- (3) Selection of terms having nominal category (NN, NNS),
- (4) Selection of nouns with emotional terms in their 5-neighborhoods (using SentiWordNet dictionary),
- (5) Extraction of the most frequent (used) terms in the corpus among those selected in

Research questions:

- How to estimate the intensity of contradiction around a specific aspect?
- What is the impact of the joint consideration of polarity (Pol) and rating (Rat) on the measurement of contradiction intensity?

3. Dataset and Judgments

► Data:

• Collected from *coursera.org* between October 10-14, 2016.

 Table 1. Statistics on coursera data set

Fie	eld	Total Number
Cou	rses	2244
Courses	s Rated	1115
Rev	iews	73873
Reviews	x + x + x + x + x + x + x + x + x + x +	1705
Reviews	ፚፚ፞፞ፚፚ	1443

 Table 2. List of detected aspects

 Assignment Content Exercise Information Instructor Knowledge Lecture Lecturer Lesson Method Presentation Material Professor Quality Question Quiz Slide Speaker

Cross-Fold

Evaluation

the previous step. These terms will be considered as aspects.

Step Description

(1) course : 44219, material : 3286, assignments : 3118, content : 2947, speaker : 2705,.....term_i re = The/DT lecturer/NN was/VBD an/DT annoying/VBG speaker/NN and/CC very/RBrepetitive/JJ ./. I/PRP found/VBD the/DT **formatting**/NN so/RB different/JJ from/IN other/JJ **courses**/NNS I/PRP 've/VBP taken/VBN ,/, that/IN it/PRP was/VBD hard/JJ to/TO get/VB started/VBN and/CC figure/VB things/NNS out/RP ./. (3) lecturer, speaker, formatting, things (4) lecturer, speaker

(5) speaker

Sentiment analysis: SentiNeuron (unsupervised)

- Trained over 82 million Amazon review dataset.
- LSTM with 4096 units, the 2389th neuron was found to be specifically focusing on the sentiment for a given sentence. We have normalized it between 0 and 1.
- Accuracy : 93% (error rate 7%).

4. Identifying the Most Effective Features

Table 4. List of the exploited features

c _i	Feature	Description
c_1	#NegRev	Number of negative reviews on document
c_2	#PosRev	Number of positive reviews on document
<i>c</i> ₃	#TotalRev	Total number of reviews on document
c_4	#Rat1	Number of reviews with rating
c_5	#Rat2	Number of reviews with rating
<i>c</i> ₆	#Rat3	Number of reviews with rating
c_7	#Rat4	Number of reviews with rating
c_8	#Rat5	Number of reviews with rating
	VanDat	Variation of notional factors and and deviation

► Training data:

- 230 *Strong*

The balanced collection for the 4-points scale as intensity class: - 230 Very Low - 230 *Low*

Reviews	A	3302	Student Teacher Topic
Reviews	****	12202	Video
Reviews	ፚፚፚፚፚ	55221	22 aspects

Table 3. Statistics on some aspects extracted from the reviews of *coursera.org*

Aspects	#Rat 1	#Rat 2	#Rat 3	#Rat 4	#Rat 5	#Negative	#Positive	#Review	#Course
Content	176	179	341	676	1641	505	1496	1883	207
Lecturer	32	41	48	85	461	55	193	236	39
Material	191	203	328	722	2234	784	1693	2254	237
\mathbf{Quiz}	151	155	221	401	581	481	475	824	128

Judgments: User study

- 3 users were asked to assess the sentiment class for each review-aspect.
- 3 other users assessed the degree of contradiction between reviews-aspect.
- In total, 66104 reviews-aspect of 1100 courses (instances) i.e. 50 courses for each aspect are judged manually for 22 aspects.

Learning Algorithms

- Naïve Bayes¹

- J48²

- SVM³

Variation of ratings (using standard deviation) **C**9 VarRat - 230 Very Strong Variation of polarities (using standard deviation) VarPol c_{10}

