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Abstract

In this paper we study high dimension models based on depen-
dent observations defined through autoregressive processes. For such
models we study the efficient robust estimation problem in adaptive
settings, i.e. in the case when the nonparametric regularity is un-
known. To this end we use the sequential model selection procedures
proposed in [4]. First, through the Van Trees inequality, we obtain
the sharp lower bound for robust risks in explicit form, i.e. the fa-
mous Pinsker’s constant (see [28] for example). Then, through sharp
non asymptotic oracle inequalities for robust risks, we show that the
upper bound for the robust risk of the proposed model selection se-
quential procedure coincides with the obtained Pinsker constant, i.e.
this means that this procedure is efficient in the minimax sens.
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1 Introduction

1.1 Problem and motivations

In this paper we consider the following autoregresive model

yj =

q∑
i=1

θiψi(xj)yj−1 + ξj , xj = a+
(b− a)j

n
, (1.1)

where the functions (ψi)1≤i≤q are known linear independent functions, a < b
are fixed known constants, 1 ≤ j ≤ n, the initial value y0 is a constant and
the noise (ξj)j≥1 is i.i.d. sequence of unobservable random variables with
Eξ1 = 0 and Eξ2

1
= 1. In the sequel we denote by p the distribution density

of the random variable ξ1.
The problem is to estimate the unknown parameters (θj)1≤j≤q in the high

dimension setting, i.e. when the number of parameters q > n. Usually,
in these cases for statistical models with independent observations one uses
one of two methods: Lasso algorithm (see, for example, [27]) or the Dantzig
selector method proposed in [8]. For dependent observations such models
were studied, for example, in [11] and [12]. But in all these papers the number
of parameters q is known and, therefore, unfortunately, these methods can’t
be used to estimate, for example, the number of parameters q. In this paper
similar to [18, 19] we study this problem in nonparametric setting, i.e. we
consider the observations (1.1) defined as

yj = S(xj)yj−1 + ξj , (1.2)

where S(·) ∈ l2[a, b] is unknown function. The nonparametric setting allows
to consider the models (1.1) with unknown q or with q = +∞. Note that
the case when the number of parameters q is unknown is one of challenging
problems in the signal and image processing theory (see, for example, [7, 5]).
Therefore, the problem is now to estimate the function S(·) in the model
on the basis of the observations (1.2) under the condition that the noise
distribution p is unknown and belongs to some noise distributions class P .
There is a number of papers which consider these models such as [9], [10]
and [6]. In all these papers, the authors propose some asymptotic (as n →
∞) methods for different identification studies without considering optimal
estimation issues. Firstly, minimax estimation problems for the model (1.2)
has been treated in [2] and [25] in the nonadaptive case, i.e. for the known
regularity of the function S. Then, in [1] and [3] it is proposed to use the
sequential analysis method for the adaptive pointwise estimation problem in
the case when the Hölder regularity is unknown.
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In this paper we consider the adaptive estimation problem for the quadratic
risk defined as

Rp(Ŝn, S) = Ep,S‖Ŝn − S‖2 , ‖S‖2 =

∫ b

a

S2(x)dx , (1.3)

where Ŝn is an estimator of S based on observations (yj)1≤j≤n and Ep,S is the
expectation with respect to the distribution law Pp,S of the process (yj)1≤j≤n
given the distribution density p and the function S. Moreover, taking into
account that the distribution p is unknown, we use the robust nonparametric
estimation method developed in [13]. To this end we set the robust risk as

R∗(Ŝn, S) = sup
p∈P
Rp(Ŝn, S) , (1.4)

where P is a family of the distributions defined in Section 2.

1.2 Main tools

To estimate the function S in model (1.2) we make use of the model selection
procedures proposed in [4]. These procedures are based on the family of the
optimal pointwise truncated sequential estimators from [3] for which a sharp
oracle inequality is shown, using the model selection method developed in
[14]. In this paper, using this inequality, we show that the model selection
procedure is efficient in adaptive setting for the robust quadratic risk (1.4).
To this end, first of all, we have to study the sharp lower bound for the
these risks, i.e. we have to provide the best potential accuracy estimation
for the model (1.2) which is called the Pinsker constant. For this we use the
approach proposed in [15, 16] which is based on the Van-Trees inequality. It
turns out that for the model (1.2) the Pinsker constant has the same form as
for the filtration signal problem in the ”signal - white noise” model studied
in [28] but with new coefficient which equals to the optimal variance given
by the Hajek-Le Cam inequality for the parametric model (1.2). This is the
new result in the efficient non parametric estimation theory for the statistical
models with dependent observations. Then, using the oracle inequality from
[4] and the weight least square estimation method we show that, for the
model selection procedure with the Pinsker weight coefficients, the upper
bound asymptotically coincides with the obtained Pinsker constant without
using the regularity properties of the unknown functions, i.e. it is efficient in
adaptive setting with respect to the robust risk (1.4).

3



1.3 Plan of the paper

The paper is organized as follows. In Section 2 we give all conditions and
construct the sequential pointwise estimation procedures which allows us to
pass from the autoregression model to the corresponding regression model.
We construct in Section 3 the model selection procedure based on the se-
quential estimators from Section 2. Then we announce the main results in
Section 4. In Section 5 we show the Van-Trees inequality for the model (1.2).
We obtain the lower bound for the robust risk in section 6 and we get, in
Section 7, the upper bound for the robust risk of the constructed sequential
estimator. In Appendix A we give the all auxiliary and technic tools.

2 Sequential procedure

As in [3] we assume that in the model (1.2) the i.i.d. random variables (ξj)j≥1

have a density p (with respect to the Lebesgue measure) from the functional
class P defined as

P :=

{
p ≥ 0 :

∫ +∞

−∞
p(x) dx = 1 ,

∫ +∞

−∞
xp(x) dx = 0 ,

∫ +∞

−∞
x2 p(x) dx = 1 and sup

l≥1

∫ +∞
−∞ |x|

2l p(x) dx

ςk(2l − 1)!!
≤ 1

}
, (2.1)

where ς ≥ 1 is some fixed parameter, which may be a function of the number
observation n, i.e. ς = ς(n), such that for any b > 0

lim
n→∞

ς(n)

nb
= 0 . (2.2)

Note that the (0, 1)-Gaussian density belongs to P . In the sequel we denote
this density by p0. It is clear that for any b > 0

m∗
b

= sup
p∈P

Ep |ξ1|b <∞ , (2.3)

where Ep is the expectation with respect to the density p from P . To obtain
the stable (uniformly with respect to the function S ) model (1.2), we assume
that for some fixed 0 < ε < 1 and L > 0 the unknown function S belongs to
the ε-stability set introduced in [3] as

