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Multi-Robot Task Sequencing & Automatic Path
planning for Cycle Time Optimization: Application

for Car Production Line
Hicham Touzani1,2, Hicham Hadj-Abdelkader1, Nicolas Séguy1, and Samia Bouchafa1

Abstract—Industrial robots are programmed to repeat a se-
quence of well-defined tasks, e.g. deburring, cutting and welding.
The production cycle time is directly influenced by the task
order as well as the way trajectories linking this tasks are
generated. In this paper, we present an optimization approach
that minimizes the production time as well as the overall move-
ments duration of the robots. We propose a fast algorithm that
generates a sequenced near-optimal solution for Multi-Robotic
Task Sequencing Problem. We model the problem in the form of
a new min (sum-max) Multiple Generalized Traveling Salesman
Problem ’min(sum-max) MGTSP’ model. Near-optimal solutions
are obtained to automatically minimize cycle time in collision-
free path. The originality of our method lies in its flexibility and
ability to be integrated into industrial processes. In this study, we
perform a double optimization in both the task and configuration
space. Also, the proposed algorithm is able to automatically plan
a collision-free trajectory between two robots’ configurations
by generating relevant via points which minimizes movements
duration. Comparing to other approaches, experiment reveal
positive results in terms of efficiency and demonstrate the ability
of this method to be integrated into existing industrial software.

Index Terms—Industrial Robots, Task Sequencing, Path Plan-
ning, Optimization, Intelligent and Flexible Manufacturing

I. INTRODUCTION

INDUSTRIAL robots are massively used in automotive
manufacturing well ahead of other industries such as elec-

tronics or food industry. They are among the most efficient
machines in terms of reliability, versatility as well as profitabil-
ity. A large majority of robot applications in the automotive
industry consist in performing a set of welding points on
multiple cells. This process often presents many optimization
stages. For instance, in a car body assembly line, several robots
are required to carry out welding sequences simultaneously
on the same vehicle (see Fig.1). During the design of the line,
assigning the welding points to the robots is a complex, costly
expensive and time consuming task. The development phase
may require 12 people during 8 months to reach the desired
specifications.
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Fig. 1. Automotive production line with several robots.
Segula Technologies / PSA line production.

Automatic tools can be helpful to reduce the installation
and commissioning times, the production cycle time and also
to improve the process implementation feasibility.

In this paper, our main focus is on reducing cycle time
while keeping a reasonable robot total movement duration.
Optimizing production cycle time can lead to real productivity
gains. The relationship between cycle time and the number of
products is direct.

The task sequencing problem groups several NP-hard prob-
lems together [1] such as determining the optimal sequence
through different targets and determining the path with the
minimum duration (respecting the constraints of the robot)
without collision. Thus, we have divided the problem into
sub-problems based on essential steps performed iteratively.
Indeed, task sequencing is a phase which often remains
manual but could take benefits from optimization especially
with different additional robotics factors (Inverse Kinematics
’IK’, number of robots, bases location, etc.) see Fig.2. The
automation of multi-task sequencing integrating IK solutions
in a collision-free way can be considered as a starting point
for optimizing the installation phase of the production line.
Focusing on this step will undoubtedly lead to real productivity
gains.

Our scientific problematic include both ”task sequencing”
and ”production scheduling” problems, since it covers
how to assign work evenly between robots to increase the
overall flow. In addition, the solution has been developed
to be integrated into an existing industrial simulation software.
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Fig. 2. Task sequencing solution for two robots.

Due to the complexity of the problem as a whole, we
have subdivided it into well-defined objectives and consider
some assumptions: the different possible configurations are
solved beforehand by a solver, the duration of the task is
identical in all points, and the collisions between robots are
neglected at first glance. Determining a solution that does not
initially include the robot-robot collision constraint (valid for
the collision of obstacles) is essential in different aspects.
First, it is necessary to model and validate the approach in
a robot-robot collision-free case to test the performance of the
solution. Second, this necessary step is essential to prepare a
better integration of an additional step (industrial interlocking
system). Third, in the best case, the first initial solution can
be directly a global solution without collision. Finally, the
velocity profiles can be readjusted to avoid collisions while
keeping a high quality solution.

