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Abstract. Decentralization allows users to regain freedom and con-
trol over their digital life. As a global shared data space, the Linked
Data already supports decentralization. Data providers are free to pub-
lish their data on their web domains and users can execute decentral-
ized SPARQL queries over multiple data sources. However, decentral-
ization makes query processing challenging, raising well-known problems
of source discovery, answer completeness and performance. Existing ap-
proaches for decentralized SPARQL query processing raise issues related
to autonomy and answer completeness. In this paper, we propose Qasino,
an original approach for querying decentralized RDF data that targets
both answer completeness, and source autonomy. Qasino is based on a
decentralized random service that allows for discovering all relevant data
sources. To speed up query processing, sources executing similar queries
cooperate by sharing their intermediate results. Our experimental re-
sults demonstrate that collaborative query processing can significantly
speedup query processing in a decentralized setup.

Keywords: Decentralized Data Management, SPARQL query processing, sources
discovery

1 Introduction

Decentralization is a common way to give users back control over their digital life.
As a global shared data space, the Linked Data already supports decentraliza-
tion. Data providers are free to publish their data on their web domains and users
can execute decentralized SPARQL queries over multiple data sources. However,
decentralization introduces challenging problems for query processing related to
well-known problems of source discovery, completeness and performance. Dis-
covering all relevant sources for a query remains an issue. Existing federated
query engines assume the existence of a catalog [3,27]. Link traversal [12] crawls
links from a seed URI during query execution but cannot ensure that all rele-
vant sources are reachable from the seed. Semantic P2P data management [5]
? Corresponding author
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rebuild overlay networks on top of sources to allow efficient discovery. However,
P2P data management raises issues on autonomy, i.e. participants must agree
to participate in common tasks such as routing, indexing, and replication.

In this paper, we propose Qasino, an original approach for querying decen-
tralized RDF data that targets both answer completeness and sources autonomy.
Qasino relies on a decentralized random service ables to return a random partic-
ipant. Thanks to the random service, Qasino crawls the set of participants while
running a query. Crawling allows to discover both sources and similar running
queries. Similar queries collaborate by sharing queries intermediate results and
random draws. Collaboration allows to speed up queries termination while pro-
ducing complete results. In this paper, we propose the following contributions:

– A new model for decentralized SPARQL query processing.
– A collaborative Monte-Carlo SPARQL query execution algorithm that allows

collaborative discovery of datasources. If several participants execute similar
queries, then they will eventually meet several times during query execution
and share their results. Collaboration allows to speed up query termination
and provides probabilistic guarantee on answers completeness.

– A simulator to run experimentations with thousands of participants, which
goes beyond traditional decentralized query experimentations.

The paper is organized as follows. Section 2 describes the related works.
Section 3 presents the Qasino approach. Section 4 presents Qasino algorithms.
Section 5 presents experimental results. Section 6 concludes contributions and
presents future works.

2 Related Works

Decentralization allows users to store their RDF data where they want on the
Web. However, executing a SPARQL query over decentralized data requires to
discover all relevant data sources. Solving the discovery problem at the scale of
the Web while preserving sources autonomy is still an open issue.

The Solid project [19] promotes the vision of a decentralized web for social
web applications. In Solid, users store their data in personal online datastores
(pods). However, Solid does not describe how to run a query over a large-scale
network of pods.

Link traversal [12] allows to execute SPARQL queries directly on the Linked
Data resources, relying on URI dereferencing. Link traversal starts the query
execution from a seed URI provided by users and considers every URI appearing
in mappings as a new data source. Therefore, it is up to the user to know at
least one seed, and the link traversal is able to discover new sources during query
processing. Therefore, sources discovery is partially in charge of data consumers,
moreover, query answer completeness is defined according to the reachability
semantics [13].

Federated query engines [3, 27] allow data consumers to execute queries
over a catalog of data sources. It is up to the data consumers to provide this
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catalog. Building this catalog traditionally implies to collect the description of
all potential sources, which is again in charge of data consumers. The query
answer completeness is defined according to the set of sources contained in the
catalog.

Many systems rely on Distributed Hash Tables (DHT) such as P-Grid [1] or
GridVine [2] for sources discovery. However, DHT systems do not allow users
to choose where their data are stored, consistent hashing determine where data
should be stored. DHT can be used also just as a distributed catalog and data
remain located where users want as in the InterPlanetary File System (IPFS).
In this case, participants have to agree to participate to keybase routing and
store informations that do not belong to them.