Θε,L =
{
S ∈ C1([a, b],R) : |S|∗ ≤ 1− ε and |Ṡ|∗ ≤ L

}
, (2.4)
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where C1[a, b] is the Banach space of continuously differentiable [a, b] → R
functions and |S|∗ = sup

a≤x≤b |S(x)|.
We will use as a basic procedure the pointwise procedure from [3] at the

points (zl)1≤l≤d defined as

zl = a+
l

d+ 1
(b− a) , (2.5)

where d is an integer value function of n, i.e. d = dn, such that

lim
n→∞

dn√
n

= 1 . (2.6)

So we propose to use the first ιl observations for the auxiliary estimation of
S(zl). We set

Ŝl =
1

Aιl

ιl∑
j=1

Ql,j yj−1 yj , Aιl =

ιl∑
j=1

Ql,j y
2
j−1

, (2.7)

where Ql,j = Q(ul,j) and the kernel Q(·) is the indicator function of the
interval [−1; 1], i.e. Q(u) = 1[−1,1](u). The points (ul,j) are defined as

ul,j =
xj − zl
h

, (2.8)

where the bandwidth h will be chosen later such that a < z1−h < zd+h < b,
i.e. h < (b− a)/d.

Note that to estimate S(zl) on the basis of the kernel estimate with the
kernel Q we use only the observations (yj)k1,l≤j≤k2,l from the h-neighborhood

of the point zl, i.e.

k1,l = bnz̃l − nh̃c and k2,l = [nz̃l + nh̃] , (2.9)

where bxc is the smallest integer greater than x ∈ R, [x] is the integer part

of x, z̃l = (zl − a)/(b− a) and h̃ = h/(b− a).
Moreover, we assume here that

n > h̃−1 . (2.10)

Now we chose ιl in (2.7) as

ιl = k1,l + q and q = qn = [(nh̃)µ0 ] (2.11)
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for some 0 < µ0 < 1. In the sequel for any 0 ≤ k < m ≤ n we set

Ak,m =
m∑

j=k+1

Ql,j y
2
j−1

and Am = A0,m . (2.12)

Next, similarly to [1], we use some kernel sequential procedure based on the
observations (yj)ιl≤j≤n

To transform the kernel estimator in the linear function of observations
and we replace the number of observations n by the following stopping time

τl = inf{ιl + 1 ≤ k ≤ k2,l : Aιl,k ≥ Hl} , (2.13)

where inf{∅} = k2,l and the positive threshold Hl will be chosen as a positive
random variable measurable with respect to the σ-field {y1, . . . , yιl}.
Now we define the sequential estimator as

S∗
l

=
1

Hl

 τl−1∑
j=ιl+1

Ql,j yj−1 yj + κlQ(ul,τl) yτl−1 yτl

1Γl
, (2.14)

where Γl = {Aιl,k2,l−1 ≥ Hl} and the correcting coefficient 0 < κl ≤ 1 on this

set is defined as
Aιl,τl−1 + κ2

l
Q(ul,τl)y

2
τl−1

= Hl . (2.15)

We set here Aιl,τl−1 = 0 if τl = ιl+1. Note that, to obtain the efficient kernel
estimate of S(zl), we need to use the all k2,l − ιl observations.
Similarly to [21], one can show that

τl ≈ (1− S2(zl))Hl as Hl →∞ . (2.16)

Therefore, it will be natural to choose Hl as (k2,l − ιl)/(1− S2(zl).
Since the value S(zl) is unknown, we define the threshold Hl as

Hl =
1− ε̃

1− S̃2
l

(k2,l − ιl) and ε̃ =
1

2 + lnn
, (2.17)

where S̃l is the projection of the estimator Ŝl in ]− 1 + ε̃, 1− ε̃[, i.e.

S̃l = min(max(Ŝl,−1 + ε̃), 1− ε̃) . (2.18)

To obtain the uncorrelated stochastic terms in the kernel estimators for S(zl)
we choose the bandwidth h as

h =
b− a

2d
. (2.19)

As to the estimator Ŝl , we can show the following property.
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Proposition 2.1. The convergence rate in probability of the estimator (2.18)
is more rapid than any power function, i.e. for any b > 0

lim
n→∞

nb max
1≤l≤d

sup
S∈Θε,L

sup
p∈P

Pp,S

(
|S̃l − S(zl)| > ε0

)
= 0 , (2.20)

where ε0 = ε0(n)→ 0 as n→∞ such that limn→∞ n
δ̌ε0 =∞ for any δ̌ > 0.

Now we set
Yl = S∗l 1Γ and Γ = ∩d

l=1
Γl . (2.21)

Using the convergence (2.20) we study the probability properties of the set
Γ in the following proposition.

Proposition 2.2. For any b > 0 the probability of the set Γ satisfies the
following asymptotic equality

lim
n→∞

nb sup
S∈Θε,L

Pp,S (Γc) = 0 . (2.22)

In view of this proposition we can negligible the set Γc. So, using the esti-
mators (2.21) on the set Γ we obtain the discrete time regression model

Yl = S(zl) + ζl and ζl = ξ∗
l

+$l , (2.23)

in which

ξ∗
l

=

∑τl−1

j=ιl+1
Ql,j yj−1 ξj + κlQ(ul,τl) yτl−1 ξτl

Hl

(2.24)

and $l = $1,l +$2,l, where

$1,l =

∑τl−1

j=ιl+1
Ql,j y

2
j−1

∆l,j + κ2
l
Q(ul,τl) y

2
τl−1

∆l,τl

Hl

, ∆l,j = S(xj)− S(zl)

and

$2,l =
(κl − κ2

l
)Q(ul,τl) y

2
τl−1

S(xτl)

Hl

.

Note that in the model (2.23) the random variables (ξ∗
j
)1≤j≤d are defined

only on the set Γ. By the technical reasons we need the definitions for these
variables on the set Γc was well. To this end for any j ≥ 1 we set

Q̌l,j = Ql,j yj−1 1{j<k2,l} +
√
HlQl,j 1{j=k2,l} (2.25)

and Ǎιl,m =
∑m

j=ιl+1
Q̌2
l,j

. Note, that for any j ≥ 1 and l 6= m

Q̌l,j Q̌m,j = 0 , (2.26)
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and Ǎιl,k2,l ≥ Hl. So we can modify now the stopping time (2.13) as

τ̌l = inf{k ≥ ιl + 1 : Ǎιl,k ≥ Hl} . (2.27)

Obviously, τ̌l ≤ k2,l and τ̌l = τl on the set Γ for any 1 ≤ l ≤ d. Now similarly
to (2.15) we define the correction coefficient κ̌l as

Ǎιl,τ̌l−1 + κ̌2
l
Q̌2
l,τ̌l

= Hl . (2.28)

It is clear that 0 < κ̌l ≤ 1 and κ̌l = κl on the set Γ for 1 ≤ l ≤ d. Using this
coefficient we set

ηl =

∑τ̌l−1

j=ιl+1
Q̌l,j ξj + κ̌l Q̌l,τ̌l

ξτ̌l
Hl

. (2.29)

Note that on the set Γ for any 1 ≤ l ≤ d the random variables ηl = ξ∗
l
.

