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Abstract

This paper is devoted to the development and application of hybrid methods
combining, on the one hand, semi-lagrangian methods for the advection-
diffusion of scalars, and, on the other hand, either finite volume or spectral
methods, depending on the flow geometry, for the Navier-Stokes equations.
A particular focus is made on the accuracy and scalability of the methods.
These methods are then used to study differential diffusion of scalars on
two canonical cases: Homogeneous Isotropic Turbulence and a jet flow. We
first characterize differential diffusion in terms of spectral distribution. We
then use the Reynolds decomposition to bring out the different mechanisms
involved in the energy budget of the scalar and we analyze their spatial
distribution.
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1. Introduction

The advection-diffusion of a scalar function in turbulent flows is a phe-
nomenon that occurs in various situations. In heat transfer, the scalar function
is the temperature [1]. In the context of mass-transfer, [2] investigates the
concentration of gases in a canal. In combustion, the advected scalar can also
be the mixture fraction between the different injected components of the mix
[3]. In the case of a non-diffusive scalar, it can be captured by its level sets,
which leads to the numerical treatment of multiphase turbulent flows [4].

Passively advected scalars mainly differ by their diffusivity properties
characterized by the Schmidt number (or Prandtl number, when temperature
is considered), the viscosity-to-diffusivity ratio.

Although direct numerical simulation is a powerful tool to predict the
dynamics of scalars, the case of scalars with high Schmidt numbers remains a
challenge. Indeed, for Schmidt numbers, Sc, larger than one, the Kolmogorov
scale ηK , defined as the smallest variation scale of the velocity, is linked
with the Batchelor scale ηB, the smallest variation scale of one scalar, by the
following relation

ηB =
ηK√
Sc
. (1)

The above relation shows that for Schmidt numbers larger than one, the scalar
dynamics occurs at scales smaller than the Kolmogorov scale, whereas the
range of scalar dynamics scales is smaller than the range of turbulent scales
for Schmidt number smaller than one [5]. As a consequence, the accurate
treatment of scalar advection-diffusion at high Schmidt numbers requires a
finer mesh for the scalar than for the momentum. This is the reason why
numerical studies are in general restricted to moderate Schmidt numbers (see
for instance [6]).

The case of high Schmidt scalar advection-diffusion has however been
treated in several papers such as [7] where authors studies several statistics
of scalar with Schmidt number up to 64 and a turbulent Reynolds number
equal to Rλ = 140, using a spectral method on a unique mesh. In such
simulations, the velocity is clearly over-resolved. The multi-scale nature
of the problem naturally leads to using two different grids to solve the
Navier-Stokes equations on the one hand, and, on the other hand, the scalar
advection-diffusion equations for the scalars. Gotoh et al [8] describe a
method combining a spectral method for the Navier–Stokes equation and
compact finite-difference schemes for simulations of decaying turbulence on
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different grids. The Schmidt numbers considered in this study are 1 and
50. More recently, [9] introduced a method combining a spectral method
to solve Navier-Stokes and a high order semi-lagrangian particle method to
study scalars with Schmidt numbers up to 128. It was demonstrated that the
CFL-free nature of the particle method and its high parallel scalability led
to substantial savings over a pure spectral method achieving a comparable
accuracy. The idea of using different grids for the flow and the scalar was
also used in [10] for Rayleigh Benard convection in square cavities discretized
by finite-differences.

These methods allow to investigate the fundamental physics of turbulent
scalar transport but they are not suited to industrial applications. In this
paper we extend the work of [9] to study differential diffusion in homogeneous
turbulence and in jets. For the case of jets we propose a method combining a
semi-lagrangian particle method with a finite-volume solver for the Navier-
Stokes equations. The finite-volume solver YALES2 [11] is chosen for its good
parallel performance and because it is widely used in the study of reacting
flows. In order to reach high resolution with optimal efficiency, special care
must be given to the parallel implementation of the particle-grid coupling.
The hybrid method will be used to study the mixing of scalars in the context
of Homogeneous Isotropic Turbulence and a jet flow for values of the Schmidt
number higher than what was previously done.

Many studies have been devoted to the mixing of scalars in a turbulent
flows [12, 13]. If two scalars are seeded in exactly the same manner, difference
in their mixing dynamics are only due to the difference of their molecular
diffusivity. This is the differential diffusion phenomenon [14]. Due to the
molecular origin of the differential diffusion, it is expected that this phe-
nomenon could be negligible at high enough Reynolds number. However,
experimental studies show that differential diffusion persists at high Reynolds
and/or Schmidt numbers [15]. The proposed hybrid approach is in particular
used to better understand the differential diffusion phenomenon occurring
for the mean and turbulent fields, by using quantities based on the scalar
difference.

The article is structured as follows. In the first section we recall the
definition of semi-lagrangian particle methods for transport equation. We
define the coupling with finite-volume solvers and its parallel implementation.
In section 3 we discuss the accuracy and the computational efficiency of
the hybrid method compared to a pure finite-volume method. Finally, in
section 4 we apply the hybrid method to study differential diffusion in two
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configurations : first, in the case of homogeneous turbulence,with a particle
spectral hybrid method along the lines of [9], then, in the case of a jet flow,
with the hybrid particle finite-volume method.

2. Numerical methods and parallel implementation

In this section some details are given about the numerical method used to
solve the coupled system equations, and their implementation.

For incompressible flows, the dynamics of the flow is governed by the
Navier-Stokes equations,

∂v

∂t
+ v · ∇v = −∇

(
p

ρ

)
+ ν∆v (2)

∇ · v = 0 (3)

with v the velocity field, p the pressure field, and ν and ρ the viscosity and
the density, respectively. The dynamics of a passive scalar, θ, seeded in the
flow is governed by a advection-diffusion equation,

∂θ

∂t
+ v · ∇θ = κ∆θ (4)

where κ is the diffusion coefficient of θ. The Schmidt number is then defined
as Sc = ν/κ.

As previously said, for Schmidt number larger than one the scalar dynamics
develops at smaller scales than the scales of fluid motions, i.e. the Kolmogorov
scale, defined as the smallest length of the turbulent motion, is larger than
the Batchelor scale, defined as the smallest length of scalar fluctuations.
This motivates the use of different grids to solve scalar and flow equations.
In this work, the scalar advection-diffusion equation (4) is solved on a fine
cartesian mesh while Navier-Stokes equations (2) and (3) are solved on a
coarser (structured or unstructured) mesh. Note that in the case where several
scalars are advected, the size of the scalars mesh is driven by the scalar with
the highest Schmidt number as its Batchelor scale will be the smallest.

In this work, the Navier-Stokes equations are solved using an Eulerian
approach with either pseudo-spectral method as in [9], or a finite-volume
method on unstructured meshes. To overcome an additional CFL constraint
due to the use of a fine mesh, a semi-lagrangian particle method is used for
the scalar transport.
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2.1. Semi-lagrangian particle methods
The principle of semi-lagrangian particle methods is to concentrate the

transported quantity θ on a set of particles. Starting from a set of particles
initially located on a cartesian and uniform grid, the advection phenomenon
is first simply taken into account by moving the particles using the local
advection velocity field. To avoid accuracy issues with the particles distortion
in space, the particles are remeshed after each time-step on the original grid
using an interpolation kernel with good conservation and regularity properties.