Recently, unstructured P2P techniques have gained attention of Semantic
Web community as potential decentralized architectures for Linked Data man-
agement [4, 10, 11, 20, 26]. Existing approaches maintain a neighborhood for
each site. As a participant does not know where data are located, she floods the
network with her query [4]. However, this approach does not scale and hardly
delivers complete results. Flooding can be avoided with super-peer maintaining
routing indices as in [24]. Having super-peers in a network of nodes is possible
but they represent a point of failure which is a strong limitation to massive de-
ployment of distributed applications in nodes. Flooding can also be reduced with
spanning trees as in sensor networks [6]. A spanning tree reduces the flooding to
the number of nodes in the network. However, spanning trees are costly to main-
tain on large networks with heavy churn. The network traffic can be significantly
reduced using adapted replication strategies and random walks [18]. Flooding
can also be limited by using multiple overlays as in Semantic Overlay Network
(SON) or routing indices [5,7]. Participants are clustered in communities accord-
ing to their common interests. Queries are routed to the right community to be
executed. SON restricts the number of sources for a query. This supposes that
participants agree to compute this routing and maintain information that are
not directly relevant for executing their queries.

In both structured or unstructured P2P networks, solving the discovery prob-
lem requires participants to loose autonomy. Participants have to route all mes-
sages, not only those they want and they cannot choose data to host or to
replicate. In Qasino, we explore an original P2P approach that requires only
that participants accept to be discovered.

3 Qasino Approach and Models

In Qasino, we consider a community of participants. We aim to preserve two
properties: (i) Completeness: we aim to execute queries and get complete results
over all data stored by the community. (ii) Autonomy: participants only host
data they want and there is no routing. In this context, solving the discovery
problem is to guarantee that each participant can discover all other participants.
We consider a random abstract service able to return a random participant
among the community. Such random service is enough to enable discovery. This
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service can be implemented in a decentralized fashion relying on random peer
sampling techniques [14]. Consequently, participants only collaborate to return
a random node in the set of nodes. To build a query engine according to this
model, we follow a bottom-up query evaluation strategy [16]; sources description
are not available and the query engine discovers new sources incrementally and
terminates when all sources or a priori-decided proportion of sources have been
processed. The Qasino approach allows not only to discover new sources during
queries evaluation but also to discover other participants running similar queries.
In this case, queries can collaborate to speed up query termination.

3.1 Qasino Nodes Data Structures

We consider a community of participants as a set of n nodes, n is unknown
to participants. A node has a local data structure and a shared one defined as
follows.

Definition 1 (Local Structure). A node Ni has access to:
– n̂, a statistical estimator of the number of nodes.
– rand, a function generating independent and uniformly distributed random

variables from the set of nodes, i.e. each time the node calls rand(), it gets
a random node.

– Di, a local RDF dataset.
– Qi, a SPARQL query. For each triple pattern tp of Qi, Qi[tp] stores the set

of mappings of the variables of tp.

A set of nodes {N1, . . . Nn} defines a virtual dataset D defined as D =
∪n

i=1Ni.Di, i.e. D is the union of local RDF datasets. For simplicity, in this
work we suppose that Di is immutable and a node executes only one SPARQL
query, this can be easily extended to a set of queries.

Definition 2 (Remote Interface). A node Ni exposes to other nodes:
– J·K, evaluation function as defined in [25], i.e. for a triple pattern tp, Ni.JtpK

returns the set of mappings for the variables of tp that match the dataset Di.
– E(tp), a boolean function that returns true if Ni accepts to collaborate on the

evaluation of tp, with tp ∈ Qi.

3.2 Qasino Query Processing Model

Each node maintains a local RDF data and can evaluate, at least, a triple pat-
tern query. Query processing follows a bottom-up query evaluation strategy [16].
This strategy does not assume source descriptions to be available before query
execution and computes results in a bottom-up fashion. A SPARQL query Qi

at a node Ni is processed in the following steps: (1) Built a left-tree query plan
of Qi. To determine the order of the evaluation of triple patterns, the cardinal-
ity of each triple pattern tp in Q is estimated using variable counting [29]. The
most selective triple pattern is evaluated first. (2) Evaluate Q’s triple patterns
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over Di, the local dataset of Ni (Qi[tp] ← Ni.JtpK). The evaluation relies on
the pushed-based symmetric hash join operator [16], i.e. results are produced as
soon as input tuples are available and input tuples can arrive on all inputs in
any order. (3) Discover a source randomly Nj , among the nodes. Nj evaluates
Q’s triple patterns, as detailed in the different algorithms in the next sections.
(4) Receive partial results from Nj (only if Nj has results), add partial results to
hash table of the corresponding triple pattern and produce results (if available).
In Qasino, source discovery is an integral part of the query processing. Sources
are discovered online, and query results are produced incrementally.