Moreover (see Lemma A.2 in [4]), for any 1 ≤ l ≤ d and p ∈ P

Ep,S (ηl |Gl) = 0 , Ep,S

(
η2
l
|Gl
)

= σ2
l

and Ep,S

(
η4
l
|Gl
)
≤ m̌σ4

l
, (2.30)

where σl = H
−1/2
l , Gl = σ{η1, . . . , ηl−1, σl} and m̌ = 4(144)4 m∗

4
. Note that

σ0,∗ ≤ min
1≤l≤d

σ2
l
≤ max

1≤l≤d
σ2
l
≤ σ1,∗ , (2.31)

where

σ0,∗ =
1− ε2

2(1− ε̃)nh
and σ1,∗ =

1

(1− ε̃)(2nh− q− 3)
.

Now, taking into account that |$1,l| ≤ Lh for any S ∈ Θε,L, we obtain that

sup
S∈Θε,L

Ep,S1Γ$
2
l
≤
(
L2h2 +

υ̌n
(nh)2

)
, (2.32)

where υ̌n = sup
p∈P sup

S∈Θε,L
Ep,S max1≤j≤n y

4
j
. As it is shown in [4] (The-

orem 3.3) for any b > 0
lim
n→∞

n−b υ̌n = 0 . (2.33)

Remark 2.1. It should be noted that the property (2.33) means that the
asymptotic behavior of the upper bound (2.32) approximately almost as h−2

when n→∞.

Remark 2.2. Note that to estimate the function S in (1.2), we use the
approach developed in [16] for the diffusion processes. To this end we use
the efficient sequential kernel procedures developed in [1, 2, 3]. It should be
emphasized that to obtain an efficient estimator, i.e. an estimator with the
minimal asymptotic risk, one needs to take only indicator kernel as in (2.14).
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Remark 2.3. It should also be noted that the sequential estimator (2.14)
has the same form as in [3], but except the last term, in which the correction
coefficient is replaced by the square root of the coefficient used in [20]. We
modify this procedure to calculate the variance of the stochastic term (2.24).

3 Model selection

Now to estimate the function S we use the sequential model selection pro-
cedure from [4] for the regression (2.23). To this end, first we chose the
trigonometric basis (φj)j≥ 1 in l2[a, b], i.e.

φ1 =
1√
b− a

, φj(x) =

√
2

b− a
Trj (2π[j/2]l0(x)) , j ≥ 2 , (3.1)

where the function Trj(x) = cos(x) for even j and Trj(x) = sin(x) for odd
j, and l0(x) = (x − a)/(b − a). Moreover, we chose the odd number d of
regression points (2.5), for example, d = 2[

√
n/2] + 1. Then the functions

(φj)1≤j≤d are orthonormal for the empirical inner product, i.e.

(φi , φj)d =
b− a
d

d∑
l=1

φi(zl)φj(zl) = 1{i=j} . (3.2)

It is clear that, the function S can be represented as

S(zl) =
d∑
j=1

θj,d φj(zl) and θj,d =
(
S, φj

)
d
. (3.3)

We define the estimators for the coefficients (θj,d)1≤j≤d as

θ̂j,d =
b− a
d

d∑
l=1

Ylφj(zl) . (3.4)

From (2.23) we obtain immediately the following regression on the set Γ

θ̂j,d = θj,d + ζj,d with ζj,d =

√
b− a
d

ηj,d +$j,d , (3.5)

where

ηj,d =

√
b− a
d

d∑
l=1

ηlφj(zl) and $j,d =
b− a
d

d∑
l=1

$l φj(zl) .
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Through the Bounyakovskii-Cauchy-Schwarz we get that

|$j,d| ≤ ‖$‖d ‖φj‖d = ‖$‖d :=
$∗
n

n
. (3.6)

Moreover, from (2.32) and (2.33) it follows that for any b > 0

lim
n→∞

1

nb
sup
p∈P

sup
S∈Θε,L

Ep,S$
∗
n
1Γ = 0 . (3.7)

To construct the model selection procedure we use weighted least squares
estimators which for the points (2.5) defined as

Ŝλ(zl) =
d∑
j=1

λ(j) θ̂j,d φj(zl)1Γ , 1 ≤ l ≤ d , (3.8)

where the weight vector λ = (λ(1), . . . , λ(d))′ belongs to some finite set
Λ ⊂ [0, 1]d, the prime denotes the transposition. We set for any a ≤ t ≤ b

Ŝλ(t) =
d∑
l=1

Ŝλ(zl)1{zl−1<t≤zl} . (3.9)

Denote by ν the cardinal number of the set Λ, for which we impose the
following condition.
A1) Assume that the number of the weight vectors ν is a function of n, i.e.
ν = νn, such that for any b > 0

lim
n→∞

νn
nb

= 0 . (3.10)

To choose a weight vector λ ∈ Λ in (3.8) we will use the following risk

Errd(λ) = ‖Ŝλ − S‖2
d

=
b− a
d

d∑
l=1

(Ŝλ(zl)− S(zl))
2 . (3.11)

Using (3.3) and (3.8) it can be represented as

Errd(λ) =
d∑
j=1

λ2(j)θ̂2
j,d
− 2

d∑
j=1

λ(j)θ̂j,d θj,d +
d∑
j=1

θ2
j,d
. (3.12)

Since the coefficients θj,d are unknown we can’t minimize this risk directly to
obtain an optimal weight vector. To modify it we set

10



θ̃j,d = θ̂2
j,d
− b− a

d
sj,d with sj,d =

b− a
d

d∑
l=1

σ2
l
φ2
j
(zl) . (3.13)

Note here that in view of (2.31) - (3.2) the last term can be estimated as

σ0,∗ ≤ sj,d ≤ σ1,∗ . (3.14)

Now, we modify the risk (3.12) as

Jd(λ) =
d∑
j=1

λ2(j)θ̂2
j,d
− 2

d∑
j=1

λ(j) θ̃j,d + δPd(λ) , (3.15)

where the coefficient 0 < δ < 1 will be chosen later and the penalty term is

Pd(λ) =
b− a
d

d∑
j=1

λ2(j)sj,d (3.16)

Now using (3.15) we define the sequential model selection procedure as

λ̂ = argmin
λ∈Λ

Jd(λ) and Ŝ∗ = Ŝλ̂ . (3.17)

