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ABSTRACT

The Foveal Avascular Zone (FAZ) is commonly analyzed
from OCT-A images to diagnose retinal diseases. When
quantitative measures are required, ophthalmologists man-
ually draw the contours of the FAZ and compute several
anatomical features from these annotations. However,
there is no clear consensus among experts on the FAZ def-
inition in pathological cases. In this work, we developed a
novel framework to automatically segment the FAZ based
on three different expert annotations to be robust to inter-
expert variability. A loss based on the Hausdorff Distance
was used to specifically address complex pathological FAZ
that are usually poorly segmented by automatic methods.
We used a dataset of more than 200 images to train and
test our model, and we achieved similar or even better
segmentation performance than individual experts.

Index Terms— Foveal Avascular Zone, segmentation,
OCT-A, inter-expert variability

1. INTRODUCTION

Optical Coherence Tomography Angiography (OCT-A) is
a 3D non-invasive imaging method that detects blood flow
in the eye fundus. OCT-A was successfully used to assess
several vascular pathology such as diabetic retinopathy [1]
or glaucoma [2]. The retinal vascular network is organized
around the so-called Foveal Avascular Zone (FAZ). Most
of the time, the FAZ appears as a dark circular central
region on OCT-A images (see Figure 1 (a)). However,
pathological subjects present a FAZ that may be crossed
by vessels (see Figure 1 (b)) or be so small it cannot be
differentiated from any other non-perfused area. In these
cases, there is no clear consensus among ophthalmolo-
gists on the FAZ definition (see Figure 2). FAZ detection
plays a key role in the diagnosis of several diseases. Its
size, shape and surrounding perfusion are classic markers
of diabetic retinopathy. It is therefore clinically relevant
to provide a robust and effective method for detecting FAZ.

Segmentation of the FAZ is a problem often han-
dled manually [3] [4]. However, this solution is time-
consuming and the results depend heavily on the expert.

(a) Healthy FAZ (b) Pathological FAZ

Fig. 1: Examples of the superficial retinal layer imaged by
OCT-A. White arrows point to the Foveal Avascular Zone
(FAZ). As shown Figure 2, pathological FAZ can be seen
differently from one expert to another

To solve these issues, several approaches have been in-
troduced. Diaz et al. [5] proposed to detect the FAZ as
the widest dark connected component by applying mor-
phological operations. Lu et al. [6] assumed the FAZ
to be at the center of the image and used a region grow-
ing approach followed by an active contours algorithm.
Nonetheless, these methods are parametric and are not
designed to detect complex FAZ. Recently, deep learning
methods based on UNet-like architectures were developed
to automatically segment the FAZ from OCT-A [7, 8].
However, they did not take into account the variability
among experts, which makes these approaches dependent
on a single expert opinion. Heisler et al. [9] proposed
another technique to detect the FAZ from a segmentation
of the vascular network produced by U-Net. This approach
assumes the vascular network to be fully connected, which
is physiologically incorrect in most situations.
In this work, we proposed an automatic deep learning ap-
proach to detect the FAZ on OCT-A images. Unlike most
state-of-the-art methods, our approach is able to detect
healthy and complex non-healthy FAZ, and includes inter-
expert variability to provide robust results even in the most
difficult cases. Our contribution is three-fold: 1) we built
an annotated dataset relying on manual FAZ segmentation
from three different experts and including complex cases,
such as crossing vessels and absence of detectable FAZ,
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Fig. 2: Inter-expert variability on a complex FAZ. (a) original image; (b-e) annotations of the FAZ in red from 3 experts
(one of them suggesting 2 possible annotations of the FAZ); (f) mean ground truth.

2) we used a loss based on the Hausdorff Distance (HD)
to help the network detect FAZ with complex non-circular
shapes, 3) we showed that FAZ markers extracted from
our segmentations were in good agreement with those
extracted from expert annotations.

2. METHOD

This section presents our approach to automatically detect
the FAZ from OCT-A images and robustly extract features
characterizing this FAZ. An illustration of the global ap-
proach is presented in Figure 3.

2.1. Dataset

In this work, we used a dataset composed of 204 OCT-A
images of the superficial retinal layer acquired using a
Zeiss Plex Elite 9000 swept source. The population in-
cluded healthy patients, diabetic patients with different
grades of diabetic retinopathy, and patients with coronary
artery disease. Three experts delineated the FAZ in the
204 images. For each image, we adopted a majority vot-
ing policy to produce a unique ground-truth, called mean
ground-truth from the different expert annotations. In par-
ticular, a pixel belonging to the FAZ in more than half
of the expert annotations was considered a FAZ pixel in
the mean ground truth, otherwise it was considered as a
background pixel (see Figure 2). This mean ground-truth
includes the inter-expert variability and provides a virtual
consensual ground truth that was used to train our network.

We used a first-order spline interpolation to rescale the
original 1024 × 1024 pixels images to 400 × 400 pixels
to meet the network architecture requirements. We applied
a gaussian filter prior to the interpolation to avoid alias-
ing artifacts. We also performed an histogram equalization
followed by a normalization between 0 and 1 to reduce the
intensity variability of the input images

2.2. Network architecture

We used a light UNet [7] architecture to detect the FAZ,
as it had already given interesting results in FAZ detection.
Light UNet is a version of the classic UNet architecture
with fewer convolutional layers, thereby reducing training
time. More details about the network architecture can be
found in [7].