Problem statement: Given a set of nodes {N1, . . . Nn}, our objective is to
define a query execution function execute that ensures query termination and
answer completeness. ∀Ni ∈ {N1, . . . Nn}, we expect:

(i) Termination Ni.execute eventually returns.
(ii) Completeness After a node Ni has terminated, Qi[tp] = JQiKD, i.e. Qi

is evaluated over the virtual dataset D.
As nodes can only discover sources randomly, this makes the respect of both

properties impossible. Among existing strategies for randomized algorithms are
Las Vegas and Monte-Carlo algorithms. Las Vegas algorithms where the termi-
nation property is weakened to termination with probability 1, i.e. Ni.execute
returns with probability 1. Monte-Carlo algorithms ensure termination but com-
pleteness is replaced by the following guarantee: Ni.execute returns JQiKD with
some probability ρ > 0 independent of n. Consequently, two termination con-
ditions are possible: (1) All nodes are discovered, (2) A proportion p of nodes
is discovered. Termination conditions impact the query completeness, i.e. eval-
uating the query over all nodes ensures answer completeness, this is not always
the case for the second condition. Moreover, termination conditions impact the
complexity of steps 3 and 4 of query processing.

4 Algorithms
In the following, we detail existing strategies for randomized algorithms and we
propose a new collaborative randomize algorithm for SPARQL query processing.
The proposed algorithm allows to speed up query termination while preserving
the proportion of discovered nodes.
4.1 Discover All Nodes: Las Vegas algorithm

Algorithm 1: Las Vegas SPARQL engine
Data: Vi ← {Ni}: Set of visited nodes

1 Function Ni.execute():
2 while |Vi| < n̂ do
3 let Nj ← rand()
4 if Nj /∈ Vi then
5 foreach tp ∈ Qi do
6 Qi[tp]← Qi[tp] ∪Nj .JtpK

7 Vi ← Vi ∪ {Nj}
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Algorithm 1 presents a Las Vegas algorithm for evaluating a SPARQL query
Qi. For simplicity, we make the hypothesis that each node executes only one
SPARQL query. Thanks to the random service, it may discover a new node at
each iteration. If the discovered node has relevant data for the query, the query
execution will produce new query results. Assuming the estimator n̂ returns the
exact number of nodes, consequently, it always produces correct and complete re-
sults, but its running time complexity is non-deterministic and it only terminates
with probability 1. The main issue is to evaluate how many draws, in average,
are necessary to get complete results. Such problem is similar to the coupon col-
lector problem [22]. The average complexity is:

∑n
i=1

n
i = n× (ln(n) +γ) +O(1)

iterations, where γ ≈ 0.577 is the Euler–Mascheroni constant.
To illustrate, consider n = 1000 nodes, a node executing a query Qi should

try around 7484 random call to rand() in order to discover all nodes.
This algorithm raises several issues: (i) It requires that the exact number of

nodes is known and immutable, which is not realistic in a decentralized setting.
If n is overestimated by n̂, then the algorithm does not terminate. Conversely, if
n is underestimated by n̂, then the results may be incomplete. (ii) As illustrated,
discovering all the nodes can be very costly, especially discovering the last missing
nodes.

4.2 Discover a Proportion of Nodes: A Monte-Carlo Algorithm

Algorithm 2: Monte-Carlo SPARQL engine
Require: p < 1: Expected proportion of sources observed during a run
Data: Vi ← {Ni}: Set of visited nodes

1 Function Ni.execute(p):
2 for k from 1 to n̂× ln

(
1

1−p

)
do

3 let Nj ← rand()
4 if Nj /∈ Vi then
5 foreach tp ∈ Qi do
6 Qi[tp]← Qi[tp] ∪Nj .JtpK

7 Vi ← Vi ∪ {Nj}

Instead of discovering all the nodes, a user can decide to stop the explo-
ration after a given number k of random draws, for example 2n draws, hoping
to discover as many sources as possible. Algorithm 2 describes a Monte-Carlo
algorithm for executing a query Qi, based on this strategy.