Table 5. Selected features by attribute selection algorithms

Algorithm	Metric		Т	00		0.	0-	0.	0-	0.0		
Algorithm		c_1	Щ.	c_2	c ₃	c_4	c_5	c_6	c_7	c_8	<i>C</i> 9	c_{10}
CfsSubsetEval	[#Folds]	5		5	2	0	0	0	0	0	5	5
WrapperSubsetEval	[#Folds]	4		4	4	2	0	0	0	2	5	5
ConsistencySubsetEval	[#Folds]	5		5	4	2	1	1	2	2	5	5
FilteredSubsetEval	[#Folds]	5		5	4	3	2	2	3	3	5	5
	Average	4.75		4.75	3.5	1.75	0.75	0.75	1.25	1.75	5	5
ChiSquaredAttributeEval	[Rank]	3		4	5	7	9	10	8	6	2	1
FilteredAttributeEval	[Rank]	4		3	5	7	9	10	8	6	2	1
GainRatioAttributeEval	[Rank]	3		4	5	7	9	10	8	6	2	1
InfoGainAttributeEval	[Rank]	3		4	5	7	9	10	8	6	1	2
OneRAttributeEval	[Rank]	4		3	5	7	9	10	8	6	2	1
ReliefFAttributeEval	[Rank]	4		3	6	8	9	10	7	5	1	2
SVMAttributeEval	[Rank]	4		3	5	7	9	10	8	6	2	1
SymetricalUncertEval	[Rank]	3		4	5	7	9	10	8	6	2	1
	Average	3.5		3.5	5.12	7.12	9	10	7.87	5.87	1.75	1.25

6. Experimental Results

5. Learning Features for Predicting Intensity Learning process using the selection algorithms Repeat 5 x for 5-folds cross validation

Classifiers	Contradiction intensity class	Features selection algorithms	All features
	Very Low	0.81 (CFS)	0.71
	Low	0.38 (CFS)	0.34
	Strong	0.75 (CFS)	0.66
	Very Strong	0.78 (CFS)	0.69
NaiveBayes	Average	0.68 (CFS)	0.60
Nalvebayes	Very Low	0.86 (WRP)	0.72
	Low	0.46 (WRP)	0.38
	Strong	0.76 (WRP)	0.63
	Very Strong	0.80 (WRP)	0.67
	Average	0.72 (WRP)	0.60
	Very Low	0.88* (SVM)	0.88^{*}
	Low	0.72** (SVM)	0.72**
SVM	Strong	0.78* (SVM)	0.78^{*}
	Very Strong	0.90** (SVM)	0.90^{**}
	Average	0.82** (SVM)	0.82**
	Very Low	0.97** (RLF)	0.97**
	Low	0.92** (RLF)	0.92**
J48	Strong	0.97** (RLF)	0.97**
	Very Strong	0.98 ^{**} (RLF)	0.98**
	Average	0.96 ^{**} (RLF)	0.96**

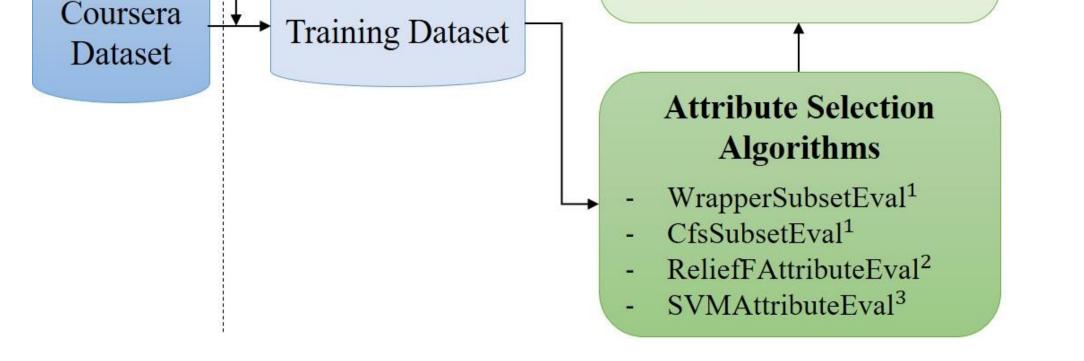


 Table 6. Selected features sets

Algorit	hm	Features
CfsSub	setEval	$c_1, c_2, c_3, c_9, c_{10}$
Wrapp	erSubsetEval	$c_1, c_2, c_3, c_4, c_8, c_9, c_{10}$
Other a	algorithms	$c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, c_9, c_{10}$

- Features selected by CfsSubsetEval (CFS) and WrapperSubsetEval (WRP) are learned using Naive Bayes.
- Features selected by ReliefFAttributeEval (RLF) are learned using J48.
- Features selected by SVMAttributeEval (SVM) are learned using multi-class SVM (SMO function on Weka : Waikato Environment for Knowledge Analysis).

► Findings

- #NegRev, #PosRev, VarRat and VarPol are the most fruitful features to predict contradiction intensity.
- J48 algorithm brings the best improvement compared to Naïve Bayes and SVM.
- Approach weakness: dependence on the quality of sentiment and aspect models.