If θnj and θn+1
j denote scalar values at grid points for two successive

time-steps, the method is summarized by the following formula

θn+1
i =

∑
j∈P

θnj Λ

(
xi − x̃j

∆xθ

)
, i ∈ P , (5)

where P is the particle set, xi is the position of the i-th grid points, x̃j is the
position of the particle j after one advection step, ∆xθ is the grid size and Λ
is the remeshing kernel. These methods have been extensively used for the
transport of vorticity in 2D and 3D flows (see [16, 17, 18] and the references
therein). For the transport of scalar they have been analyzed and validated
in [19].

Semi-lagrangian particle methods are conservative and avoid CFL stability
conditions.The time-step limitation only depends on the maximal strain in
the flow |∇u|∞, independently of the grid size. It reads

∆t ≤ 1

|∇u|∞
. (6)

Their order of convergence depends on the regularity and moment conservation
of the considered kernel. Kernel formula have been derived in [19]. In this
paper we use a second order kernel originally given in [20]. It is given by
tensor products of the one-dimensional following formula :

Λ(x) =



1
12

(1− |x|)(25|x|4 − 38|x|3 − 3|x|2 + 12|x|+ 12) if 0 ≤ |x| < 1

1
24

(|x| − 1)(|x| − 2)(25|x|3 − 114|x|2 + 153|x| − 48) if 1 ≤ |x| < 2

1
24

(3− |x|)3(5|x| − 8)(|x| − 2) if 2 ≤ |x| < 3

0 otherwise
(7)
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As Λ has a compact support, the algorithm can be implemented in a parallel
manner to optimize the computational cost. This topic is addressed below.

Since particles are on a cartesian grid at each time-step, diffusion or
source terms can easily be handled in a time-splitting fashion using classical
finite-differences.

Finally, note that semi-lagrangian particle methods can be implemented
together with adaptive mesh refinement strategies in order to further enhance
their adaptivity by optimizing particle spacing as a function of the local
variations of the scalar [21, 20]. In particular, particle refinement can be
obtained through wavelet based multi-resolution analysis which can provide
a high degree of compression and further reduce the computational cost.

2.2. Hybrid method
In this work, the resolution of scalar transport equations by a semi-

lagrangian particle method is coupled with the resolution of Navier-Stokes
equations using an Eulerian approach. To consider turbulent mixing at high
Schmidt numbers, a finer grid can be used for the scalar transport than for the
flow fields. This hybrid approach benefits from the stability of semi-lagrangian
particle method. As already mentioned, the time-step is only limited by the
maximul strain and not by a CFL condition depending on the grid-size. In
practice that means that the time-step is only constrained by the grid-size of
the flow solver.

In the applications considered in section 4, the Navier-Stokes equations are
solved either by a pseudo-spectral method or by a finite-volume method. The
coupling of a pseudo-spectral method with a semi-lagrangian particle method
has been described and thoroughly validated in [9], both from the point of view
of accuracy and computational efficiency. The main issues of the coupling,
velocity interpolation for particles advection and the parallel implementation,
highly benefit from specific features of spectral methods. In particular, for
pseudo-spectral methods the mesh is uniform and cartesian. The domain
decomposition between processes is thus algebraic and structured. Moreover,
the scalar mesh is only a uniform refinement of the mesh used for velocity
computation and spectral interpolation from a cartesian mesh to another is
straightforward. This choice of interpolation ensures an interpolation error
that decreases exponentially fast with respect to the grid size.

We now focus on an hybrid method combining a finite-volume solver and
a semi-lagrangian particle method, something which, to our knowledge has
never been done. The Navier-Stokes equations are solved with the so-called
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YALES2 pair-based finite-volume solver. This solver uses a tetrahedral mesh
and a node-centered approach. The control volumes are the cells of the dual
mesh, generated by computing the barycenter of each cell of the primal mesh
[11]. The unknowns are classically the average of the advected quantities over
the control volume. This approach leads to a second-order accurate scheme
on structured meshes. It is stable under the following CFL condition

|u|∞∆t ≤ 0.9∆x (8)

We refer the reader to [22] for more details.
The Navier-Stokes equations are solved thanks to a two steps prediction-

correction method [23]. The first step consists in the advection of each
averaged quantity at the flow velocity. The time integration for this step
is made with a Runge-Kutta-like fourth-order scheme TFV4A [24]. As a
result of this step an intermediate velocity field v∗ is computed. The second
step consists in the correction of the pressure field p by solving the following
Poisson problem :

∇ · 1

ρ
∇p =

1

∆t
∇ · v∗ (9)

Equation (9) can be solved with several methods. For instance, [25] uses
a BiCGStab algorithm, while [26] use a deflated preconditionned conjugate
gradient method. This latter method will be used in the present work.

The coupling with the semi-lagrangian method for the scalar transport
follows the description done in [9] by replacing the spectral interpolation
by a linear interpolation: particles are created on each scalar nodes of a
cartesian mesh, then advected using a linear interpolation of the velocity and
a second-order Runge-Kutta integrator and finally remeshed on the scalar
mesh. Note that using second order linear interpolation is consistent with
the order of the remeshing kernel.

Scalar diffusion is done on the grid using a classical second-order 7-points
finite-difference scheme and an explicit time-advancing scheme. This results
in the following stability condition :

∆t <
1

6

κ

∆x2
(10)

In practice, in our applications the values of the diffusivity coefficients κ
are small enough to ensure that this condition is not more restrictive than
the CFL condition imposed on the finite-volume solver for the Navier-Stokes
equations.
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Since in our study there is no feedback of the scalars to the flow, the
accuracy of the hybrid method can be deduced from that of the underlying
finite-volume and particle methods. Overall, the hybrid method is second
order in space and first order in time. It is stable for a time-step satisfying
the conditions (6), (8), (10).

2.3. Parallel implementation
Starting from a distributed coarse mesh that discretizes the spatial domain

and is used to compute the velocity, a cartesian and possibly finer mesh is
created to solve the advection equations. Scalar nodes are added in a cartesian
fashion: xijk = (i∆x, j∆y, k∆z). Virtual particles are then created on each
of those scalar nodes and moved with the flow velocity. The location of xijk
inside the coarse mesh is thus needed to interpolate the velocity at xijk from
the unstructured mesh. As a consequence, an element K of the unstructured
mesh of velocity and the set of scalar nodes contained in K must be handled
by the same processor (constraint C1). Finally, the advected particles are
communicated to the processor which handle the element which contains
them and remeshed on the fine cartesian grid.

As a consequence of C1, the domain decomposition for the cartesian mesh
must follow the unstructured decomposition of the finite-volume mesh.

The particle remeshing and the diffusion term may involve large stencils
(6 grid points in each direction in the simulations of the section 4.3). In order
to manage them efficiently, ghost nodes are added at the boundaries between
two processes (constraint C2). The remeshing is done in these ghost nodes
which are then synchronized by MPI communications. This is all the more
complex as the decomposition is not algebraic and that the association of
these ghosts to their only physical node is non trivial.

Figure 1 illustrates constraint C1. In particular, the four nodes marked
by a cross are located, within rounding error, at the boundary between two
processes. Two cartesian nodes coincide with node B and D of the finite-
volume mesh, two are on a finite-volume edge. In order to avoid artificially
introducing a scalar source term, a single particle must be created at this
point. To do so, those ghost scalar nodes must be created in a single copy, for
example on the lowest rank process that could accommodate it. If the node
is duplicated, so are the particles, and, for the remeshing step, the value of
the scalar associated with this node will be added several times as each copy
of the particle is remeshed. For point A, it is the first process.
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Figure 1: Distribution of particles nodes in the finite-volume domain partition. Letters
stands for finite-volume nodes. Scalar nodes are marked by a circle ; scalars nodes near
process boundaries are marked by a cross. The colors match the hosting processes.