Ideally, the user would decide to explore a proportion p of the nodes, for
example only 99% of nodes to terminate. The main issue is to calibrate k such
that, in average, the algorithm will discover p × n sources. Surprisingly, for a
given p, the necessary number of draws is linear in n, as we will now detail.

Let us first compute the expected proportion un(k) of the sources that have
yet to be discovered after k draws, among n sources. Initially, no source has been
discovered, so un(0) = 1. During the kth draw, a new source is discovered with
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probability 1
nun(k), so un(k + 1) = un(k) − 1

nun(k) = n−1
n un(k). The solution

to this geometric progression is un(k) =
(

n−1
n

)k.
The number kmax of random participants that must be drawn in average to

see a proportion p of the sources verifies the equation 1− un(kmax) = p, that is
1− p =

(
n−1

n

)kmax . This equation can be rewritten as kmax = ln(1−p)
ln( n−1

n ) = ln( 1
1−p )

ln( n
n−1 ) .

By the mean value theorem applied to function ln, there is an x ∈ [n−1;n] such
that ln

(
n

n−1

)
= 1

x . In other words, kmax = x ln
(

1
1−p

)
. n ln

(
1

1−p

)
, which

gives the number of iterations in Algorithm 2.
To illustrate, consider a set of n = 1000 nodes and p = 99%, then Algorithm 2

requires 1000∗(ln(1/1−0.99)) = 4605 random draws to terminate. Compared to
the Las Vegas algorithm, for a given p, the runtime complexity of Algorithm 2 is
linear in n, compared to O(n ln(n)) for Algorithm 1. Moreover, the Monte-Carlo
algorithm supports that n is approximated.

4.3 New Monte-Carlo algorithm for Collaborative Query Processing

The random service allows to discover not only data but also other nodes running
similar queries. Therefore, it is possible for queries to collaborate by sharing in-
termediate results and random draws. This allows to speed up query termination
while preserving the proportion of discovered nodes.
Algorithm 3: Collaborative Monte-Carlo SPARQL engine
Require: p < 1: Expected proportion of sources observed during a run
Data: Vi[tp]← {Ni}: set of visited nodes by a node searching tp
ki[tp][j]: number of iterations by the node Nj searching tp.

1 Function Ni.execute(p):
2 while ∃tp ∈ Qi :

∑
l ki[tp][l] < n̂× ln

(
1

1−p

)
do

3 let Nj ← rand()
4 foreach tp ∈ Qi do atomically
5 ki[tp][i]++
6 if Nj .E(tp) then
7 Ni.sync(tp, Nj .sync(tp, 〈Qi[tp],Vi[tp], ki[tp]〉))
8 else if Nj /∈ Vi[tp] then
9 Qi[tp]← Qi[tp] ∪Nj .JtpK

10 Vi[tp]← Vi[tp] ∪ {Nj}

11 Function Nj .sync(tp, 〈Mi, Vi, ki〉):
12 Qj [tp]← Qj [tp] ∪Mi

13 Vj [tp]← Vj [tp] ∪ Vi

14 kj [tp]← max(kj [tp], ki)
15 return 〈Qj [tp],Vj [tp], kj [tp]〉

Algorithm 3 extends Algorithm 2 to handle collaborative query processing.
Compared to Algorithm 2, the local variables Qi[tp], Vi and ki are replaced in Al-
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Encode µ1 = {x→ 7, y → 9} µ2 = {x→ 4, y → 5}

|cells| = 4

count :

µ1

µ2

µ2 µ1

2 0 1 1

KeySum:
HashSum:
Count:

µ1 ⊕ µ2
H1(µ1)⊕H1(µ2)
2

0
0
0

µ2
H2(µ2)
1

µ1
H2(µ1)
1

H1(µ1)

H2(µ1)
H1(µ2)

H2(µ2)

(a) Computing IBLT1 for N1.Q1[?x P1 ?y]

Encode µ2 = {x→ 4, y → 5} µ3 = {x→ 1, y → 2}

|cells| = 4

count :

µ2 µ3 µ2 µ3

1 1 1 1

KeySum:
HashSum:
Count:

