
HAL Id: hal-03154381
https://hal.science/hal-03154381

Submitted on 5 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of parameters variability on the level of human
exposure due to inductive power transfer

Paul Lagouanelle, Oriano Bottauscio, Lionel Pichon, Mauro Zucca

To cite this version:
Paul Lagouanelle, Oriano Bottauscio, Lionel Pichon, Mauro Zucca. Impact of parameters variability
on the level of human exposure due to inductive power transfer. IEEE Transactions on Magnetics,
2021, 57 (6), pp.1-4. �10.1109/TMAG.2021.3062702�. �hal-03154381�

https://hal.science/hal-03154381
https://hal.archives-ouvertes.fr


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMAG.2021.3062702, IEEE
Transactions on Magnetics

CEFC 2020 — 19TH BIEANNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, ID 621 1

Impact of parameters variability on the level of human exposure
due to inductive power transfer

Paul Lagouanelle1,2, Oriano Bottauscio3, Lionel Pichon1, Mauro Zucca3

1GeePs – Group of electrical engineering - Paris, UMR CNRS 8507, CentraleSupélec, Université Paris-Saclay,
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This paper shows the effectiveness in combining non-intrusive stochastic techniques with 3D modeling tools to build
adequate surrogate models for the evaluation of human exposure close to a vehicle equipped with a wireless charging pad.
A surrogate model is appropriate to deal with uncertainties and variabilities of parameters defining the electromagnetic
problem. Numerical results obtained in case of a light passenger vehicle illustrate the proposed methodology.

Index Terms—Inductive power transfer, stochastic methods, human exposure.

I. INTRODUCTION

Inductive power transfer (IPT) is a key factor in the
growth of electric mobility [1]. However, the large

gap between transmitter and receiver implies a high
level of stray field in the vicinity of the coils that, de-
spite the presence of ferrite concentrators and aluminum
shield, may represent a problem in terms of exposure to
magnetic fields for passengers or by-standers during the
charging operations. It is therefore needed to evaluate
the level of exposure in order to be compliant with the
relevant standards and guidelines for human exposure
when designing a new IPT system.

In order to assess human exposure near IPT systems
in automotive applications, adequate modeling method-
ologies have to be developed. The use of powerful 3D
models involving the wireless power transfer (WPT)
system and the car-body produced reliable results at
heavy computational cost for the radiated field around
the system or induced in the human body [2], [3] and
more recently on the magnetic field produced by SAE
J2954 coils [4]–[6]. The level of exposure is highly depen-
dent on various physical and geometrical parameters:
magnitude and phase of the currents in the coils, geomet-
rical characteristics of the system, materials properties,
possible misalignment and distance between transmit-
ter and receiver, position of the human body and so
forth. Moreover, when building the real system, every
parameter (physical or geometrical) might come with
some given uncertainty which also needs to be taken
into account. Therefore, in order to fully predict the
behaviour of the IPT system for human exposure, one
cannot simply use 3D solvers.

Thus by using stochastic tools with a given set of
inputs and their corresponding outputs, one can build
a metamodel which interpolates the real model given
by the 3D solver. This resulting metamodel is a mathe-
matical function which can be used easily to predict the

outputs of the real model outside of the training dataset.
Therefore it can be used to perform various analysis such
as Sobol index sensitivity analysis [7] at a low computa-
tion cost. This allows to deal with the variability of all
the parameters describing the electromagnetic problem.
Such tools have already been used successfully in the
past for the determination of specific rate absorption
(SAR) in biological tissues due to mobile phones at
microwaves frequencies [8], [9]. The same goes for an
automotive WPT system in the case of a simplified 3D
model, where Polynomial chaos and Kriging methods
have been really efficient [10].