The original light UNet loss is a classic Binary Cross
Entropy (BCE). In this work we modified this loss to better

take into account the FAZ geometry, which is crucial to
extract robust FAZ characteristics. We proposed to add an
Hausdorff Distance (HD) loss, LHD, to the BCE loss. The
HD measures the longest distance between two sets (in our
case, the mean ground truth and the network prediction).
Karimi et al. [10] proposed several implementations of the
HD loss and we chose the morphological approach for its
fast and robust estimation. Let RΩ be the set of real-valued
2D images of size |Ω| pixels, the HD loss of a prediction
I ∈ RΩ is defined as follows:

LHD(Igt, I) =
1

|Ω|

K∑
k=1

∑
Ω

((Igt − I)2 	B)kα (1)

Igt ∈ RΩ is the mean ground truth, 	k is the erosion oper-
ator with structuring element B, K ∈ N is the maximum
number of erosion applied, and α ∈ R penalizes long dis-
tances between the ground truth and the prediction. We
experimentally set α = 1.

The final loss was a weighted sum of the BCE and the
HD loss (see Equation 2). We experimentally assessed the
optimal weight value and fixed it to λ = 0.3.

L(Igt, I) = BCE(Igt, I) + λ LHD(Igt, I) (2)

2.3. Training strategy

Among the 204 images of the dataset, 13 images presented
a FAZ crossed by vessels. To increase the proportion of
these complex FAZ in the dataset, we added a 90◦ rotated
version of each of these 13 images to the dataset. Our fi-
nal dataset thus contained 217 images, and was split into a
training set of 187 images and a testing set of 30 images.

The network was trained with an Adam optimizer, a
batch size of 5 and an initial learning rate of 5×10−4 with
a decay of 0.02 when the validation loss reached a plateau
during 5 epochs. An early stopping strategy was used when
the validation loss did not decrease over 10 epochs.

As the number of complex FAZ images was limited, we
performed a 5-fold cross validation to assess the robustness
of our approach to the training dataset.

3. RESULTS

Each segmentation was compared to its mean ground truth
and the following values were computed: true positives
(TP), false positives (FP) and false negatives (FN). From



Fig. 3: Illustration of the global framework to extract anatomical FAZ features: Circularity Index (CI) and Non-perfused
Area (NPA).

these values, we computed the Dice Similarity Coefficient
(DSC) to evaluate the global segmentation quality (see
Equation 3).

DSC =
2TP

2TP + FP + FN
(3)

From a clinical point of view, achieving a good FAZ
segmentation is not a goal in itself. Ophthalmologists use
the FAZ segmentation to extract clinically relevant features
characterizing the FAZ, such as the Circularity Index (CI)
and the Non-Perfursed Area (NPA). The circularity index
is defined as CI = 4π A

P2 , where A and P are respectively
the area and perimeter of the FAZ. The NPA is the inverse
of the vessel density in an area of 300µm around the FAZ.

We applied the 5 models of the cross validation on our
test set and obtained a mean DSC of 0.909 ± 0.025. This
shows that our method is able to robustly provide good seg-
mentation of the FAZ even on complex cases. We then se-
lected the model with the lowest validation loss and com-
pared its results to the expert manual segmentations. The
quantitative results are presented in Table 1. We conducted
an ablative study to analyse the interest of adding the HD
loss. The results shows that the HD loss both improved
the DSC and the feature estimation errors. Indeed, we ob-
served that the HD loss greatly improved the segmentation
of complex FAZ (see Figure 4) which led to better global
results.

To compare our results to the inter-expert variabil-
ity, we confronted each expert annotation with the mean
ground-truth and computed their DSC as well as the rela-
tive errors of the features (CI and NPA). Our approach was
able to segment the FAZ with an accuracy similar to a sin-
gle expert (the mean DSC was even greater and with less
variability than one of the expert). Our estimation of the
CI is generally in average less accurate than the one of the
experts. The circularity index is indeed extremely depen-
dent on small contour variations. Despite the great general
segmentation performances that we obtained, small miss-
ing regions in some images may lead to high errors on
the circularity index which explains these results. Finally,
our network is able to estimate a more accurate NPA than
those of most experts with a great robustness.

(a) without HD loss (b) with HD loss

Fig. 4: Results from our FAZ segmentation approach on
a FAZ crossed by vessels compared to the mean ground-
truth (green: TP, red: FP, blue: FN).

4. CONCLUSION

We developed a novel framework to automatically seg-
ment the FAZ from OCT-A images and extract anatomical
features relevant for retinal diagnosis purpose. Our deep
learning segmentation method uses an Hausdorff distance
loss and includes knowledge from several experts to pro-
vide a robust and accurate FAZ segmentation, even in the
more complex cases, that reaches, and sometimes exceeds,
the inter-expert variability. In the future, we plan to im-
prove the CI estimation by including more complex cases
in the database and add constraints in the network. In
particular, we could add constraints on the contour of the
segmentation to better take into account the sudden shape
variations of the FAZ contour in complex cases.
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DSC % error CI % error NPA

without HD loss 0.916 ± 0.109 19.237 ± 26.254 1.798 ± 3.983
with HD loss 0.928 ± 0.059 18.770 ± 25.141 1.6 ± 3.217

Expert 1 0.921 ± 0.179 13.975 ± 17.798 2.966 ± 11.377
Expert 2 0.957 ± 0.058 7.549 ± 6.070 1.351 ± 1.211
Expert 3 0.958 ± 0.053 12.082 ± 17.565 2.679 ± 9.043

Table 1: Quantitative results of our approach (two first lines) and the inter-expert variability (three last lines). The
presented measures are the Dice coefficient (DSC), the circularity index (CI) and the non-perfused area (NPA).
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