To study the efficiency property we specify the weight coefficients (λ(j))1≤j≤n
as it is proposed, for example, in [15]. First, for some 0 < ε < 1 introduce
the two dimensional grid to adapt to the unknown parameters (regularity
and size) of the Sobolev ball, i.e. we set

A = {1, . . . , k∗} × {ε, . . . ,mε} , (3.18)

where m = [1/ε2]. We assume that both parameters k∗ ≥ 1 and ε are
functions of n, i.e. k∗ = k∗(n) and ε = ε(n), such that

limn→∞ k∗(n) = +∞ , limn→∞
k∗(n)

lnn
= 0 ,

limn→∞ ε(n) = 0 and limn→∞ nbε(n) = +∞
(3.19)

for any b > 0. One can take, for example, for n ≥ 2

ε(n) =
1

lnn
and k∗(n) = k∗

0
+ [
√

lnn] , (3.20)
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where k∗
0
≥ 0 is some fixed integer number. For each α = (β, t) ∈ A, we

introduce the weight sequence

λα = (λα(j))1≤j≤p

with the elements

λα(j) = 1{1≤j<j∗} +
(
1− (j/ωα)β

)
1{j∗≤j≤ωα}, (3.21)

where j∗ = 1 + [lnn] and

ωα =

(
(β + 1)(2β + 1)

π2ββ
tn

)1/(2β+1)

.

Now we define the set Λ as

Λ = {λα , α ∈ A} . (3.22)

Note that these weight coefficients are used in [23, 24] for continuous time
regression models to show the asymptotic efficiency. It will be noted that in
this case the cardinal of the set Λ is ν = k∗m. It is clear that the properties
(3.19) imply the condition (3.10). In [4] we showed the following result.

Theorem 3.1. Assume that the conditions (2.2) and (3.10) hold. Then for
any n ≥ 3, any S ∈ Θε,L and any 0 < δ ≤ 1/12, the procedure (3.17) with
the coefficients (3.22) satisfies the following oracle inequality

R∗(Ŝ∗, S) ≤ (1 + 4δ)(1 + δ)2

1− 6δ
min
λ∈Λ
R∗(Ŝλ, S) +

B∗
n

δn
, (3.23)

where the term B∗
n

is such that for any b > 0

lim
n→∞

B∗
n

nb
= 0 .

Remark 3.1. In this paper we will use the inequality (3.23) to study ef-
ficiency properties for the model selection procedure (3.17) with the weight
coefficients (3.22) in adaptive setting, i.e. in the case when the regularity of
the function S (1.2) is unknown.

4 Main results

First, to study the minimax properties for the estimation problem for the
model (1.2) we need to introduce some functional class. To this end for any

12



fixed r > 0 and k ≥ 2 we set

Wk,r =

f ∈ Θε,L :
+∞∑
j=1

aj θ
2
j
≤ r

 , (4.1)

where aj =
∑k

l=0
(2π[j/2])2l, (θj)j≥1 are the trigonometric Fourier coeffi-

cients, i.e.

θj =

∫ b

a

f(x)φj(x)dx

and (φj)j≥1 is the trigonometric basis defined in (3.1). It is clear that we can
represent this functional class as the Sobolev ball in Θε,L, i.e.

Wk,r =

f ∈ Θε,L :
k∑
j=0

‖f (j)‖2 ≤ r

 . (4.2)

Now, for this set we define the normalizing coefficeints

l∗(r) = ((1 + 2k)r)1/(2k+1)

(
k

π(k + 1)

)2k/(2k+1)

(4.3)

and

ς∗ = ς∗(S) =

∫ b

a

(1− S2(u))du . (4.4)

It is well known that for nonparametric adaptive estimation problems in
regression models with the functions S ∈ Wk,r the minimax convergence

rate is n−2k/(2k+1) (see, for example, [15, 22] and the references therein). Our
goal in this paper is to show the same property for the non parametric auto-
regressive models (1.2). To this end, first we obtain the lower bound for the
normalyzed risk (1.4) in the class of all estimators Ξn, i.e. any measurable
function with respect to the observations σ{y1, . . . , yn}.

Theorem 4.1. For the model (1.2) with the noise distribution from the class
P defined in (2.1)

lim inf
n→∞

inf
Ŝn∈Ξn

n2k/(2k+1) sup
S∈Wk,r

υ(S)R∗(Ŝn, S) ≥ l∗(r) , (4.5)

where υ(S) = ς−2k/(2k+1)
∗ .

13



Now to study the procedure (3.17) we have to add some condition on the
penalty coefficient δ which provides sufficiently small penalty term in (3.15).
A2) Assume that the parameter δ is a function of n, i.e. δ = δn such that

lim
n→∞

δn = 0 and lim
n→∞

δn
nb

= 0 (4.6)

for any b > 0.

Theorem 4.2. Assume that the conditions A1) – A2) hold. The model

selection procedure Ŝ∗ defined in (3.17) with the penalty coefficient satisfying
the hypothesis A2) admits the following asymptotic upper bound

lim sup
n→∞

n2k/(2k+1) sup
S∈Wk,r

υ(S)R(Ŝ∗, S) ≤ l∗(r) . (4.7)

Corollary 4.3. Assume that the conditions A1) – A2) hold. The model

selection procedure Ŝ∗ defined in (3.17) with the penalty coefficient satisfying
the condition A2) is efficient, i.e.

lim
n→∞

inf Ŝn∈Ξn
sup

S∈Wk,r
υ(S)R∗(Ŝn, S)

sup
S∈Wk,r

υ(S)R(Ŝ∗, S)
= 1 . (4.8)

Moreover,
lim
n→∞

n2k/(2k+1) sup
S∈Wk,r

υ(S)R(Ŝ∗, S) = l∗(r) . (4.9)

Remark 4.1. Note that the limit equalities (4.8) and (4.9) imply that the
function l∗(r)/υ(S) is the minimal value of the normalised asymptotic quadratic
robust risk, i.e. the Pinsker constant in this case. We remind that the co-
efficient l∗(r) is the well known Pinsker constant for the ”signal+standard
white noise” model obtained in [28]. Therefore, the Pinsker constant for
the model (1.2) is represented by the Pinsker constant for the ”signal+white
noise” model in which the noise intensity is given by the function (4.4).

5 The van Trees inequality

In this section we consider the nonparametric autoregressive model (1.2) with
the (0, 1) gaussian i.i.d. random variable (ξj)1≤j≤n and the parametric linear
function S, i.e.

Sθ(x) =
d∑
l=1

θl ψl(x) , θ = (θ1, . . . , θd)
′ ∈ Rd . (5.1)

14



We assume that the functions (ψi)1≤i≤d are orthogonal with respect to the
scalar product (3.2).