The objective of this paper is to show the effectiveness
of non-intrusive methods based on a combination of
polynomial chaos expansions with Kriging in case of
a realistic passenger vehicle in assessing the sensitivity
of the electromagnetic problem to several parameters.
INRiM provided a 3D Finite Element Method (FEM)
model of an electric vehicle charging station (EVCS) that
includes a car-body of a S80 sedan car kindly provided
by Volvo car company in the framework of the project
[11]. The FEM model has been solved varying the phys-
ical parameters of the metal car body and charging pad.
The GeePs used the various results to develop accurate
metamodels using the UQLab framework [12] to perform
decent sensitivity analysis using Sobol indices.

II. A REALISTIC MODEL

A. The charging station model

The studied EVCS has been modeled in the framework
of the MICEV project [11] and it is considered with
a central position for the IPT system (see Fig. 1). The
3D finite element mesh has been built by means of the
OPERA 3D simulation software by Dassault Systèmes R©.
The system has been limited to the car-chassis and to
the charging pad, whose rated power is up to 7.5 kW
and the resonance frequency is 85 kHz. The current in
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the two coils was taken as sinusoidal, the current in the
receiving coil being the same amplitude as that in the
transmitting coil, i.e. 26 A peak. Being 8 the turns the
total magnetomotive force in the coils is 208 A peak, but
the electric current in the receiving coil had a 90◦ phase
lag. The distance between the coils was 150 mm. The
metal thickness of the chassis is assumed to be 1 mm.
Due to the important skin effect, a Surface Impedance
Boundary Conditions (SIBC) is used [13].

Fig. 1: 3D FEM model mesh of the chassis: the positions of the
charging pad and the investigation line

The following input parameters have been considered
for performing sensitivity analysis on our vehicle:
• the conductivity of the chassis σ
• the relative permeability of the chassis µr
• the relative permeability of the ferrite in the charg-

ing pad µ f
• the radial misalignment between the center of the

two coils ∆x along the x-axis (axis of motion)
• the radial misalignment between the center of the

two coils ∆y along the y-axis
• the gap between the two coils ∆z along the z-axis

(vertical axis)
The output (B hereafter) of our model is the amplitude

of the magnetic flux density evaluated along a vertical
line (101 points) which embodies a by-stander position:
• x = 0 m
• y = −1.5 m
• 101 values for z uniformly distributed from 0 m to

2 m
With such a system, the built-in mesh has around

6 · 106 elements along with around 7.7 · 106 edges. Thus
computing the model for a given set of input parameters
is taking about 16 hours (CPU time).

B. Polynomial-Chaos-Kriging metamodelling

Kriging is a stochastic interpolation algorithm which
interpolates the local variations of the output B as
a function of the neighbouring experimental design

points, whereas Polynomial-Chaos expansion approxi-
mates well the global behaviour of B. By combining
the global and local approximation, a more accurate
stochastic process can be achieved. Polynomial-Chaos-
Kriging (PCK) is defined as a universal Kriging model
the trend of which consists of a set of orthonormal
polynomials. Given an input X of the parameters, the
output B(X) can be estimated by:

B̂(X) = ∑
α∈A

yαψα(X) + σ2Z(X, ω) (1)

where ∑α∈A yαψα(X) is a weighted sum of orthonormal
polynomials describing the trend of the PCK model, σ2

and Z(X, ω) denote the variance and the zero mean,
unit variance, stationary Gaussian process, respectively.
Hence, PCK can be interpreted as a universal Kriging
model with a specific trend.

1) Consistency of the metamodel
Let’s consider a set {(X1, B1), . . . , (Xn, Bn)} of n dat-

apoints : a given set of input and their corresponding
outputs. Using this set, one can build a metamodel B̂(X)
with PCK. The accuracy of the metamodel is calculated
using the mean Leave-One-Out error (LOO):

LOO =
1
n

n

∑
i=1

(
B̂/i(Xi)− Bi

Bi

)2

(2)

where B̂/i is the mean predictor that was trained using
all (X, Y) but (Xi, Bi). The LOO enables us to evaluate
the consistency of the metamodel considering its build. If
the LOO is close to 1, the metamodel is highly modified
if one datapoint is missing, whereas the smallest it is,
the least it will be modified.