From the implementation point of view, we must determine if the cartesian
node is near a finite-volume node, edge or face and then use the communicator
defined on the node/edge/face of the unstructured mesh to obtain the list
of the processes that could host this node. Then all these processes choose
the one with the lowest rank (without additionnal communication) and then
make sure that the chosen node does indeed host this node.

As for the C2 constraint, Figure 2 illustrates the ghost nodes to be created.
The difficulty lies in the creation of a communicator allowing to synchronize
the ghost nodes and the "real" associated nodes. To do this, one needs to
know which process contains the "real" node associated with it. This step is
done using the particle relocation algorithm natively implemented in YALES2.
This algorithm was originally defined to track physical particles in the flow
[27].

Several remarks can be done here. Particles are not created on ghost
nodes ; ghosts are only used during particle remeshing. The partition of the
scalar nodes set is extremely dependent on the partition of the element set.
As a consequence, a load balancing problem can appear if the element set is
poorly distributed among the processors. Domain decomposition is performed
by the Metis library. It is based on the number of cells of the finite-volume
mesh. We will see in section 3.2 that in some situations this decomposition is
successful. However, as we will see in section 4.3, in highly non homogeneous
cases the load balancing can significantly deteriorate.
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Figure 2: Distribution of particles ghost nodes. The physical nodes are marked by a circle,
the ghosts of process 2 by a cross of the color of the process that contains the associated
physical node. The brown ghost nodes are supported via the boundaries conditions. For
the sake of simplicity, the width of the half stencil is fixed at 2 in this illustration.

3. Accuracy and computational efficiency

A set of numerical experiments are now performed to assess the accuracy
and the efficiency of the proposed approach. As we already said, the hybrid
method combining a pseudo-spectral and a semi-lagrangian particle methods
have been studied in [9]. We focus here on the transport equation, solved either
by a semi-lagrangian method or the finite-volume method implemented in
YALES2 for the advection-diffusion equation. We first compare the accuracy
of these two methods, then their computational cost. We finally measure the
parallel scalability of the full hybrid method which combines the finite-volume
solution to the Navier-Stokes equations and the semi-lagrangian particle
method to advect the scalar.

3.1. Accuracy
To compare the accuracy of semi-lagrangian particle method with the

finite-volume method implemented in YALES2, we consider a cube of size
2π with periodic boundary conditions. The finite-volume mesh is obtained
by perturbation (shaking) of a uniform tetrahedral mesh. The particle mesh
is a uniform cartesian grid. We impose the following velocity field u on the
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finite-volume mesh, and scalar initial distribution on the particle mesh,

ux = sin(x) cos(y) cos(z),

uy = − cos(x) sin(y) cos(z),

uz = 0,

(11)

θ(x, 0) = cos(8x) cos(8y) cos(8z). (12)

Three grid sizes are considered for the scalar mesh with number of elements
Nθ = 1283, 2563 and 3843. For the particle method, the velocity at scalar
nodes is obtained thanks to a linear interpolation from the velocity field given
on a 1283 cartesian mesh, and particles are advected with a fourth order
Runge-Kutta scheme. For these grid resolutions we monitor the decay of the
scalar variance θRMS :

θRMS =

(
1

V

∫
V

θ2dV

)1/2

and its time-derivative. The value of the latter quantity, which should
correspond to the physical dissipation, is a good indicator of the numerical
dissipation produced by the methods. Those decays are compared to a
reference solution obtained by a pseudo-spectral method. Two different
diffusivity coefficients for θ will be considered : κ = 6.6 10−3 (case 1) and
κ = 8.3 10−4 (case 2).

For case 1, Figure 3 shows that both methods give accurate dissipation
rates even at the lowest resolution.

For case 2, with a smaller scalar diffusivity, one can observe on the top
pictures of Figure 4 that the finite-volume method has troubles to converge
to the reference solution. By contrast, Figure 5 and Figure 6 show that
the semi-lagrangian method gives at the lower resolution results that are
comparable to the higher resolution finite-volume simulation. We also note
that the semi-lagrangian method is actually at the lowest resolution slightly
under-dissipative, a feature which is often shared by high order methods.

3.2. Computational Cost
To measure the efficiency of the hybrid method in terms of computational

cost, we now consider the case when the velocity is given by the finite-volume

11



	0.05

	0.1

	0.15

	0.2

	0.25

	0.3

	0.35

	0.4

	0 	0.2 	0.4 	0.6 	0.8 	1

θ R
M
S(
t)

Time

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

	0 	0.2 	0.4 	0.6 	0.8 	1

θ R
M
S'(
t)

Time

	0.05

	0.1

	0.15

	0.2

	0.25

	0.3

	0.35

	0.4

	0 	0.2 	0.4 	0.6 	0.8 	1

θ R
M
S(
t)

Time

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

	0 	0.2 	0.4 	0.6 	0.8 	1

θ R
M
S'(
t)

Time

Figure 3: Comparison of finite-volume and semi-lagrangian methods with the reference
solution (black) for the test case (11) with κ = 6.6 10−3. Top (resp bottom) pictures
show results for the pure finite-volume method (resp semi-lagrangian method). Grid sizes
are 1283(red), 2563(orange) and 3843(green). Left pictures : scalar RMS, right pictures :
time-derivative of scalar RMS.

Navier-Stokes solver and we compare the hybrid method with a full finite-
volume method, that is a method where both the Navier-Stokes equations
and the scalar transport equations are solved by the finite-volume solver of
YALES2.

The velocity field is initialized with the formulas (11). The viscosity
is equal to ν = 5 10−3 which corresponds to a Reynolds number equal to
Re = Umax×2π

ν
' 1256. We set the Schmidt number equal to 6, which

corresponds to the diffusivity coefficient of the second test case in the previous
subsection. In light of what was seen above, a grid of 128 points in each
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Figure 4: Comparison of finite-volume and semi-lagrangian methods with the reference
solution (black) for the test case (11) with κ = 8.3 10−4. Top (resp bottom) pictures
show variance of the scalar and its time derivative for the pure finite-volume method (resp
semi-lagrangian method). Grid sizes are 1283 (red), 2563 (orange) and 3843 (green). Left
pictures : scalar RMS, right pictures : time-derivative of scalar RMS.

direction is sufficient for the DNS of the Navier-Stokes equation by the finite-
volume method. For the scalar transport a grid of 1283 points would be
enough for the particle method whereas the finite-volume solver would require
a grid of 3843 to achieve a similar accuracy.

We measure the time per iteration for 1283, 2563 and 3843 particles,
compared to the finite-volume method using 3843 grid points (see Table 1).
For that test, simulations were run on 100 CPU cores. We observe that the
higher resolution case shows a slight overhead for the hybrid method, due
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Figure 6: Close up of the bottom right picture of Figure 4.

to the interpolations needed in the algorithm. The lower resolution case
shows a factor 7 speed up for the particle method. Given that the time-
step of the particle method is related to the velocity strain, which itself is
controlled by the grid resolution used to solve the Navier-Stokes equation, we
obtain for the hybrid method using 1283 grid points an additional factor 3
speed up over the 3843 finite-volume method can be expected. This roughly
leads to an overall factor 20 speed-up over a full finite-volume solver yielding
comparable accuracy. In future work we will combine the semi-lagrangian
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particle algorithm with directional splitting, along the lines of [19], which will
further reduce its computational time.