µ2
H1(µ2)
1

µ3
H1(µ3)
1

µ2
H2(µ2)
1

µ3
H2(µ3)
1

H1(µ2) H2(µ2)H1(µ3)
H2(µ3)

(b) Computing IBLT2 for N2.Q2[?x P1 ?y]

2) Difference: IBLT2 - IBLT1, where W ⊕W = 0

KeySum:
HashSum:
Count:

µ1
H1(µ1)
-1

µ3
H1(µ3)
1

0
0
0

µ3 ⊕ µ1
H2(µ3)⊕H2(µ1)
0

3) Decode(IBLT2 − IBLT1): D2−1 = {µ1} D1−2 = {µ3}

(c) Decoding all µ from the set difference IBLT2 \ IBLT1

Fig. 1: Computing N1.Q1[?x P1 ?y] ∪ N2.Q2[?x P1 ?y] with IBLTs.

gorithm 3 by shared state-based Commutative Replicated Data Types (CRDT)
data structures [28], i.e. two grow-only sets Qi[tp], Vi[tp] and a counter ki[tp]
per triple pattern tp ∈ Qi. CRDT data structures allow shard data to eventually
converge towards shared state without conflicts. In Algorithm 3, counters even-
tually converge towards the global number of increments, and CRDT grow-only
sets eventually converge towards the union of sets. In order to collaborate on
the computation of a triple pattern tp, each node exposes an additional function
sync(tp, 〈M, k, V 〉) that allows pairs of nodes to synchronize their mappings and
counters.

Shared counters. For each triple pattern tp ∈ Qi, a node Ni maintains
an associative array ki[tp][]. ki[tp][j] represents the number of draws that Nj

has participated for the computation of the triple tp, as known by Ni. ki[tp][i]
represents the number of draws that Ni has participated for the computation
of tp. Each time Ni draws a random source, it increments its own number of
random draws. For instance, k1[tp] = [1 7→ 3; 4 7→ 42] means that N1 has done
3 draws from the computation of tp and it knows that N4 has participated to
42 draws for the computation of tp. If a random node Nj accepts to collaborate
with Ni on the evaluation of tp, they merge their shared counter by taking the
max value for each cell. For example, if N2.k2[tp] = [1 7→ 1; 2 7→ 73], then k1[tp]
and k2[tp] are updated with [1 7→ 3; 2 7→ 73; 4 7→ 42]. The sum of this vector,
3 + 73 + 42 is the number of random draws done by nodes N1, N2 and N4 to
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obtain the triple pattern in Q1[tp]. More precisely, N1.Q1[tp] contains the results
obtained by N1 in 3 draws, N2 in 73 draws and N4 in 42 draw, i.e. N1 takes
advantages of visited nodes by N2 and N4. Consequently, the algorithm stops
when this sum reaches kmax. If we consider q nodes running the same query Q,
then the lower bound to terminate for one node is in average n. ln(1/(1− p))/q.
As we can see, collaboration between q nodes can divide by q the number of
random draws required to terminate.

Synchronizing sets of mappings. Synchronizing Qi[tp] (line 7) between
nodes may become expansive when collaborative queries meet several times.
Suppose two nodes Ni and Nj running queries that contain the same triple
pattern tp. The sets of mappings of variables of tp Ni.Qi[tp] and Nj .Qj [tp] could
be large as the query progresses, with potentially many duplicated mappings.
This large number of mappings increases drastically the communication cost
of sets synchronization. It is more efficient to exchange only missing mappings
between nodes, especially, as nodes meet several time the set difference between
the two sets of mappings gets smaller. Ideally, the communication between nodes
should only depends on the size of the set difference rather than on the size of
sets. In other words, considering two sets of mappingsMi andMj where the set
difference is d = |Mi \Mj |+ |Mj \Mi|, computingMi ∪Mj depends only on
O(d) elements. For efficient computation of set difference, we use a probabilistic
data structure called Invertible Bloom Lookup Tables (IBLTs) [8, 9]. Figure 1
illustrates how the set difference is computed using two IBLTs. Consider two
nodes N1 and N2 running the same triple pattern tp : ?x p1 ?y. The evaluation
of tp is the set {µ1, µ2} on the node N1 with {µ1 = {x→ 7, y → 9}, µ2 = {x→
4, y → 5}} and {µ2, µ3} on the node N2 with {µ2 = {x→ 4, y → 5}, µ3 = {x→
1, y → 2}}. Let H1 and H2 be two different hash functions. Figure 1a shows
how N1 computes IBLT1 designed to handle 4 differences (d=4). µ1 (then µ2) is
hashed with H1 and H2, then assigned into two different cells. A cell is composed
of three kinds of sum; keysum is the XOR sum of the keys (µ1⊕µ2), HashSum is
the XOR sum of the hashed keys (H1(µ1)⊕H2(µ2)), and count is the number of
elements assigned to the cell. When N1 meets N2, N1 sends IBLT1 to N2. Then
N2 computes the set difference IBLT2 \ IBLT1 resulting in two different sets of
mappings: (1) D2−1 = {µ3} which is the missing set of mappings for node N1
(2) and, D1−2 = {µ1} which is the missing set of mappings for node N2. Then,
N2 can send back the response to N1 containing D2−1.