The paper is structured as follows. Section II presents state
of the art existing solutions for task sequencing and path
planning. Problem definition and formulation under a robotic
framework, as well as proposed approaches are studied in
section III. Section IV discusses the implemented algorithms.
Finally, section V presents and comments the obtained results
and gives some conclusions and perspectives for future studies.

II. RELATED WORKS

There are two main methods for programming robots in
an industrial environment: Online and Offline programming.
For both methods, the solution depends on the expertise of the
engineer. A significant number of research and industrial tools
have been proposed to solve the task sequencing problem.
However, most of existing approaches address only partially
the problem with a limited performance. In addition, they did
not provide automatic optimal solutions (implementable in an
industry context) for this problem by including all the robotic
factors [2]. Indeed, robotic softwares like Delmia, RobCad,
Roboguide, etc. focus mainly on optimizing motion planning
and neglect the task sequencing problem. The solutions devel-
oped today are not able to automatically generate a reliable
optimal sequence and even less with additional robotic factors.

A. Task sequencing problem

The order of the task sequence to be performed is often
determined manually in different industrial applications. The

analogy between finding an optimal sequence and the well-
known Travelling Salesman Problem ’TSP’[3] has often been
established considering the similarity between the two prob-
lems. The goal of the TSP is to find an optimal sequence
through a set of points and given distances such that each
point is visited exactly once. Several efforts have been made
to resolve the TSP problem, see comprehensive surveys [4]
[5]. Deterministic approaches gives an exact solution to the
problem, while a non-deterministic approach tries to find near-
optimal solution.

By analogy to robotics, in TSP the metric to minimize is
time rather than distance. The problem may seems similar
to the TSP at first glance, but it is not completely identical
since several robotics constraints must be considered like: the
number of robots, IK, bases locations, obstacle avoidance, etc.
All these factors strongly increase the search space and make
the exact methods less efficient and only limited to small
instances [1]. Multiple efficient heuristic solutions have been
developed for this purpose to solve this problem.

In this article, we only refer to the research closest to the
originally cited problem. Among the first to have established
the relation between TSP-like problems and robotics one can
cite Dubousky et al. [6]. Authors have proposed an approach
based on temporal movements in order to deal with point-to-
point tasks.

There are other TSP-based problems that allow for a closer
modeling to the problem. In order to integrate the robot
configurations, it is more realistic to formulate the problem as
a set of points in each task. This problem refers to Generalized
Traveling Salesman Problem ’GTSP’ [7]. One of the first
studies to establish the link between GTSP and robotics is
[8], where a multi-goal path planning problem is presented.
Each task is a set of IK solutions, and the goal is to find
the optimal sequence at minimum cost visiting only one
point of each group, see [9]. In [10], a generalized approach
based on Genetic Algorithm ’GA’ for manipulating a single
robot has been proposed. This research involves the IK of
the manipulator. Suárez-Ruiz et al. [11] have proposed a fast
algorithm to solve the GTSP problem for a single robot with
several targets in a 2D plane.

Given the complexity of the tasks to be performed in the
automotive industry, one single robot cannot accomplish them
in a limited workspace and time. It is then necessary to carry
out an optimization involving several robots.

In a robotic context, several research may seem similar
to our main issue such as sequential assembly operations
problems [12][13]. The main difference is that these studies
consider a logical constraint between operations and are often
limited to a small number of instances (robots & operations).
Spensieri et al. [14] have developed an iterative approach
to solve min-max Multiple Generalized Traveling Salesman
Problem ’(min-max) MGTSP’ and have planned robots trajec-
tories in a collision-free way. This type of formulation does
not fully cover the problem considering the different above-
cited robotics factors. In general, two separate formulations
of MTSP exist in the literature. The first approach minimizes
the total cost of all agents (min-sum MTSP) and the second
one minimizes the cost of the slowest agent (min-max MTSP).
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Namely, the majority of cited approaches considers the cost
to be minimized equal to the total duration of the sequences
(min-sum) or the duration of the longest tour (min-max).
However, in this paper, we intend to go a step further. The
total duration and the duration of the robot that has the longest
movement duration to perform one sequence of tasks must be
considered and optimized simultaneously in order to have a
realistic balanced workload while minimizing the cycle time.

B. Automatic path planning

Path planning can be performed in the task or configuration
space to find a collision-free path. The complexity is expo-
nential with respect to different robotic factors, as mentioned
above. For that purpose, heuristic algorithms that sacrifice
completeness for practical effectiveness, can be investigated.