Let now Pn
θ

be the distribution in Rn of the observations y = (y1, . . . , yn)
in the model (1.2) with the function (5.1) and νn

ξ
be the distribution in Rn

of the gaussian vector (ξ1, . . . , ξn). In this case the Radon - Nykodim density
is given as

fn(y, θ) =
dP

(n)
θ

dνn
ξ

= exp


n∑
l=1

Sθ(xl)yl−1yl −
1

2

n∑
j=1

S2
θ
(xl)y

2
l−1

 . (5.2)

Let u be a prior distribution density on Rd for the parameter θ of the following
form:

u(θ) =
d∏
j=1

uj(θj) ,

where uj is some continuously differentiable probability density in R with
the support ]−Nj , Nj[, i.e. uj(z) > 0 for any −Nj < z < Nj and uj(z) = 0
for all |z| ≥ Nj, such that the Fisher information is finite, i.e.

Ij =

∫ Nj

−Nj

u̇2
j
(z)

uj(z)
dz <∞ . (5.3)

Now, we set

Y =]−N1 , N1[× . . . × ]−Nd , Nd[ ⊆ Rd . (5.4)

Let g(θ) be a continuously differentiable Y → R function such that, for each
1 ≤ j ≤ d,

lim
|θj |→Nj

g(θ)uj(θj) = 0 and

∫
Rd
|g′
j
(θ)|u(θ) dθ <∞ , (5.5)

where g′
j
(θ) = ∂g(θ)/∂θj.

For any B(X )×B(Rd)-measurable integrable function H = H(y, θ) we denote

ẼH =

∫
Y

(∫
Rn

H(y, θ) dPn
θ

)
u(θ)dθ

=

∫
Y

(∫
Rn

H(y, θ) fn(y, θ)u(θ)dν
(n)
ξ

)
dθ . (5.6)

Let Fy
n

be the field generated by the observations (1.2), i.e. Fy
n

= σ{y1, . . . , yn}.
Now we study the Gaussian the model (1.2) with the function (5.1).
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Lemma 5.1. For any Fyn-measurable square integrable Rn → R function ĝn
and for any 1 ≤ j ≤ d, the mean square accuracy of the function g(·) with
respect to the distribution (5.6) can be estimated from below as

Ẽ(ĝn − g(θ))2 ≥
g2
j

ẼΨn,j + Ij
, (5.7)

where Ψn,j =
∑n

l=1
ψ2
j
(xl) y

2
l−1

and g
j

=
∫
Y g
′
j
(θ)u(θ) dθ.

Proof. First, for any θ ∈ Y we set

Ũj = Ũj(y, θ) =
1

fn(y, θ)u(θ)

∂ (fn(y, θ)u(θ))

∂θj
.

Taking into account the condition (5.5) and integrating by parts we get

Ẽ
(

(ĝn − g(θ))Ũj

)
=

∫
Rn×Y

(ĝn(y)− g(θ))
∂

∂θj
(fn(y, θ)u(θ)) dθ dν

(n)
ξ

=

∫
Rn×Yj

(∫ Nj

−Nj

g′
j
(θ) fn(y, θ)u(θ)dθj

)∏
i 6=j

dθi

 dν
(n)
ξ = g

j
,

where
Yj =

∏
i 6=j

]−Ni , Ni[ .

Now by the Bouniakovskii-Cauchy-Schwarz inequality we obtain the following
lower bound for the quadratic risk

Ẽ(ĝn − g(θ))2 ≥
g2
j

ẼŨ2
j

.

To study the denominator on the right hand of this inequality note that in
view of the representation (5.2)

1

fn(y, θ)

∂ fn(y, θ)

∂θj
=

n∑
l=1

ψj(xl) yl−1(yl − Sθ(xl)yl−1) .

Therefore, for each θ ∈ Rd,

E
(n)
θ

1

fn(y, θ)

∂ fn(y, θ)

∂θj
= 0
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and

E
(n)
θ

(
1

fn(y, θ)

∂ fn(y, θ)

∂θj

)2

= E
(n)
θ

n∑
l=1

ψ2
j
(xl) y

2
l−1

= E
(n)
θ Ψn,j .

Using the equality

Ũj =
1

fn(y, θ)

∂ fn(y, θ)

∂θj
+

1

u(θ)

∂ u(θ)

∂θj
,

we get
Ẽ Ũ2

j
= ẼΨn,j + Ij ,

where the Fisher information Ij is defined in (5.3). Hence Lemma 5.1.

Remark 5.1. It should be noted that in the definition of the prior distribu-
tion, the bound Nj may be equal to infinity either for some 1 ≤ j ≤ d or for
all 1 ≤ j ≤ d.

6 Lower bound

First, taking into account that the (0, 1) gaussian density p0 belongs to the
class (2.1), we obtain that

R∗(Ŝn, S) ≥ Rp0
(Ŝn, S) . (6.1)

Now, using the definition (4.3) we set

d = dn =

[
k + 1

k

(
n

b− a

)1/(2k+1)

l∗(rρ)

]
(6.2)

where rρ = ρr, 0 < ρ < 1 and

l∗(rρ) = ((1 + 2k)rρ)
1/(2k+1)

(
k

π(k + 1)

)2k/(2k+1)

= ρ1/(2k+1)l∗(r) .

For any vector κ = (κj)1≤j≤d ∈ Rd, we set

Sκ(x) =

dn∑
j=1

κj φj(x) , (6.3)
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where (φj)1≤j≤dn is the trigonometric basis defined in (3.1). To define the

bayesian risk we choose a prior distribution on Rd as

κ = (κj)1≤j≤dn and κj = sj η
∗
j
, (6.4)

where η∗
j

are i.i.d. random variables with the continuously differentiable

density ρn(·) defined in Lemma A.1 with N = lnn and n > e2,

sj =

√
(b− a)s∗

j

n
and s∗

j
=

(
dn
j

)k

− 1 .

In the sequel we will denote by µκ the distribution of the vector (6.4) in Rd.
It is clear that almost sure the function (6.3) can be bounded as

max
a≤x≤b

(
|Sκ(x)|+ |Ṡκ(x)|

)
≤ c∗

lnn√
n

dn∑
j=1

j

(
dn
j

)k/2

:= δ∗
n
, (6.5)

where

c∗ =

√
2

b− a
b− a+ π

b− a
.

One can, check directly, that δ∗
n
→ 0 as n → ∞ for k ≥ 2. Therefore, for

sufficiently large n the function (6.3) belongs to the class (2.4).
Now, for any function f , we denote by h(f) its projection in L2[a, b] onto the
ball W∗

r
= {f ∈ l2[a, b] : ‖f‖ ≤ r}, i.e.

h(f) =
r

max(r , ‖f‖)
f .