These results show that the hybrid method can be seen as a good al-
ternative to the pure finite-volume method. Note however that in the case
presented here, because the finite-volume and particle meshes are uniform,
the load balancing, based on partitioning of the finite-volume mesh, is also
optimal for the particle distribution on the cartesian mesh. We will see in
the application dealing with a jet that this is not always the case.

Method Velocity Grid size Scalar Grid size Time per iteration [s]

Finite-Volume 3843 3843 3.50

Semi-lagrangian 1283 1283 0.52

1283 2563 1.41

1283 3843 4.28

Table 1: Comparison of time per iteration for finite-volume and semi lagrangian method
for several grid size and 100 CPUs.

3.3. Parallel scalability
Figure 7 shows the strong and weak scalability of the hybrid method.

The strong scalability was studied using 5123 and 10243 particles. In both
cases, the Navier-Stokes equations were solved on a 2563 grid. The number
of cores ranges between 128 and 1526. We note that for 5123 particles, the
strong scaling (top picture of Figure 7) deteriorates beyond 512 cores, diue
to communications between processors. As expected, this problem tends to
disappear for 10243 particles and the scaling is almost perfect up to 1536
cores.
The weak scaling was performed starting from a tetrahedral mesh with 2563

velocity elements and 5123 particles. Since [11] already demonstrated the
good scalability of the fluid solver, we only consider the semi-lagrangian part
of the algorithm. We increase the number of particles from 5123 particles to
9303. The bottom picture of Figure 7 shows that the time of one iteration
remains almost constant up to 1536 cores.
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Figure 7: Left picture : weak scaling for the hybrid method. The blue line shows the time
of one iteration for 5123 particles and the red line for 10243 particles. The black dashed
line shows the perfect scaling. Right picture : shows weak scaling for the hybrid method
for a number of processors ranging from 256 to 1536.

4. Application to the differential diffusion of passive scalars

This section is now dedicated to the study of differential diffusion. Various
experimental [28, 29, 15] and numerical [30, 31, 32, 33] studies have been
devoted to the differential diffusion process, mainly in homogeneous isotropic
turbulence (HIT), and turbulent jet configurations. In these works, the differ-
ential diffusion is characterized by various quantities. First the correlation
coefficients between scalars or between scalar gradients can be considered.
These quantities decay until complete decorrelation for decaying (unforced)
scalar [34], whereas non-zero coefficients value are obtained at steady state
when a mean scalar gradient forcing is used [31]. This asymptotic value is
found to be only dependent of the ratio of Schmidt numbers of the couple of
the scalars under consideration [31, 33, 34, 35], showing that the differential
diffusion increases with this ratio. The differential diffusion can also be char-
acterized by another scalar field, defined as the difference between the scalars
[36]. The variance of this scalar difference has been considered. It decays with
the Reynolds number. The decay of the scalar difference variance is predicted
as a power law of the Reynolds number, but different values of the exponent
have been proposed [35, 36, 37]. The spectrum of the scalar difference has also
been intensively studied in previous works. This spectrum is found to decrease
for all wavenumbers for unforced mixing [34] and turbulent jet configurations
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[38, 15]. However, for scalar fields forced by a mean scalar gradient, the
scalar difference spectrum increases at small wavenumber and decreases at
high wavenumbers, with the presence of a peak [31, 37]. This confirms that
the phenomenon of differential diffusion is fundamentally dependent on the
nature of the underlying flow field [38] or the nature of the mixing condition
(forced or not) [30]. The forcing term allows to limit the differential diffusion
to small scales, whereas without forcing the effects are propagated from small
to large scales. Moreover, the range of scales of the differential diffusion is
found to increase with the Schmidt numbers ratio [33]. Finally, in terms of
scales transfer, the differential diffusion phenomenon is mainly dominated by
local transfers, even if non-local transfers could increase with the values of
the Schmidt number [39, 33].

4.1. Equations for quantities based on the scalar difference
In the present work, the proposed hybrid method is used to study differen-

tial diffusion phenomenon for values of the Schmidt number ratio higher than
previously reported in literature, in two different canonical flow configurations:
homogeneous isotropic turbulence (HIT) and transitional round jet. The
differential diffusion is mainly characterized by quantities based on the scalar
difference.

Let us consider two scalars θα and θβ, seeded in exactly the same manner
but with different molecular diffusivities, κα and κβ, respectively. Their
governing equation are given by equation (4), and their mixing dynamics will
differ only due to the difference of their molecular diffusivity. The proposed
analysis is mainly devoted to the characterization of the scalars difference,
z = θα − θβ.

From the scalars transport equation, the governing equation of z can be
written as,

∂z

∂t
+∇ · (zv) = S∆z +D∆w, (13)

with w = θα + θβ, S =
κα+κβ

2
, and D =

κα−κβ
2

. Note that this equation is
original and slightly different from the form used by Hunger et al. [6] or
Bilger and Dibble [36]. This allows to define without ambiguity the diffusion
and source terms, which depend both on the the molecular diffusivity on the
scalars. The scalar difference, z, is solution of a scalar advection-diffusion
transport equation with a diffusivity coefficient equal to S, and with an
additional source term, D∆w. The evolution of z can be studied from an
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energy point of view by studying z2 (by analogy with the kinetic energy,
1
2
v · v, for the velocity field). The governing equation of z2 reads as

∂z2

∂t
= ∇ ·

(
S∇z2 + 2Dz∇w − vz2

)︸ ︷︷ ︸
Diffusion

−2S∇z · ∇z︸ ︷︷ ︸
Dissipation

−2D∇z · ∇w︸ ︷︷ ︸
Production

. (14)

This allows to define without ambiguity diffusion, dissipation and production
terms, which depends on both molecular diffusivities.

Defining the last term as a production term needs some discussion. To
highlight the role of this term, let us consider a large enough volume to
assume no scalar flux at the boundaries of this volume. By integrating
equation (14) on this volume, we can consider the global equilibrium of the
differential diffusion process. The left-hand-side of this equations represents
the time variation of the integration of z2 in the considered volume, which
is in equilibrium with diffusion, dissipation and source terms. The diffusion
terms can be grouped in a divergence form meaning that their integration
over the considered volume will be equal to zero. This shows that these terms
do not participate in the global balance, but only act as spatial re-distribution.
Conversely, the dissipation term, −2S∇z · ∇z, is always negative meaning
that this term will lead to a decrease of the differential diffusion process. In
a steady state, the last term should be a production term, with a positive
integral, to lead to a global equilibrium between production and dissipation. A
phenomenological argument can be given to discuss the sign of the production
term. Indeed, the production term also reads

−(κα − κβ)∇z · ∇w = −(κα − κβ)
(
(∇θα)2 − (∇θβ)2) . (15)

In the case κα > κβ, for example, that is when the scalar θα is more diffusive
than the scalar θβ, it can be expected that the scalar gradient of θα has a
smaller magnitude than the gradient of θβ. Since κα − κβ > 0, it can thus be
expected that −(κα− κβ)