Optimization of parameters can be established by focusing
on the dynamics and kinematics of the robot considering
Kinodynamic constraints such as acceleration limits, joint
speeds, etc. We do not focus on this aspect since we consider
that the majority of industrial robots already have optimized
integrated controllers. The other aspect is to calculate an
optimal path that the robot must follow by avoiding collisions
in the environment. The robot can move through several via
points between the start and end points. These via points can
be chosen in different ways while avoiding obstacles and their
choice has a direct impact on the cycle time.

Wurm et al. [15] have proposed an approach to generate
an obstacle avoidance between several robots based on the
Voronoi diagram. However, this approach is difficult to be
applied to large-scale problems. The authors in [16] have
planned the trajectory of an end effector using the GA.
Xidias et al. [17] have studied the problem of determining
the optimal collision-free trajectory by avoiding obstacles, one
of the limitations of such an approach is that the considered
environment is only 2D. The authors in [18] have used an
approach allowing to generate safe via points around the
obstacle in Cartesian space for a single robot in order to reduce
the computational effort, but this method present limitations in
crowed spaces for several robots taking into account additional
factors. Sampling-based methods, especially the Probabilistic
RoadMap ’PRM’ and Rapidly exploring Random Tree ’RRT’
algorithms, are considered to be the current state of the art for
planning a collision-free trajectory in geometrically complex
environments. PRM is a random sampling of configurations in
Cspace. A sample is rejected if it is in collision. These samples
are then connected to each other forming a roadmap. Finally,
the optimal path is calculated by graph-based methods. On
the other hand, RRT iteratively builds a tree by expanding it
to a randomly sampled configuration respecting the associated
constraints. We consider that PRM is more adapted to our
application since we will be able to reuse the constructed graph
to re-plan different trajectories in the same robotic cell. In
contrast, RRT is more suitable for single query applications.
It is true that the research mentioned above shows promising
results but very few of them consider realistic path planning for
multi-robotic aspect and only use reduced models which do not
represent the real behavior of the robot in a 3D environment.

To overcome these limitations and make our application as
realistic as possible, we consider a multi-robotic cell by taking
into account the entire structure of the robot in the path
planning. The path is generated in the configuration space
Cspace since our criterion is trajectory movement duration
while considering the robot’s limit joints. We also use an
existing industrial simulation software Roboguide capable of
managing the real controllers of the robot and thus generating
an almost real trajectory in CAD environments.

III. PROBLEM DESCRIPTION AND FORMULATION

In order to solve the problem discussed above, we propose
to model the problem in the form of the new min (sum-max)
MGTSP. We consider n targets {p1, p2, .., pi, .., pn} which must
be assigned to a set of N robots R= {r1,r2, ...,rk, ...,rN}. Each
target i must be visited once by one of the robots. Each robot rk
has a set of possible configurations m for each target. Every
robot has a starting position and configuration prk

0 and Jrk
0 .

The robots start and return to their same starting point and
configuration. One point must be assigned to at least one robot.
Initially, the objective is to simultaneously optimize the total
cost and the maximum cost traversed by the robots in the task
space. Note that the input data come from points reachable
by all robots (to test the performance of the algorithm in
the worst case). Then, starting from the determined order
of the sequence, we perform an other optimization in the
configuration space Cspace. So, our problem can be formalized
as:

Input: a set of n targets Data = {p1, p2, .., pi, .., pn} where
each pi is associated with a position (xi,yi,zi) and orienta-

tion (Wi,Pi,Ri).
a set of IK for every robot in every point:
Jrk

pi = {J
rk
1 ,Jrk

2 , ...,Jrk
j , ...,J

rk
m }

with Jrk
j = {θ1,θ2,θ3,θ4,θ5,θ6}

a set of starting position & configuration:
Ipos = {pr1

0 , pr2
0 , ..., prN

0 } & Icon f ig = {Jr1
0 ,Jr2

0 , ...,JrN
0 }

Goal: find an optimal sequence in the task and configuration
space taking as a criterion the total movement duration and the
cycle time in collision-free way.