Since Wk,r ⊂ W∗r , we obtain that for any function S ∈ Wk,r

‖Ŝn − S‖2 ≥ ‖ĥn − S‖2 with ĥn = h(Ŝn) .

Therefore, for sufficiently large n

sup
S∈Wk,r

υ(S)Rp0
(Ŝn, S) ≥

∫
Dn

υ(Sz)Ep0,Sz
‖ĥn − Sz‖2 µκ(dz)

≥ υ∗

∫
Dn

Ep0,Sz
‖ĥn − Sz‖2 µκ(dz) , (6.6)

where

Dn =

z = (z1, . . . , zd)
′ ∈ Rd :

d∑
j=1

ajz
2
j
≤ r
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and

υ∗ = inf
|S|∗≤δ∗n

υ(S) → 1

(b− a)2k/(2k+1)
as n→∞ .

Using the distribution µκ we introduce the following Bayes risk

R̃0(Ŝn) = Ẽ0 ‖Ŝn − Sz‖2 ,

where for any random variable measurable ξ with respect to σ{y1, . . . , yn}

Ẽ0 ξ =

∫
Rd

Ep0,Sz
ξ µκ(dz) . (6.7)

Now taking into account that ‖ĥn‖2 ≤ r we get

sup
S∈Wk,r

υ(S)Rp0
(Ŝn, S) ≥ υ∗ R̃0(ĥn)− 2 υ∗R0,n (6.8)

with

R0,n =

∫
Dc
n

(r + ‖Sz‖2)µκ(dz) =

∫
Dc
n

r +
d∑
j=1

z2
j

 µκ(dz) .

In Lemma A.3 we study the last term in this inequality. Now it is easy to
see that for any z = (z1, . . . , zd)

′ ∈ Rd

‖ĥn − Sz‖2 ≥
dn∑
j=1

(ẑj − zj)2 ,

where ẑj =
∫ b
a
ĥn(t)φj(t)dt.

Now, we will use Lemma 5.1 with uj(z) = ρn(z/sj)/sj and g(θ) = θj for
1 ≤ l ≤ d. It is clear that this is probability density with the support
[−sj lnn , sj lnn] and the Fisher information

Ij = s−2
j
Jn and Jn =

∫ lnn

−lnn

(ρ̇n(t))2

ρn(t)
dt .

Therefore, Lemma 5.1 implies that for any 1 ≤ j ≤ d and any Fy
n

measurable
random variable κ̂j

Ẽ0(κ̂j − κj)2 ≥ 1

Ẽ0 Ψn,j + s−2
j Jn

and Ψn,j =
n∑
l=1

φ2
j
(xl)y

2
l−1

.
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Therefore, the Bayes risk can be estimated from below as

R̃0(ĥn) ≥
dn∑
j=1

1

Ẽ0 Ψn,j + s−2
j Jn

=
b− a
n

dn∑
j=1

1

Ψn,j + (s∗
j
)−1Jn

,

where

Ψn,j =
(b− a)

n
Ẽ0 Ψn,j =

(b− a)

n

n∑
l=1

φ2
j
(xl)Ẽ0 y

2
l−1

. (6.9)

Note here that in view of Lemma 5.1 and Lemma A.2 the term Jn → 1 and
uniformly over 1 ≤ j ≤ d the term Ψn,j → 1 as n → ∞. Therefore, for any
0 < ρ1 < 1 and for sufficiently large n ≥ 1 we obtain that

max
1≤j≤d

Ψn,j ≤ 1 + ρ1 and Jn ≤ 1 + ρ1 ,

i.e.

R̃0(ĥ) ≥ b− a
(1 + ρ1)n

dn∑
j=1

s∗
j

1 + s∗
j

=
b− a

(1 + ρ1)n

dn∑
j=1

(
1− jk

dk
n

)
.

Note here, that

lim
d→∞

1

d

d∑
j=1

(
1− jk

dk

)
=

∫ 1

0

(1− tk)dt =
k

k + 1
.

Therefore, for sufficiently large n

R̃0(ĥ) ≥ (b− a)(1− ρ1)dn
(1 + ρ1)n

k

k + 1
.

Therefore, using this bound in (6.8) and through the definition (6.2) and
Lemma A.3 and the inequality (6.1) we obtain that for any 0 < ρ, ρ1 < 1

lim inf
n→∞

inf
Ŝn∈Ξn

n
2k

2k+1 sup
S∈Wk,r

υ(S)R∗(Ŝn, S) ≥ ρ
1

2k+1 (1− ρ1)

1 + ρ1

l∗(r) .

Taking here limit as ρ→ 1 and ρ1 → 0 we come to the Theorem 4.1.
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7 Upper bound

7.1 Known regularity

We start with the estimation problem for the functions S from Wk,r with
known parameters k, r and ς∗ defined in (4.4). In this case we use the
estimator from family (3.22)

S̃ = Ŝα̃ and α̃ = (k, t̃n) , (7.1)

where t̃n = [r(S)/ε] ε, r(S) = r/ς∗ and ε = 1/ lnn. Note that for sufficiently
large n, the parameter α̃ belongs to the set (3.18). In this section we obtain
the upper bound for the empiric risk (3.11).

Theorem 7.1. The estimator S̃ constructed on the trigonometric basis sat-
isfies the following asymptotic upper bound

lim sup
n→∞

n2k/(2k+1) sup
S∈Wk,r

υ(S)Ep,S‖S̃ − S‖2
d
1Γ ≤ l∗(r) . (7.2)

Proof. We denote λ̃ = λα̃ and ω̃ = ωα̃. Now we recall that the Fourier
coefficients on the set Γ

θ̂j,d = θj,d + ζj,d with ζj,d =

√
b− a
d

ηj,d +$j,d ,

Therefore, on the set Γ we can represent the empiric squared error as

‖S̃ − S‖2
d

=
d∑
j=1

(1− λ̃(j))2 θ2
j,d
− 2Mn

− 2
d∑
j=1

(1 − λ̃(j)) λ̃(j)θj,d$j,d +
d∑
j=1

λ̃2(j) ζ2
j,d
,

where

Mn =

√
b− a
d

d∑
j=1

(1 − λ̃(j)) λ̃(j)θj,d ηj,d .

Now for any 0 < ε̌ < 1

2

∣∣∣∣∣
d∑
j=1

(1− λ̃(j))λ̃(j)θj,d$j,d

∣∣∣∣∣ ≤ ε̌
d∑
j=1

(1− λ̃(j))2θ2
j,d

+ ε̌−1

d∑
j=1

$2
j,d
.
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Taking into account here the definition (3.6), we can rewrite this inequality
as

2

∣∣∣∣∣
d∑
j=1

(1− λ̃(j))λ̃(j)θj,d$j,d

∣∣∣∣∣ ≤ ε̌
d∑
j=1

(1− λ̃(j))2θ2
j,d

+
$∗
n

ε̌n
.