(
(∇θα)2 − (∇θβ)2) is mainly positive, and that the

term acts as a global production term.
In this work, to characterize the effect of turbulence on this quantity, the

Reynolds decomposition is also adopted : z = 〈z〉+ z′, with 〈z〉 the averaging
of z, and z′ the fluctuation. The turbulent field will be characterized by 〈z′2〉.
Since 〈z2〉 = 〈z〉2 + 〈z′2〉, considering the governing equation of 〈z〉2 and 〈z′2〉
will allow to characterize the differential diffusion phenomenon occurring for
the mean and turbulent fields, and their transfer.
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The governing equation of 〈z〉2 reads as

∂〈z〉2

∂t
=∇ ·

(
S∇〈z〉2 + 2D〈z〉∇〈w〉 − 〈v〉〈z〉2 − 2〈z〉〈v′z′〉

)
− 2S∇〈z〉 · ∇〈z〉 − 2D∇〈z〉 · ∇〈w〉+ 2〈v′z′〉 · ∇〈z〉,

(16)

whereas the governing equation of 〈z′2〉 reads as

∂〈z′2〉
∂t

=∇ ·
(
S∇〈z′2〉2 + 2D〈z′∇w′〉 − 〈v〉〈z′2〉 − 〈v′z′2〉

)
− 2S〈∇z′ · ∇z′〉 − 2D〈∇z′ · ∇w′〉 − 2〈v′z′〉 · ∇〈z〉.

(17)

This governing equation show the scalar energy balance for the mean and
turbulent fields respectively. Similarly to equation 14), diffusion, dissipation
and production terms can be identified. Moreover, an additional term, 2〈v′z′〉·
∇〈z〉 appears with opposite signs in both equations. This term acts as the
transfer term between mean and turbulent fields. This is a key term to
understand turbulence influence on the mean field for differential diffusion.

4.2. Differential diffusion phenomenon in Homogeneous Isotropic Turbulence
4.2.1. Flow configuration

The first flow configuration consists in a forced homogeneous isotropic
turbulence, using a random forcing applied at a low wave number [40] to main-
tain kinetic energy. The hybrid method coupling a pseudo-spectral method
for the flow dynamic, with the semi-lagrangian particle method for scalars is
used in this case. Four Reynolds numbers based on the Taylor microscale are
considered: Rλ = 30, 55, 90 and 180. The simulation parameters are chosen
such that kmaxηK > 1.5 where kmax is the maximum wavenumber in the
domain, and ηK is the Kolmogorov scales [41]. This leads to a discretization
in the pseudo-spectral method using N3

u grid points, with Nu = 64, 128, 256
and 512 for the four Reynolds numbers under consideration, respectively.
Figure 8 shows the kinetic energy spectra of the four considered Reynolds
numbers. The spectra are normalized by the classic Kolmogorov scaling,
with ε the kinetic energy dissipation rate. The highest Reynolds number
allows to obtain an inertial range with a k−5/3 law over one decade. For each
Reynolds number, four passive scalar are considered with Schmidt numbers,
Sc1 = 3/16, Sc2 = 3/4, Sc3 = 3 and Sc4 = 12 respectively. In order to resolve
the scales corresponding to the highest Schmidt number, the particle grid
uses N3

θ grid points with Nθ = 4Nu.The initial scalar field is the same in all
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Figure 8: Normalized kinetic energy spectra for Reynolds numbers Rλ = 30, 55, 90 and
180. Increasing Reynolds numbers go with increasing inertial ranges.

these experiments [42]. To enforce a stationary scalar field, a mean scalar
gradient is imposed [39]. Figure 9 shows the instantaneous scalar field, at
Rλ = 180, for the Schmidt numbers Sc2 and Sc4 to characterize the difference
of the range of turbulent mixing scales.

This database is next used to study the differential diffusion phenomenon
for various Reynolds numbers and various Schmidt numbers ratios. The
Schmidt number ratios are defined as RSc = Scα/Scβ, with Scα > Scβ.
With the DNS database, three Schmidt numbers ratios can be considered:
three couples of Schmidt numbers lead to RSc = 4: (3/16, 3/4), (3/4, 3) and
(3, 12); two couples of Schmidt numbers lead to RSc = 16: (3/16, 3) and
(3/4, 12), and the couple of Schmidt numbers (3/16, 12) leads to RSc = 64.
The hybrid method allows to consider differential diffusion phenomenon at
Reynolds numbers, Schmidt numbers and Schmidt number ratios higher than
previously reported in literature.

4.2.2. Statistical characterization of the differential diffusion phenomenon
Figure 10 shows classical statistical characterization of the differential dif-

fusion. First, figure 10 (left) shows the correlation coefficients of the gradients
of scalars as a function of the Schmidt numbers ratio. This correlation is
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Figure 9: Planar cross-section of the flow colored by the instantaneous scalar fields at two
different Schmidt number, Sc = 3/4 (left) and Sc = 12 (right) for Rλ = 180.

defined as,

gα,β =
〈∇θα · ∇θβ〉

||〈∇θα〉||||〈∇θβ〉||
(18)

where the bracket operator consists in the spatial averaging. This correlation
coefficient is only controlled by RSc, independently of the Reynolds number
and of the values of the Schmidt numbers. The decorrelation is more and more
pronounced when RSc increases. This results has been previously established
by Yeung [31] and Fox [35], by modeling this correlation coefficient as,

gα,β = 2

(
RSc +

1

RSc

+ 2

)−1/2

, (19)

based on the stationarity and homogeneity of the scalar mixing. The DNS
results are in perfect agreement with this model. This validates the model at
high Schmidt number ratios and confirms the independence of this quantity
with the Reynolds number on a larger range of values.

To analyze more in depth the differential diffusion phenomenon, spectra
of the scalar difference variance can be considered. Figure 10 (right) shows
the scalar variance spectra for both scalars with Sc = 12 and Sc = 3/16 at
Rλ = 180, and the variance spectrum of the scalar difference, z, between these
two scalars. Both scalars have first an inertial-convective range, and the scalar
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Figure 10: Statistical measures of the differential diffusion. Left picture: correlation
coefficients of the gradients of different scalars, equation (18), as a function of RSc for
various Rλ. The solid line shows the model given by equation (19). Right picture: Scalar
variance spectra for scalars with Sc = 12 (thick line) and with Sc = 3/16 (thin line) and the
spectrum of the associated scalar difference, z, variance (dotted-dashed line), for Rλ = 180.

with the higher Schmidt number (higher than 1) exhibits a viscous-convective
range at the highest wave numbers. At these scales, the spectrum of the
scalar difference perfectly follows the spectrum of the scalar with the highest
Schmidt number, because there is no mixing at these scales for the scalar with
the smallest Schmidt number [37]. At larger scales, the variance spectrum of z
increases roughly as k3/2, as already observed by Yeung [31]. This means that
there is a peak for this spectrum characterizing the scales of the differential
diffusion.