Sending only the difference reduces considerably the traffic between collabo-
rative nodes. However, as IBLTs’ is a probabilistic structure, its accuracy depends
on the number of cells in the IBLT compared to the real number of differences
between the two sets. If the number of cells is too small, then the IBLT cannot
compute the missing mappings. Concretely, the decode operation will fail, so the
exchange of IBLTs is useless. In this case, the node sends its set of mappings.
In our context, as for cooperative nodes the difference gets smaller while the
query progresses, IBLTs are eventually efficient as demonstrated empirically in
the experimental study.
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5 Experimental Study

We want to empirically answer the following questions: (1) Does the random ser-
vice generate independent and uniformly distributed random variables? (2) How
does visiting only a proportion of the sources impact queries answer complete-
ness? (3) What is the impact of the number of collaborating queries on the
number of iterations? (4) What is the impact of Invertible Bloom Lookup Ta-
bles (IBLTs) on traffic?

We implemented different software to achieve the experimental study. The
code and experiments are available in the companion website3.

5.1 Implementations

Query engines The Qasino query engine is built on top of Apache Jena 4.
We implemented a new customized symmetric hash join operator that integrates
IBLTs.

Qasino simulator Decentralization raises the problem of running experi-
ments with thousands of nodes. Deploying thousands of endpoints connecting,
them with structured or unstructured network, measuring the traffic and the
number of calls is intractable with a traditional experimental setup in federated
query processing. To handle this issue, we deploy Qasino in PeerSim [21] to run
experiments. PeerSim is configured to run in “cycles”. In one cycle, each node exe-
cutes synchronously several iterations of its execute function as described in the
algorithms: Las Vegas, Monte-Carlo and Monte-Carlo collaborative. Therefore,
we measure how many cycles (iterations) are necessary to get complete answers
for queries and how many cycles are necessary to terminate, i.e. it is possible to
get a query complete answers before the termination of the algorithms.

Random service Different approaches exist for implementing a decentral-
ized random service [15] and for network size estimators [17]. We use Spray [23]
because Spray integrates a network size estimator and implements the random
service on an unstructured network. Each Spray node has a logarithmic subset
of the whole network as direct neighbors.

5.2 Experimental setup

Machine We run experiment on a HPCS computer Xeon(R) CPU
E5-2680v2@2.80GHz with 160 cores and 130GB RAM.

Queries and dataset As the size of the dataset does not impact the num-
ber of cycles necessary for terminating a query, we use the dataset Diseasome5.
We generated 100 random queries from the dataset using PATH and STAR
shaped templates with two to eight triple patterns instantiated with random
values from the dataset. The triple patterns of these 100 queries selects 70417
3 https://github.com/folkvir/qasino-simulation
4 https://jena.apache.org
5 https://old.datahub.io/dataset/fu-berlin-diseasome
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tp1 tp2 tp3 tp4 tp5 tp6 tp7 BN IR Results
Q17 1 1 2 1
Q22 1 4213 4214 1
Q54 1 2889 1284 1284 5458 1
Q73 2 4213 2889 9670 1284 1284 19342 1
Q87 1 1 1 1 1 1 4 10 4

Fig. 2: Five queries with the number of Triples, cardinalities and results per query

triples over the 91182 triples of the whole Diseasome dataset. We distributed
uniformly those 70417 triples over 1000 simulated nodes, each node stores 70 or
71 triples. We extracted five different queries presented in Table 2. These queries
are varying in the number of triple patterns (from 2 to 7) and in the cardinality of
triple patterns, evaluated over the dataset. Columns NBIR and Results present
the number of intermediate results, and the number of final results, respectively.