2) Accuracy of the metamodel
If one were to build a metamodel B̂k(X) using a subset

of k datapoints out of the aforementioned n datapoints,
the accuracy of the predictor on the (n − k) remaining
points {(X1, B1), . . . , (Xn−k, Bn−k)} can be calculated us-
ing the OSE (Out-of-sample-error):

OSE =
1

n− k

n−k

∑
i=1

(
B̂k(Xi)− Bi

Bi

)2

(3)

The analysis of the OSE emphasizes something different
than the LOO analysis does: if the OSE for k data-
points is extremely small, it means that, at the non-
sampled points, there is almost no difference between
the predictor and the real value. Hence, if the OSE for
k datapoints is small enough, there was no need to
compute n datapoints but k is enough.

III. NUMERICAL RESULTS AND DISCUSSION

PCK metamodelling has been used on several nu-
merical results of our 3D model in order to predict its
behaviour. Out of the available set of datapoints, only a
part has been taken to build the metamodels in order to
observe if the output model accuracy would be the same
using all points or fewer.
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A. First sweep: 3 input parameters, n = 24 datapoints
The first metamodels developed used an existing pre-

computing dataset (table I) regarding the 3 input param-
eters: X = (σ, µr, µ f ).

TABLE I: Our first dataset (n = 24)

µr σ (S m−1) µ f
1 0 2000
1 106 2000
1 5 · 106 2000
1 107 2000

100 0 2000
100 106 2000
100 5 · 106 2000
100 107 2000
200 0 2000
200 106 2000
200 5 · 106 2000
200 107 2000

µr σ (S m−1) µ f
300 0 100
300 0 200
300 0 500
300 0 1000
300 0 2000
300 106 2000
300 2 · 106 100
300 2 · 106 200
300 2 · 106 500
300 2 · 106 1000
300 5 · 106 2000
300 107 2000

Four different metamodels have been computed: one
with the full set of n = 24 datapoints, then three
metamodels calculated by randomly taking k = 18, 12
and 6 datapoints out of the full set. The goal was to
observe using the OSE if initially computing less than 24
points would have still produced an accurate metamodel
on the given domain. The results are displayed in table
II.

TABLE II: LOO, OSE and Sobol sensitivity analysis for our first
metamodels

Subset size
(k samples) LOO OSE Sµr Sσ Sµ f

24 2.29 · 10−3 NaN 0 0.842 4.34 · 10−3

18 1.97 · 10−3 6.50 · 10−4 0 0.918 0
12 3.26 · 10−2 5.67 · 10−2 0 0.941 0
6 0.180 1.78 0 0.609 0

The first noticeable thing is the LOO which is even
better with k = 18 instead of 24 datapoints, meaning
that the metamodel produced with less randomly chosen
points is more consistent with itself. Moreover the LOO
for k = 12 samples is still good (less than 4%) and
the OSE is also less than 6%, thus a metamodel with
half the points could almost have been enough for the
considered parameters domain. Unfortunately, 6 points
are not enough to produce an accurate and consistent
metamodel and perform a sensitivity analysis on our
model. The significant parameter by far here is the con-
ductivity of the frame while both relative permeabilities
have almost no influence on the output B vector for
this dataset. When plotting the B-field values against
the distance for one of the 6 datapoints remaining when
building the k = 18 datapoints metamodel (see figure
2), it can be observed that the metamodel can perfectly
interpolate the input model to produce an estimate ac-
curate enough to perform sensitivity analysis that could
help designing a WPT system compliant to the safety
guidelines.