Targets and configurations can be represented in the form of
a complete and undirect graph G = (V,E) where V is the set
of vertices representing targets (or the sampled configurations
for the path planning) and E is the set of edges representing
distances (or time). It can be noted that this graph can be
formulated into a weighted graph where the weight is a cost
function C : E → R+. The cost function c(i, j) between two
points i and j, models the time required for the robot to move
from one task to another with a start configuration to the
following one. The problem is divided into three steps which
are performed iteratively:

Step 1: Calculation of a solution managing the assignment
of tasks and returns the sequence order for each robot as:

Srk
pos = {prk

0 ,s1,s2, ...,sn, prk
0 }

where si is the solution point of order i.
Step 2: Optimization of the total movements duration in

Cspace based on the solution from the previous step

Srk
con f ig = {J

rk
0 ,q1, ...,qn,J

rk
0 }
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where qi is the configuration solution of order i.
Step 3: Generation of K relevant via points V between the

configuration qi and qi+1 if a collision is present in the path
while minimizing robot movement:

Path{qi,qi+1} = {qi,V1,V2, ...,VK ,qi+1}

In order to ensure the quality of the solution, these three
steps are carried out iteratively. The quality of the initial
solution may be affected when adding more via points. For this
reason, the sequence is recalculated in step 1 when a collision
occurs. Please note that only the duration of the trajectory
presenting a collision is replaced by the new movement
duration (including new via points). Then, we recalculate the
configuration solutions in step 2 and check if there is a new
collision. These steps are repeated until there is no collision.

We define a binary variable δ
rk
(i, j) where the value indicates

whether the robot performs the next task or not. δ
rk
(i, j) = 1 if and

only if the robot rk moves from point i to point j, otherwise
0 which refers to the equation (1), the goal is to minimize the
sum of the costs of each robot and the cost of the robot that
have the longest movement duration.

The problem can be formulated mathematically as follows:

δk(i, j)
{

1, if the robot leaves from a point i to j
0,otherwise (1)

Crk = c(prk
0 ,s1)+

n−1

∑
i=1

(δ
rk
(i,i+1)c(si,si+1))+ c(sn−1, prk

0 ) (2)

Cminsum = min(
N

∑
k=1

Crk) (3)

Cminmax = min(max(Crk)) for every rk (4)

Equation (2) formulates the cost of a single robot rk. The
criterion objective is defined in equations (3) and (4).

IV. PROPOSED APPROACH

A comprehensive solution to the problem in robotics within
realistic deadlines and IT resources is a difficult task, espe-
cially for large instances. So, the proposed approach is based
on a non-deterministic GA due to the NP-hard nature of the
task sequencing problem. The GA algorithm simulates the
natural evolution process. The idea is to get a near-optimal
solution to solve the min (sum-max) MGTSP problem. Based
on the representation discussed in the previous section, the
proposed approach offers flexibility to evolve the algorithm
with other additional robotic factors. The proposed algorithm
operates on a set of solutions and uses GA mechanisms to
converge towards near-optimal solutions.

A. Step 1 - Algorithm development in task space

One of the essential factors influencing the quality of the
solution obtained from GA is the diversity of the research
space. Each chromosome is composed of a numeric vector
representing the number of targets to be visited by the robot.

Since the lth chromosome Chl consists of the target solution
to be visited for each robot, it is formulated as follows:

Chl = {Sr1
pos,S

r2
pos, ...,S

rN
pos}

Fig. 3. Example of representation of the chromosome for 3 robots.

We can note that the starting positions for each robot are
included in the representation in order to take into account the
task cost to reach the following target. For example, the case
of 10 targets and 3 robots as depicted in Fig.3, the first robot
will perform tasks 6, 7, 9, 10 and 6, the second robot will
perform tasks 1, 4, 8 and 1, and the third robot carry out the
tasks 2, 3, 5 and 2.

The initial population containing p chromosomes is ran-
domly generated in order to maintain the diversity of the
population which is expressed as follows:

Pop = {Ch1,Ch2, ...,Chp}

We propose to estimate the quality of the solution by
combining two criteria:
• Find the sequence for each robot while the total cost is

minimized.
• Require the robot that have the longest movement dura-

tion (longest tour) to perform one sequence of tasks to
be as short as possible.