These results suggest to normalize the variance spectrum of the scalar
difference with the Batchelor scaling based on the highest Schmidt number, as
already proposed by Yeung et al. [33]. Figure 11 (left) shows the normalized
variance spectra of the scalar difference for all the cases of the database. As
expected, a good collapse is found for all the spectra for high enough wave
numbers. Moreover, the normalized spectra are found independent of the
Reynolds number. However, the collapse is only partial, because it depends
on RSc. In particular, the spectrum peak of the differential diffusion process
depends on RSc. The typical scale of the differential diffusion, noted lp, is
defined from the peak wavenumber. Figure 11 (right) shows the value of the
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Figure 11: Left picture: variance spectra of the scalar difference for all the cases of the DNS
database. The spectra are normalized by using the Batchelor scaling based on the highest
Schmidt number. The arrow shows increasing values of RSc. Right picture: evolution of
the ratio between the scale of the peak of the differential diffusion and the Bachelor scale
of the scalar with the highest Schmidt number, lp/ηBα, as a function of Rλ for all the
couples of scalars: RSc = 4 (3/16-3/4, square; 3/4-3, circle; 3-12, diamond), RSc = 16 with
(3/16-3, triangle up; 3/4-12, triangle down) and RSc = 64 (cross). The dotted lines show
the mean value computed at fixed RSc.

ratio between scale of the peak the differential diffusion, lp, and the Bachelor
scale of the scalar with the highest Schmidt number, ηBα. This ratio, lp/ηBα,
seems to only depend on RSc. This means that this typical scale is not directly
linked with the large scales, but with the smallest scale of the less diffusive
scalar.

4.2.3. Transfer of the differential diffusion phenomenon
As already mentioned, to deeper characterize the differential diffusion

phenomenon, the transport equation of the square of the instantaneous scalar
difference, z2, equation (14) can be considered. Note that in the case of
forced homogeneous isotropic turbulence, one can simplify Eqs. (16) and (17).
Indeed, in this case 〈z〉 = 0, and then, 〈z′2〉 = 〈z2〉. Therefore, equation (16)
can be dropped. Moreover, at steady state, equation (17) leads to

−2S〈∇z · ∇z〉 = −2D〈∇z · ∇w〉, (20)
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Figure 12: Correlation coefficient as a function of RSc between the opposite of the dissipation
term, −D, and the production term, P , in equation (14).

showing that the global equilibrium between dissipation and production
terms necessary holds in the considered flow configuration. To assess if
the equilibrium acts also locally the correlation between the opposite of
the dissipation term, −D, and the production term, P , appearing in the
transport equation of z2, equation (14), is shown by figure 12 for all the scalar
differences of the database. The dissipation and the production terms are
highly correlated with a coefficient correlation higher than 0.9. It is observed
that the coefficient correlation increases with RSc and it is very close to 1 for
RSc = 64. This means that the equilibrium is well verified, not only globally,
but also locally, i.e. that P = −D not only in average. This is confirmed
by figure 13 showing the joint probability density function (J-PDF) between
−D and P , for two different couples of scalar at Rλ = 180. The J-PDF of
exactly equal terms will be aligned on the y = x line. This confirms the local
equilibrium : the magnitude of the production and dissipation terms are very
close locally, in particular for high RSc. Moreover, even if P is positive in
average, it can be also observed that P can be locally negative, unlike −D
which is always positive by definition.

This suggests that the differential diffusion is a local phenomenon, and
that the transfers between scales are weak. To better analyze the scales
transfer of the differential diffusion phenomenon, spatial filtering is next used
[43, 44]. The objective is to split the fields between large and small scales.
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Figure 13: Joint probability density function (J-PDF) between the opposite of the dissipa-
tion term, −D and production term, P , for Rλ = 180. The solid lines are for RSc = 64
(Sc1 = 12 and Sc2 = 3/16), whereas the dotted lines are for RSc = 4 (Sc1 = 3 and
Sc2 = 3/4). The isocontours are in the range 10−6 to 10−2 with a logarithm scale.

This scales separation is performed by using the following filtering operation,

s̄(x, t) =

∫
s(y, t)G∆̄(x− y)dy, (21)

with s̄ the filtering of the field s, and G∆̄ the filter kernel with a filter size
∆̄. The scalar field, z, is then decomposed as a filter-scales (FS) field, z̄, and
a subfilter-scales (SFS) field. To better understand the FS/SFS interaction,
the transport equation for z̄2 is written as,

∂z̄2

∂t
= ∇·

(
S∇z̄2 + 2Dz̄∇w̄ − v̄z̄2 − 2z̄T

)
−2S∇z̄ · ∇z̄︸ ︷︷ ︸

D>

−2D∇z̄ · ∇w̄︸ ︷︷ ︸
P>

+2T · ∇z̄︸ ︷︷ ︸
T><

,

(22)
with T = vz − v̄z̄, the SFS flux of the scalar difference. This allows to
characterize the differential diffusion occurring at scales higher than the
filter size, ∆̄. This equation is close to the equation obtained for the (full)
scalar difference field, z2, with diffusion terms written in the divergence form,
SF dissipation term, D>, and SF production term, P>. There is also an
additional term, T>< = 2T · ∇z̄, which represents the scales transfers from
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the filter-scales to the subfilter-scales. These FS/SFS transfer terms can act
as either a sink term for the FS field, meaning a transfer from FS to FSF
(forward scatter), or as a source term, meaning an inverse transfer (backward
scatter).

Figure 14: Evolution of the FS global equilibrium with the filter size for Rλ = 180 and
RSc = 4 (Sc1 = 12 and Sc2 = 3). The filter size is normalized by the characteristic scale
of the differential diffusion, lp.

As already mentioned, the diffusion terms will be zero in average in the
considered flow configuration. The FS global equilibrium is then between
〈D>〉, 〈P>〉 and 〈T>< 〉. The evolution of the FS global equilibrium with the
filter size is shown by figure 14 at Rλ = 180 and RSc = 4 (Sc1 = 12 and
Sc2 = 3). In the previous section, the characteristic scale of the differential
diffusion process, lp, has been identified. The filter size is normalized by this
scale. The case ∆̄/lp = 0 corresponds to the non-filtered case, and the global
equilibrium between dissipation and production is found. For larger filter
size, the FS/SFS transfer term is no more zero. The magnitude of this term
increases but this term is negative showing that there is mainly a transfer
from large to small scale (direct transfer). This transfer is maximum around
∆̄/lp ≈ 1, confirming thus that lp is the correct characteristic scale of the
differential diffusion phenomenon. However, even at this filter size the mean
FS/SFS transfer does not exceed 10% of the mean production. This confirms
that the differential diffusion is mainly local phenomenon, with weak scales
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transfers. Note that the three terms are almost zero for ∆̄/lp > 5. This means
that all the differential diffusion happens at subfilter-scales for ∆̄/lp > 5,
confirming that the differential diffusion is a small-scale phenomenon.

Figure 15: Evolution of the mean FS/SFS transfer term normalized by the mean production
term as a function of the filter size normalized by the characteristic scale of the differential
diffusion, lp: at Rλ = 180 where the arrow indicates increasing values of RSc (left); at
RSc = 16 for various Rλ (right).

Figure 15 shows the evolution of the mean FS/SFS transfer term with the
filter size at a given Rλ, for various RSc (left) and at given RSc, for various Rλ

(right). The ratio between the mean FS/SFS transfer and the total (unfiltered)
production term appears to be only controlled by RSc. Indeed, this ratio
is independent of the Reynolds number (Figure 15, right) and independent
of the values of both Schmidt numbers (Figure 15, left). Moreover, the
FS/SFS transfer decreases with the increase of RSc. This is consistant with
the observation previously done showing a very high correlation between
dissipation and production terms. This confirms that the differential diffusion
is more and more local with increasing of RSc, with a very weak part of scales
transfer.