Therefore,

‖S̃ − S‖2
d
≤ (1 + ε̌)

d∑
j=1

(1− λ̃(j))2θ2
j,d
− 2Mn +

$∗
n

ε̌n
+

d∑
j=1

λ̃2(j)ζ2
j,d
.

By the same way we estimate the last term on the right-hand side of this
inequality as

d∑
j=1

λ̃2(j) ζ2
j,d
≤ (1 + ε̌)(b− a)

d

d∑
j=1

λ̃2(j) η2
j,d

+ (1 + ε̌−1)
$∗
n

n
.

Thus, on the set Γ we find that for any 0 < ε̌ < 1

‖S̃n − S‖2
d
≤ (1 + ε̌)Υn(S)− 2Mn + (1 + ε̌)Un +

3$∗
n

ε̌n
, (7.3)

where

Υn(S) =
d∑
j=1

(1− λ̃(j))2θ2
j,d

+
ς∗
d2

d∑
j=1

λ̃2(j) (7.4)

and

Un =
1

d2

d∑
j=1

λ̃2(j)
(
d(b− a)η2

j,d
− ς∗

)
.

We recall that the variance ς∗ is defined in (4.4). In view of Lemma A.8

Ep,SM
2
n ≤

σ1,∗(b− a)

d

d∑
j=1

θ2
j,d

=
σ1,∗(b− a)

d
‖S‖2

d
≤
σ1,∗(b− a)2

d
,

where σ1,∗ is given in (2.31). Moreover, using that Ep,SMn = 0, we get

|Ep,SMn 1Γ| = |Ep,SMn 1Γc | ≤ (b− a)

√
σ1,∗Pp,S(Γc)

d
.

Therefore, Proposition 2.2 yields

lim
n→∞

n2k/(2k+1) sup
S∈Θε,L

|Ep,SMn 1Γ| = 0 . (7.5)

Now, the property (3.7) Lemma A.7 and Lemma A.9 imply the inequality
(7.2). Hence Theorem 7.1.
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7.2 Unknown smoothness

Theorem 3.1 and Theorem 7.1 imply Theorem 4.2.
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A Appendix

A.1 Properties of the prior distribution (6.4)

Lemma A.1. For any N > 2 there exists a continuously differentiable prob-
ability density ρN(·) on R with the support on the interval [−N , N], i.e.
ρN(z) > 0 for −N < z < N and ρN(z) = 0 for |z| ≥ N, such that for any

N > 2 the integral
∫ N

−N zρN(z)dz = 0 and, moreover,∫ N

−N
z2ρN(z)dz → 1 and JN =

∫ N

−N

(ρ̇N(z))2

ρN(z)
dz → 1

as N→∞.

Proof. First we set

V (z) =
1

v∗
e
− 1

1−z2 1{|z|≤1} and v∗ =

∫ 1

−1

e
− 1

1−t2 dt . (A.1)

It is clear that this function is infinitely times continuously differentiable,
such that V (z) > 0 for |z| < 1, V (z) = 0 for |z| ≥ 1 and

∫ 1

−1
V (z)dz = 1.

Using this function, for any N ≥ 2 we define

χN(z) =

∫ 1

−1

1{|z+u|≤N−1} V (u)du =

∫
R
1{|t|≤N−1} V (t− z)dt .

Using here the properties of the function (A.1) we can obtain directly that
χN(z) = χN(−z) for z ∈ R, χN(z) = 1 for |z| ≤ N − 2, χN(z) > 0 for
N − 2 < |z| < N and χN(z) = 0 for |z| ≥ N. Moreover, it is clear that the
derivative

χ̇N(z) = −
∫
R
1{|t|≤N−1} V̇ (t− z)dt = −

∫ 1

−1

1{|u+z|≤N−1} V̇ (u)du .
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Note here that

|V̇ (z)| = 2|z|
(1− z2)2

V (z) ≤ c∗
√
V (z) and c∗ = sup

|z|≤1

2
√
V (z)

(1− z2)2
.

Now through the Bunyakovsky - Cauchy - Schwartz inequality we get that

χ̇2
N

(z) ≤ 2c∗χN(z) for |z| < N . (A.2)

Now, denoting by ϕ(z) the (0, 1) Gaussian density. we set

ρN(z) =
ϕ(z)χN(z)

ρ∗
N

and ρ∗
N

=

∫ N

−N
ϕ(t)χN(t)dt .

It is clear that ρN(z) is the the continuously differentiable probability density

with the support [−N , N] such that for any N the integral
∫ N

−N zρN(z)dz = 0

and for N→∞

ρ∗
N
→ 1 and

∫ N

−N
z2ρN(z)dz → 1 .

Moreover, note that

JN =
1

ρ∗
N

∫ N

−N

ϕ̇2(t)

ϕ(t)
dt+

1

ρ∗
N

∆N ,

where taking into account that the derivative χ̇N(z) = 0 for |z| ≤ N− 2, the
last term can be represented as

∆N = 2

∫
N−2≤|z|≤N

ϕ̇(z)χ̇N(z)dz +

∫
N−2≤|z|≤N

ϕ(z)
χ̇2
N

(z)

χN(z)
dz .

Using here the bound (A.2), it ieasy to conclude that ∆N → 0 as N → ∞.
Hence Lemma A.1.

Lemma A.2. For any 1 ≤ j ≤ d

lim
n→∞

max
1≤j≤n−1

|Ψn,j − 1| = 0 , (A.3)

where the term Ψn,j is given in (6.9).
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Proof. First, note that for any l ≥ 1

yl = y0

l∏
i=1

Sκ(xi) +
l∑

ι=1

l∏
i=ι+1

Sκ(xi)ξι .

Therefore,

Ẽ0 y
2
l

= y2
0
Ẽ0

l∏
i=1

S2
κ
(xi) +

l−1∑
ι=1

Ẽ0

l∏
i=ι+1

S2
κ
(xi) + 1

and due to (6.5) we obtain that for any n ≥ 1 for which δ∗
n
< 1

sup
l≥1

|Ẽ0 y
2
l
− 1| ≤ (δ∗

n
)2

(
y2

0
+ 1
)

1− (δ∗
n
)2
→ 0 as n→∞ .

Taking into account that for any n ≥ 3 and 1 ≤ j ≤ n− 1

(b− a)

n

n∑
l=1

φ2
j
(xl) = 1 ,

we get (A.3). Hence Lemma A.2.

Lemma A.3. For any b > 0 and 0 < ρ < 1

lim
n→∞

nbR0,n = 0 . (A.4)

where the term R0,n is introduced in (6.8).