Based on equations (2) and (3), the cost function can be
written as follow:

Cost = α.Cminsum +β .Cminmax (5)

Cminsum and Cminmax are the two criteria of the sequence
Chl . The coefficients α and β allow to promote a criterion
over the other.

The detail of this procedure is presented in Algorithm 1.

B. Step 2 - Algorithm development in configuration space
IK solutions for each robot can be presented in the form

of an undirect graph. This graph is characterized by a similar

Fig. 4. Chromosome coding for a problem of 4 targets and 4 possible
configurations in Cspace.
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Algorithm 1 Optimization in task space
Input: a set of n targets Data = {p1, p2, .., pi, .., pn}, a

set of starting position Ipos = {pr1
0 , pr2

0 , ..., prN
0 }

Output: A minimal cost cyclic Srk
pos with double objective

value
1: t← 0
2: Initialize α , β

3: Initialize parameters of GA
4: Generate an initial population Popt of chromosomes Ch
5: Evaluate fitness (cost function equation (5))
6: while termination condition not met do
7: Select individuals from Popt
8: Random selection of indexes to be mutated
9: Locally Mutate the solution of a single robot

10: Mutate robot solutions globally
11: Cross robot solutions
12: Re-evaluate fitness (cost function equation (5))
13: Popt+1← new individuals
14: t← t +1
15: end while
16: Return the best chromosome solution Chl and its corre-

sponding fitness value

structure of a Neural Network ’NN’ consisting of n layers
corresponding to the n points, each layer forms the possible
(realistic) configurations of the robot to reach a point pi in
the task space. It can be noted that the layers are classified
according to the results of Algorithm 1. The ”input layer” and
the ”output layer” are the starting configuration Jrk

0 since each
robot must return to its initial configuration. The weight of
NN can be given by the cost crk(qi,qi+1) required to move
from one configuration qi to another qi+1 in the Cspace.

We have developed a solution based on an industrial spec-
ification:
• A flexible approach dealing with a significant number of

IK solutions for multi-robot systems.
• An approach that converges in reasonable time to find a

near-optimal solution in the Cspace.
To better exploit the functionalities of the GA, the solution

has been formulated as a chromosome. Each gene of this
chromosome represents the number of the neuron referring
to a solution with a unique configuration of a point pi. Our
method is based on a modified genetic algorithm in order

Fig. 5. Generation of relevant via points process.

to visit each layer νi once in the Cspace. For instance, the
chromosome coding for a problem with four targets consisting
of four possible configurations is illustrated in the Fig.4. This
procedure is presented in Algorithm 2.
The choice of the metric for two given configurations qi and
qi+1 is an important criterion that has a direct impact on the
final solution. Given the complexity of determining the optimal
time between each edge of the graph, we consider the use
of approximate metric. The cost is approximated as follows
crk(q j

i ,q
j
i+1):

crk

(q j
i ,q

j
i+1)

= max
(
|qi+1−qi|

V j,rk
max

)
(6)

where V j,rk
max is the maximum joint velocity for joint j corre-

sponding to the robot rk.

Algorithm 2 Optimization in Cspace

Input: the best chromosome Chl calculated from the
Algorithm 1
A set of IK Jrk

pi for each robot in every position & starting
configuration Icon f ig

Output: A minimal cyclic cost Srk
con f ig

1: Initialize parameters of GA
2: Import the order of the solution Srk

pos given by algorithm
1

3: Split the configurations
4: Number the ordered configurations to create the neurons

of the neural network
5: Define the neural network with the given layers
6: Define chromosome representation
7: Optimize the total movement duration for a robot rk using

the modified GA bellow:
a: Generate an initial Pop′t respecting the order of NN

while termination condition not met
b: Select individuals from Pop′t
c: Cross configuration solutions
d: Evaluate fitness (total movements duration)
e: Pop′t+1← new individuals
f: t ′← t ′+1

end while
8: Return the best IK solution Srk

con f ig for each robot and its
corresponding fitness value

C. Step 3 - Algorithm development for path planning

The generation of new via-points between two tasks for a
robot rk is performed to avoid obstacles. This step consists of
two essential sub-steps:

The first step 3.1 generates a roadmap and finds the optimal
path using graph-based methods. Since we consider our indus-
trial application to be part of a multi-query problem, where
we have to define several trajectories in the same environment
(industrial cell), we have decided to use an approach based on
PRM. Having N robots r in a workcell, N graph construction
are needed to sample every configuration space Crk

space for
each robot. We have built a roadmap from Grk where the
vertices are configurations of Crk

f ree. The samples are randomly
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Fig. 6. Path planning process to generate relevant via points in configuration space (a) and its application in task space (b).

generated using a uniform distribution while respecting the
permitted configurations of each robot. It should be noted
that the obstacles have been amplified (safety zone) so that
the robot remains at a safe distance from the obstacle during
the avoidance. Then, we calculate the new collision-free path
including several configurations using graph-based algorithms
such as the well-known A*.