4.3. Jet Flow
In this section we study the physics of differential diffusion in the flow

created by a transitional round jet. We first specify the flow configuration.
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We also define the grid resolution required for the velocity and the scalars, de-
pending on the Schmidt numbers. We finally discuss the physics of differential
diffusion based on a Reynolds decomposition.

4.3.1. Flow and grid configuration
To now study the differential diffusion in flow configuration with a mean

field, a round jet in transition to turbulence is considered. The flow configura-
tion is defined by its inlet velocity profile. At the inlet, the mean velocity field
is non zero only for the streamwise component, which is given by a hyperbolic
tangent profile [45] :

uref(x) =
U1 + U2

2
− U1 − U2

2
tanh

(
R

4Γ0

(
r

R
− R

r

))
,

where U1 is the centerline velocity, U2 is a small co-flow, Γ0 is the momentum
thickness of the initial shear layer, r the radial coordinates (taking the origin
at the center of the jet), and R the initial jet radius. The Reynolds number is
fixed at a moderate value, Re = U1R/ν = 1500. To accelerate the transition
a forcing term is added. This forcing is first composed by a random part only
added in the shear layer of the jet to the three velocity components. It follows
a Passot-Pouquet spectrum with an amplitude set to 10% of U1. For the
streamwise component, the forcing is then complemented by a deterministic
part, which consists in a varicose (axisymetric) excitation [46],

udf(x, t) = εuref(x) sin

(
2πStR

U1 + U2

2Γ0

t

)
with a forcing amplitude ε = 2.5% , and StR fixed at 0.033 to trigger the
frequency predicted by the linear stability theory [45].

To consider the differential diffusion process in this flow configuration,
two scalars are seeded in the jet with a hyperbolic tangent profile similar to
the streamwise velocity, with the scalar value equal to 1 in the jet and zero in
the outer region. The scalars only differ by their molecular diffusivity, leading
to Schmidt numbers 0.8 and 8. The scalars will be denoted by θ0.8 and θ8,
respectively.

Unlike in the previous case, this configuration cannot be handled by a spec-
tral method for the Navier-Stokes equations. The hybrid method described
in section 2 coupling finite-volume method and a semi-lagrangian particle
method is instead used. This allows also to consider distinct computational
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domains for the flow and scalar dynamics. For the flow dynamics, the domain
is a parallelepiped with size 20R× 14R× 14R in the streamwise and the two
transverse directions, respectively. The size of the transverse directions are
large enough to allow the flow rate added by the co-flow to be larger than
the flow rate entrainment of the jet. An homogeneous spatial resolution is
used in the core of the jet, that is where vorticity is not negligible, with a cell
size ∆ ≈ 0.375R which is the typical mesh size used for similar configuration
at similar Reynolds number [47]. Outside the core of the jet, the mesh is
unrefined to limit the number of cells. Overall, the mesh consists of 50 millions
tetrahedra.
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Figure 16: Evolution of L2−norm of θ8 (left) and ∇θ8 (right) after scalar initialization and
over t = 10U1/R. Finite-volume method with mesh size ∆ in the core (black curve) and
hybrid method with grid size ∆ (red curves), ∆/2 (magenta curve) and ∆/4 (green curve).

For the advection of scalars, the domain is a smaller parallelepiped with
size 20R× 5R× 5R in streamwise and both transverse directions. Choosing
smaller transverse sizes than for the finite-volume solver amount to choosing
homogeneous Dirichlet conditions on the lateral boundaries. This has a
negligible effect on the dynamics of the scalar as the box is big enough so that
the flow is mostly outgoing at these edges. Note that the semi-lagrangian
method, unlike eulerian methods, does not face issues related to possible
spurious reflections at boundaries.

To choose the grid size in the particle box, we have undertaken the
following refinement study that can also serve as an accuracy check for the
hybrid method. We considered the more challenging value Sc = 8 and first
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looked at the energy norm of the scalar θ8, using either the hybrid method
or the pure finite-volume method, for grid sizes ∆, ∆/2 and ∆/4, where we
recall that ∆ is the mesh size of the finite-volume mesh in the core of the
jet. The results, shown on the left picture of Figure 16, show that, unlike
the pure finite-volume method, the hybrid method gives converged results for
the RMS of θ, with the grid size ∆. However, to obtain reliable values for
the different diagnostics presented below, it is also desirable to have accurate
values for the scalar gradients. The bottom picture of Figure 16 shows that
the grid size ∆ for the hybrid method is not sufficient and a grid size ∆/2,
although not yet converged, was found to give reasonable accuracy. This grid
size corresponds to a particle mesh with 1068× 268× 268 points.

4.3.2. Computational cost
Let us now discuss the computational efficiency of the method.
The simulations were carried out on 840 cores of the Occigen machine of

the Cines made of xeon E5 cores running at 2.6GHz.
To simulate a scalar with a Schmidt number Sc = 8, the hybrid solver

takes 2.4s of wall-clock time per time step for a grid size ∆/2. The pure
finite-volume method using the same grid-size in the core of the jet, which,
as we have seen earlier, would not be enough to achieve the same level of
accuracy, and a time-step twice smaller due to the CFL condition, would
require 4s to reach the same physical time.

However, the efficiency obtained in this configuration for the hybrid method
is not quite inline with the timings shown in 3. A simple extrapolation from
the results of Table 1, assuming perfect scalability, would give a wall-clock time
of about 0.7s per iteration. This discrepancy is due to a domain partitioning
leading to a poor load-balancing in the jet configuration.

For load balancing in the finite-volume solver, the computational domain
can be roughly divided into 3 zones. In the core of the jet, the velocity mesh
is uniform as already mentioned. Good load balancing can thus be achieved
for both the finite-volume and particle solvers. A second zone is located near
the lateral edges of the domains. In this area the scalar values are small or
zero. This area is therefore mostly void of particles. Although the size of
the velocity cells are much bigger than the size of the particle cells, in this
area particles do not deteriorate the load balancing. Finally there is a third
intermediate zone with large velocity scales associated to large cells of the
finite-volume mesh. Here, the ratio between the computational load of the
semi-lagrangian solver and the finite-volume solver increases significantly.
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For the moment, it has not been possible to obtain an acceptable domain
partitioning with METIS leading to satisfactory load balancing for both the
finite-volume and particle solvers.

4.3.3. Instantaneous pictures of the flow dynamics and the differential diffu-
sion

Figure 17: Iso-surface of the Q-Criterion for Q = 0.1(U1/R)2 colored by the streamwise
vorticity ωx.

The mixing of scalars is mainly dominated by the flow dynamics during
the transition process through laminar to turbulent flow. The main structures
of the flow dynamics can be observed using the Q-Criterion [48, 49]. This
value is a good indicator of presence of vortices. Figure 17 shows the iso-
surface Q = 0.1(U1/R)2. The classical rings created by Kelvin-Helmholtz
instabilities can be found until x/R < 8. Beyond x/R = 10, there is an
abrupt increase in the level of small-scales turbulence due to the appearance
of pairs of streamwise vortices between two consecutive primary vortices in
agreement with the classical scenario of transition in free shear layers.