(a) Las Vegas Evaluation (b) Monte-Carlo Evaluation

Fig. 3: Random Evaluation

5.3 Experimental results

Does the random service generating independent and uniformly distributed ran-
dom variables? To answer this question, we compare the theoretical complexity
(dashed line) with the empirical complexity (solid line). Figure 3a presents the
number of random calls for varying number of nodes for the Las Vegas Algo-
rithm. Compared to n(ln(n) + γ), as computed in section 4.1, the experimental
values denote a slight deterioration of the complexity around 5%.

Figure 3b presents the proportion of visited nodes for different values of p
and n = 1000. As expected the proportion of visited nodes is close to p.

Consequently, the experimentation confirms that the implementation of Qasino
respects the theoretical model.

How does visiting only a proportion of the sources impact queries answer com-
pleteness? We run several experimentations with the five queries of Table 2 with
the Las Vegas algorithm. Only one node executes a query during an experimen-
tation. Figure 4 presents the average of 100 executions per query. The stop bar
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Fig. 4: The impact of the proportion of visited nodes p on queries answer com-
pleteness

chart represents the average number of iterations necessary to terminate the
query with standard deviation. The complete bar chart represents the average
number of iterations required to obtain complete result per query. As we can see,
the number of iterations to terminate is higher than the number of iterations
to get complete results. Moreover, for a proportion of visited sources equal to
p = 0.99, the Monte-Carlo algorithm terminates with complete results in less
than 4500 iterations.

(a) Q87 (b) Q73

Fig. 5: Collaborative Monte-Carlo algorithm, p = 0.97 for different number of
collaborative queries

What is the impact of the number of collaborating queries on the number of
iterations? We run several experimentations with the five queries of Table 2 with
the collaborative Monte-Carlo algorithm in a network of 1000 nodes, p = 0.97
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(a) Traffic Q87 (b) Traffic Q73

Fig. 6: The impact of IBLTs on traffic with the size difference of IBLTs are
calibrated for d = 500 with 3 hash functions

with a perfect n = 1000. We repeat the experiment for different number of
collaborative queries. All nodes run the same query. Figure 5 presents the average
results for the query Q73 and Q87 for 100 runs. The top bar chart represents
the average number of runs that terminate with complete results. The bottom
bar chart presents the number of random draws to terminate. As we can see,
the number of random draws to terminate decreases quickly as the number of
similar queries increases, while the completeness of queries remains stable. This
demonstrates the effectiveness of collaboration to speed up query execution.
What is the impact of Invertible Bloom Lookup Tables (IBLTs) on traffic? We
analyze the traffic during query processing in terms of the number of transferred
triples. We run the five queries 100 times with the the collaborative Monte-
Carlo algorithm in a network of 1000 nodes, p = 097 with a perfect n = 1000.
All node run the same query. We repeat the experiment for different number of
collaborative queries. the same query. The IBLTs are configured for a number
of differences < 500. Figure 6a shows the results for the query Q87. As the
number of results per triple pattern is low (<500), the IBLT ensures optimal
transfer, i.e. the number of transferred triples remains the same even if more
queries collaborate. Figure 6b shows the results for the query Q73. As the query
Q73 has much more intermediate results, IBLTs configured to handle only 500
differences can fail and trigger complete transfer between 2 collaborative queries.
As collaborative queries eventually converge, IBLTs are eventually efficient and
we can observe that the number of transferred triples remain stable after 50
collaboratives queries.

6 Conclusion

In this paper, we proposed Qasino, an original decentralized collaborative model
for discovering RDF datasources and executing SPARQL queries. In contraste to
traditional P2P models, Qasino respects the autonomy of participants. Qasino
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is based on P2P model where the cost of discovery is not shared by default and
queries execution deliver complete results. Qasino approach allows to discover
relevant sources, similar running queries and share intermediate results. With
such collaborative query processing, participants only store data they want and
therefore, preserve their autonomy. This work opens several perspectives. First,
in the model, we relied on the network size estimator based on the random ser-
vice. The knowledge of visited nodes and the number of random draws should
allow to build a termination strategy that is independent of the size of the net-
work. Second, we applied a simple strategy with IBLTs to synchronize queries,
we can improve this strategy for better optimization of traffic. Finally, decentral-
ization raises issues on completeness, autonomy and performance. We conjecture
that only 2 of these 3 properties can be achieved in a system.
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