The path minimizing the duration of the movement is
obtained in Cspace including several configurations to avoid
the obstacle. In practice, the robot needs only a few via-
points to avoid an obstacle. Therefore, step 3.2 reduces the
number of configurations in this new path (from step 3.1). The
process (Fig.5) is done by randomly taking two configuration
points from the path and testing whether the trajectory between
these two configurations is free of collision and respects the
constraints (acceleration limits, maximum articulation speeds,
etc). The trajectory is shortcut when the latter conditions are
met. This means the intermediate points between these two
configurations are removed. When the previously mentioned
conditions are not met, two new configurations are randomly
taken from the path until the conditions are verified. After
shortcutting the path, a new path is obtained with a few neces-
sary configurations to avoid the obstacle. We then convert these
configuration points into Cartesian space (forward kinematics)
which determine the final via points (Fig.6).

V. RESULTS

In this section, the performance of the developed algorithms
has been assessed. The experiments focus on demonstrating
the ability of such algorithms to solve a real industrial problem
consisting of processing several welding points by multiple
robots sharing the same workspace.

The algorithms demonstrated their ability to generate a
point order for each robot. The latter considers the most
adapted configuration in every point in a collision-free way,
and minimizes the discussed optimization criteria. We ap-
plied our algorithms to a real industrial simulation software
ROBOGUIDE integrating the real robot controllers for reli-
able robot simulations. The six-axis Fanuc R-2000-iC/165F
manipulator robots were used for simulation on a PC powered
by a Core i7-9750H at 2.6 GHz and 32 GB of RAM. In

Fig. 7. Example of a solution proposed by the algorithm developed for
problem 4 (left) & the evolution of the cost function as a function of the
number of iterations (right).

addition, in order to manage collision information from the
CAD environment, a communication was established between
the algorithms coded in Python and the industrial software
via KAREL scripts. Furthermore, for the purpose of reducing
random fluctuations, more than one evaluation was performed
for the same problem. All simulations were executed in three-
dimensional (3D) space. Four problems have been studied,
named respectively problem 1, 2, 3 and 4, dealing with 10,
20, 30 tasks for three robots and 50 tasks for six robots.

Table 1 shows the parameters chosen for our experiments
as well as the movement duration for each robot. It should
be noted that if the selection and mutation value (local or
global) are very high, the algorithm will perform high steps
following each iteration and will not converge to a good
solution. An example of a proposed solution for problem 4
is illustrated in Fig.7 in 3D Cartesian space as well as the
evolution of the cost function discussed in the section (4-a).
In addition, the solutions of the possible configurations are
communicated by the simulation software. Then, a selection of
suitable configurations minimizing cycle time was established
by the algorithm discussed in the section (4-b).

Different test data exist in order to perform a comparative
analysis for TSP-based problems in the field of combinatorial
optimization. Our work does not aim to do better than existing
state-of-the-art approaches for solving a TSP problem, but
rather wants to provide a global solution integrating different
robotic factors to solve an industrial problem. In the field
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Parameters Movement time (s)
Cnvg. value Pop. size Slct. prob Mut. prob Cross. prob Rbt 1 Rbt 2 Rbt 3

Problem 1 1500 150 60% 70% 70% 1.85 0.46 2.68

Problem 2 2000 150 60% 70% 70% Rbt 1 Rbt 2 Rbt 3
2.18 0.56 1.77

Problem 3 4000 150 60% 70% 70% Rbt 1 Rbt 2 Rbt 3
1.95 2.14 1.17

Problem 4 7000 150 60% 70% 70% Rbt 1 Rbt 2 Rbt 3 Rbt 4 Rbt 5 Rbt 6
1.31 0.173 1.44 1.97 1.58 1.65