To give now a qualitative illustration of the mixing phenomena, instanta-
neous contours of scalars in the central plane are shown on figure 18. The
turbulent mixing activity emerges soon as far as coherent structures become
extensive. Thus, the turbulent mixing starts with an engulfment of the two
jet fluids through the shear layers implied by the Kelvin–Helmholtz vortices.
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Figure 18: Instantaneous contours of scalars in the central plane for θ0.8 (top) and θ8
(bottom).

Figure 19: Instantaneous contours of scalars in the plane x/R = 10 for θ0.8 (left) and θ8
(right).

With the appearance of the three-dimensional vortices, ejections of space-
coherent packets of scalars into the ambient fluid appear, leading to the
mushroom-shaped tracer structures, as shown by figure 19. For x/R > 10,
the mixing finally occurs in the core of the jet.
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The effect of molecular diffusivities clearly appears on these figures.
Whereas thin layers of scalar exist for the scalar θ8, with a Schmidt number
equal to 8, they are quickly removed by diffusion effect for the scalar θ0.8, with
a Schmidt number equal to 0.8. These thin layers for θ8 are mainly visible
in the core of the Kelvin-Helmholtz vortices and in the three-dimensional
vortices.

Figure 20: Instantaneous contours of z = θ0.8 − θ8 in the central plane

To characterize the differential diffusion process, Fig. 20 shows the in-
stantaneous contours of the scalar difference, z = θ0.8 − θ8, in the central
plane. As expected, z is first different to zero only at the turbulent/non
turbulent (T/NT) interface [6] at the beginning of the transition process. The
differential diffusion occurs in the core of the jet, simultaneously with the
appearance of the three-dimensional vortices. Figure 21 shows the dissipation
and production terms identified in the transport equation of z2, equation
(14), in the central plane. Similarly to the isotropic turbulent configuration, it
seems that the two terms are highly correlated, showing that a local (in space
and time) equilibrium occurs between the dissipation and the production for
the differential diffusion process.

4.3.4. Analysis of the differential diffusion based on Reynolds decomposition
To deeper characterize the effect of turbulence, the Reynolds decomposition

can be adopted to distinguish the mean field, 〈z〉, and the turbulent field,
zrms =

√
〈z′2〉. Fig 22 (a) shows 〈z〉 in the mid-plane of the jet. At the

beginning of the jet, 〈z〉 is non zero only in the shear layer due to the diffusion
difference. Turbulent mixing due to the appearance of the Kelvin-Helmholtz
vortices leads to an important radial growth of the phenomenon until the
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Figure 21: Instantaneous contours of Dissipation (top) and Production (bottom) terms
from 14 in the central plane.

middle of the jet. For x/R > 10, i.e. at the end of the potential core, 〈z〉 is
zero everywhere, which means that differential diffusion only persists in the
turbulent field. This is confirmed by Fig 22(b) which shows zrms in the mid-
plane of the jet. As expected differential diffusion in the turbulent field starts
with the appearance of the Kelvin-Helmholtz vortices, and it is then located
in the shear layer. At the end of the potential core, when the differential
diffusion disappears of the mean field, it is dominant in the center of the
jet for the turbulent field, and the phenomenon persists until the end of the
domain. The distribution of zrms is similar as the distribution of the turbulent
kinetic energy [50]. In particular maximum values of zrms occur within the
shear layer just downstream of the location of potential core breakdown.

Similarly to the analysis proposed by Anghan et al. [50] on the turbulent
kinetic energy budget, the main mechanisms leading to the observed distri-
bution for the mean field, 〈z〉, and the turbulent field, zrms can be given by
looking at the budget equations (16) and (17). Figure 23 shows the radial
profile of the terms of the budget of the mean field, equation (16), namely
diffusion, dissipation, production and transfer terms. The production of
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Figure 22: Value of 〈z〉(top) and zrms(bottom) in the mid-plane.

-0.015

-0.01

-0.005

	0

	0.005

	0.01

	0.015

	0.02

	0.025

	0 	0.5 	1 	1.5 	2
Radius

Production
Dissipation
Diffusion
Transfert

-0.015

-0.01

-0.005

	0

	0.005

	0.01

	0.015

	0.02

	0.025

	0 	0.5 	1 	1.5 	2
Radius

Production
Dissipation
Diffusion
Transfert

Figure 23: Budget of 〈z〉2, equation (16). Radial profile at x/R = 3 (left), and 6 (right).

differential diffusion in the mean field mainly occurs in the edges of the shear
layer. The production is mostly balanced by diffusion and dissipation. The
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transfer term is mainly negative, showing that the transfer occurs from the
mean field to the turbulent field. However, the transfer term is one order of
magnitude below the other terms, showing that this term does not have a
significant influence on the mean field.

Going downstream, the magnitude of the peaks of production vanishes
to zero. Downstream of x/R = 6, the transfer term becomes comparable
to the other terms, but in this zone the differential diffusion mainly occurs
in the turbulent fields. It can be noted that the production term has a
negative value close to the production peaks, which are mainly compensated
by the diffusion process, showing that the diffusion essentially consists in
spreading from the production region towards the center of the jet and the
non-turbulent region. Figure 24 shows the radial profile of the terms of
the budget of the turbulent field, equation (17). The transfer term is the
opposite of the term appearing in the mean field budget. However, this term
is clearly dominated by production and dissipation terms, showing that there
is a decoupling between mean and turbulent field for the differential diffusion
phenomenon. Moreover, from the first step of the transition process until the
full turbulent state, the diffusion is also clearly dominated by the production
and dissipation terms. There is a clear equilibrium between these two terms.
Note that this equilibrium is expected at the end of the jet, where 〈z〉 ≈ 0,
as already discussed for the HIT case, equation (20). But the equilibrium
assumption is also valid at the beginning of the jet. It seems even valid for
the instantaneous field as previously shown by Figure 21.

5. Conclusion

Thanks to an hybrid method combining an eulerian (either pseudo-spectral
of finite-volume) method and a second order semi-lagrangian particle method
with good parallel scalability, we were able to study differential diffusion at a
reasonable computational cost for Schmidt numbers that were not previously
reported. The hybrid method was validated both form the point of view of
accuracy and computational efficiency against a purely finite-volume method.

This method allowed us to perform a numerical study of the differential
diffusion phenomenon in homogeneous isotropic turbulence and in a transi-
tional round jet. By studying quantities based on scalar difference, it has
been observed that the transfer between mean and turbulent fields is weak,
and, furthermore, that the scales transfers for the turbulent field are limited.
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Figure 24: Budget of 〈z′2〉 as given by equation (17). Radial profile at x/R = 3 (top left),
6(top right), 9 (bottom left), and 15 (bottom right).

This confirms previous studies showing that the differential diffusion is a local
phenomenon in space and time.

Simulations made in the jet configuration showed that there is room for
improvement in the load balancing for the hybrid finite-volume / particle
method. Difficulties arose from domain partitioning solely based on the finite-
volume solver. In the future we plan to experiment with alternative parallel
strategies. The domain decomposition for each of the meshes, unstructured
mesh for the velocity and cartesian mesh for the scalars, will be performed
separately. The velocity field, computed on the unstructured mesh, will then
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have to be communicated to the processors in charge of transporting the
scalar field. With such an approach we expect the load balancing to be
optimized independently on the two process pools used for velocity and scalar
calculations.

Future works will also include the extension of the hybrid method to the
coupling of the finite-volume method with multi-resolution particle method as
described in [20]. This should allow to increase the local density of particles
and therefore to address even higher Schmidt numbers.
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