Thus, this first attempt at metamodelling our WPT
system is promising but, when looking at the dataset
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Fig. 2: B-field against the distance for the model with 18/24
datapoints (estimated) against the one with the full dataset
(input model) for a given datapoint (µr = 200, µ f = 2000 and
σ = 5 · 106 S m−1)

especially, its distribution in the parameter space (see
figure 3), it can be seen that the sample distribution is
highly nonuniform. By building a metamodel with fewer
randomly chosen datapoints out of the given dataset,
some area of the parameter space could be avoided
and therefore a totally inaccurate metamodel would be
computed. That is why for the next attempt we decided
to compute a more uniformly distributed sweep on our
WPT model.

Fig. 3: Distribution of the different samples in the parameter
space for our first dataset (n = 24)

B. Second sweep: 5 input parameters, n = 78 datapoints

For the second dataset the samples are uniformly
distributed in the chosen parameter space:



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMAG.2021.3062702, IEEE
Transactions on Magnetics

CEFC 2020 — 19TH BIEANNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, ID 621 4

X = (µr, σ, ∆x, ∆y, ∆z). The following sweep has been
computed on our WPT model:
• σ ∈ {0, 106}S m−1

• µr ∈ {1, 100, 300}
• ∆x ∈ {−75, 75}mm
• ∆y ∈ {−100, 0, 100}mm
• ∆z ∈ {−50, 0, 50}mm
The same analysis as previous has been performed on

this dataset of n = 78 points resulting in the LOO, OSE
and sensitivity analysis displayed in table III.

TABLE III: LOO, OSE and Sobol sensitivity analysis for our
second metamodels

Subset size
(k samples) LOO OSE Sµr

78 2.76 · 10−4 NaN 1.79 · 10−3

58 1.11 · 10−3 4.62 · 10−4 1.67 · 10−3

39 1.53 · 10−2 5.61 · 10−3 2.45 · 10−3

19 4.02 · 10−2 0.248 2.28 · 10−3

Sσ S∆x S∆y S∆z
0.690 2.09 · 10−4 9.67 · 10−2 0.123
0.656 2.55 · 10−3 0.120 0.141
0.581 1.72 · 10−4 0.127 0.231
0.584 4.43 · 10−4 9.70 · 10−2 0.253

This new metamodels are all consistent: Indeed, there
is less than 5% of leave-one-out error even when sam-
pling only a quarter (k = 19) of the dataset. But for this
metamodel the OSE is too high (> 20%) thus it cannot
be used as an accurate predictor for the WPT system.
The predictor with half the points (k = 39) is even more
accurate (OSE' 6%) than the one from the first set. Using
a more uniform parameter space enabled us to build
a more consistent and more accurate metamodel with
fewer points.

Even with more parameters as the previous analysis,
the metamodels computed on this sweep allowed an
equally accurate sensitivity analysis with the car-body
conductivity still being the significant parameter against
new geometrical parameters. The Sobol indices of the
five parameters are here really useful for future compu-
tations. First, the influence of the relative permeability
and the coils misalignment along the axis of motion
is negligible against the misalignment along the y-axis
and the z-axis and the car-body lamination conductivity.
Thus, future sensitivity analysis on this five parameters
can be reduced to three parameters, or less samples can
be taken from the non-significant parameters and more
samples can be given to the significant ones. Then, such
an analysis can help with the design of real WPT systems
where a greater care should be given to the uncertainties
on dimensioning the chassis conductivity and the system
along the y and z-axis.

IV. CONCLUSION

The stray magnetic field on a by-stander position has
been obtained using a Polynomial-Chaos-Kriging meta-
model in a modeled realistic EVCS. PCK metamodels
enabled us to examine the effects of different physical

or geometrical parameters on the output field of our
IPT system at a low computation cost. Less computed
datapoints will be needed in the future in order to verify
the compliance of the system with the guidelines for
human exposure. The analysis presented in this paper
will now be extended by using more realistic configura-
tions: various possible positions around the car will be
investigated and a full voxelized model for the human
body will be used.
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