TABLE I
USED PARAMETERS AND THE CORRESPONDING MOVEMENT TIMES FOR EACH ROBOT

Fig. 8. Maximum cycle time and total movement time for different methods.

of robotics, there are studies that primarily evaluate the
performance of path planners. In our case, it remains difficult
to make a fair comparison between studies that are similar
to our problem. The complexity lies in the way in which
the problem was approached, the robotic constraints, the type
of industrial robot used, the industrial environment, etc. No
global reference exists therefore for multi-task sequencing
problem. Thus, we decided to compare our approach to other
research that has been based on two formulations min-sum
MGTSP and min-max MGTSP.

Since these approaches do not provide any public imple-
mentation, we decided to reproduce the results for the same
problem where we consider separately the cost of the total
robot movement and the cost of the robot that have the longest

Fig. 9. PRM construction (red) and the proposed trajectory (blue) in the
configuration space before and after the processing phase (3.1) and (3.2).

Fig. 10. CPU calculation time as a function of target numbers.

movement duration to perform one sequence of tasks. Fig.8
shows the cycle time and movement time provided by our
method compared to other formulations. We have studied the
case where the cycle time and movement duration must be
fairly minimized (EQ), and the case where we favor cycle
time over total movement duration (MM) by increasing their
corresponding factors and vice versa (MS). The cycle time
values were improved by 11.9%, 35.9%, 71.2% and 70.98%
for the respective problems 1, 2, 3 and 4 compared to the
results of the other formulations. We have also shown the
ability of our approach to adapt and propose a new solution
with regards to the favored criterion in a reasonable time
(Fig.10). For example, we save 1s of cycle time in (MM)
compared to (EQ) by sacrificing and increasing the total robot
movement duration by 5%.

Fig.9 illustrates an example of automatic path planning from
qi to qi+1 for a single robot considering joint limitations (Joint
2 and 3 are plotted). The samples in red correspond to the
PRM of the robot rk, 7,000 nodes of the graph were tested
in 1,220sec and the trajectory in blue corresponds to the one
calculated by our algorithm. Then, the processing phase is
carried out to generate the relevant via points. The steps are
performed iteratively to ensure the quality of the obtained
solution.

Subsequently, we implemented our algorithm on ROBOGU-
IDE to simulate the real trajectory of the robot. Fig.11 shows
the capture sequences for a problem of two robots where
several obstacles are present between the points. The algorithm
succeeded in assigning points for each robot, chose the most
suitable configuration and planned a smooth trajectory without
collision while minimizing cycle time. Since our solution
is incremental, the robot-robot collision is managed like in
industrial cells by an optimized interlock system.
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Fig. 11. Motion captures of the global solution proposed by the algorithm
for a problem of two robots on Roboguide.

VI. CONCLUSIONS

This work was motivated by the industrial need to automate
and optimize the task sequencing problem in automotive
stations. To the best of our knowledge, no existing automatic
approach has provided a reliable solution that applies to cur-
rent industrial software for the whole problem. Existing studies
do not allow the resolution of a large number of targets while
integrating multiple configurations in a collision-free way
for a multi-robot system. To solve the multi-task sequencing
problem, we have developed a new approach based on the
genetic algorithm. The developed approach can solve up to 100
targets, while taking into account several robotic factors such
as sequence order, configuration solutions (up to 10 per target)
and the movement duration of each robot. All these parameters
have a direct impact on the cycle time. The discussed method
is able to generate via points to provide trajectory without
collision in cluttered environment by reducing movement
duration. The obtained results reduce both cycle time and
total robot movement duration. Our approach presents a better
cycle time compared to other single-criterion optimization,
especially in more complex problems. We have noticed that
the procedure to generate the configuration spaces for each
robot can be slow for a complex environment. However, we
considered that the pre-processing phase did not present any
computation time concerns since this generation is done only
once and the industrial environment is often unchanged when
the production line is started.

Our future studies will focus mainly on the integration
of an optimized interlock system adapted to the industry. In
addition, we will integrate the robot-robot collision system
into our algorithm with a reevaluation of the discussed steps,

iteratively. Moreover, we will test the possibility of obtaining
a better solution by taking into account several additional
robotic factors such as the direction of the sequence execution,
different task duration, accessibility constraint, etc.
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