Proof. First note, that from the definition of term R0,n in (6.8) through the
Bunyakovsky - Cauchy - Schwartz inequality we get that

R0,n ≤

r +
√

3
d∑
j=1

s2
j

 µκ(D
c
n
) .

Therefore, to show (A.4) it suffices to check that for any b > 0

lim
n→∞

nb µκ(D
c
n
) = 0 . (A.5)

To this end note, that from the definition of Dn in (6.6) we obtain that

µκ(D
c
n
) ≤ P(ζn > r) ,
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where ζn =
∑dn

j=1
ajκ

2
j
. So, it suffices to show that for any b > 0

lim
n→∞

nbP(ζn > r) = 0 . (A.6)

Indeed, first note, that the definitions (6.2) and (6.4) imply directly

lim
n→∞

E ζn = lim
n→∞

d∑
j=1

ajs
2
j
E (η∗

1
)2 = lim

n→∞

d∑
j=1

ajs
2
j

= ρr .

We set now

ζ̃n = ζn − E ζn =
b− a
n

dn∑
j=1

s∗
j
aj η̃j and η̃j = (η∗

j
)2 − E(η∗

j
)2 .

So, for sufficiently large n we obtain that for r1 = r(1− ρ)/2

{ζn > r} ⊂
{
ζ̃n > r1

}
.

Through the correlation inequality from [17] and taking into account that
|η̃j| ≤ 2 ln2 n, we obtain that for any p ≥ 2 there exists some constant Cp > 0
for which

E ζ̃p
n
≤ Cp

(lnn)2p

np

 d∑
j=1

(s∗
j
)2 a2

j

p/2

≤ Cp n
− p

4k+2 (lnn)2p ,

i.e. the expectation E ζ̃p
n
→ 0 as n → ∞. Therefore, using the Chebychev

inequality we obtain that for any b > 0

nbP(ζ̃n > r1)→ 0 as n→∞ .

This implies (A.6), and therefore, Lemma A.3.

A.2 Relations between the norms ‖ · ‖ and ‖ · ‖d.
Lemma A.4. Let f be an absolutely continuous [0, 1] → R function with
‖ḟ‖ <∞ and g be a simple [0, 1]→ R function of the form

g(t) =
d∑
j=1

cj χ(tj−1,tj ](t),
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where cj are some constants and tj = j/d. Then for any ε̃ > 0

‖f − g‖2 ≤ (1 + ε̃)‖f − g‖2
d

+ (1 + ε̃−1)
‖ḟ‖2

d2

and

‖f − g‖2
d
≤ (1 + ε̃)‖f − g‖2 + (1 + ε̃−1)

‖ḟ‖2

d2
.

Proof. Setting ∆(t) = f(t)− g(t), we obtain, that for any ε̃ > 0

‖∆‖2 = ‖∆‖2
d

+
d∑
l=1

∫ tl

tl−1

(
2∆(tl) (∆(t)−∆(tl)) + (∆(t)−∆(tl))

2) dt

≤ (1 + ε̃)‖∆‖2
d

+ (1 + ε̃−1)
d∑
l=1

∫ tl

tl−1

[∆(tl)− (∆(t))]2 dt

= (1 + ε̃)‖∆‖2
d

+ (1 + ε̃−1)
d∑
l=1

∫ tl

tl−1

|f(tl)− f(t)|2 dt .

Noting that, for tl−1 < t ≤ tl, one has the estimate

|f(tl)− f(t)|2 ≤

(∫ tl

tl−1

|ḟ(u)|du

)2

≤ 1

p

∫ tl

tl−1

|ḟ(u)|2du ,

one comes to the first inequality. Similarly, one can verify the second in-
equality. Hence Lemma A.4.

A.3 Properties of the trigonometric basis.

Lemma A.5. For any 1 ≤ j ≤ d the trigonometric Fourier coefficients
(θj,d)1≤j≤p for the functions S from the class Wk,r with k ≥ 1 satisfy, for any
ε̃ > 0, the following inequality

θ2
j,d
≤ (1 + ε̃) θ2

j
+ (1 + ε̃−1)

2r

d2k
. (A.7)

Proof. First we represent the function S as

S(x) =
d∑
l=1

θl φl(x) + ∆d(x) ,
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where
∆d(x) =

∑
l>d

θl φl(x) .

Therefore,
θj,d = (S, φj)d = θj + (∆d, φj)d

and for any 0 < ε̃ < 1

θ2
j,d
≤ (1 + ε̃)θ2

j
+ (1 + ε̃−1)‖∆d‖2

d
.

By applying Lemma A.4 with g = 0, we obtain that

‖∆d‖2
d
≤ 2‖∆d‖2 + 2

‖∆̇d‖2

d2
.

Note here, that for any N ≥ 1

‖∆̇N‖2 = (2π)2
∑
l>N

θ2
l

[l/2]2 .

Taking into account here that

2π[l/2] ≥ l for l ≥ 2 ,

we obtain that
‖∆̇N‖2 ≤

∑
l>N

al
l2(k−1)

θ2
l
≤ r

N2(k−1)
. (A.8)

Hence Lemma A.5

Lemma A.6. For any d ≥ 2 and 1 ≤ N ≤ d, the coefficients (θj,d)1≤j≤d
of functions S from Wk,r with k ≥ 1 satisfy, for any ε̃ > 0, the following
inequality

d∑
j=N

θ2
j,d
≤ (1 + ε̃)

∑
j≥N

θ2
j

+ (1 + ε̃−1)
r

d2N2(k−1)
. (A.9)

Proof. First we note that

d∑
j=N

θ2
j,d

= min
x1,...,xN−1

‖S −
N−1∑
j=1

xjφj‖2
d
≤ ‖∆N‖2

d
,

where ∆N(t) =
∑

j≥N θjφj(t). By applying Lemma A.4 and the inequality

(A.8), we obtain the bound (A.9). Hence Lemma A.6
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A.4 Technical lemmas

Lemma A.7. The sequence Υn(S) satisfies the following upper bound

lim sup
n→∞

sup
S∈Wk,r

n2k/(2k+1) υ(S) Υn(S) ≤ l∗(r) . (A.10)

Proof. First of all, note that

0 < ε2(b− a) ≤ inf
S∈Θε,L

ς∗ ≤ sup
S∈Θε,L

ς∗ ≤ b− a . (A.11)

This implies directly that

lim
n→∞

sup
S∈Θε,L

∣∣∣∣∣ t̃n
r(S)

− 1

∣∣∣∣∣ = 0 , (A.12)

where t̃n = [r(S)/ε] ε and r(S) = r/ς∗. Moreover, note that

n2k/(2k+1)υ(S) Υn(S) ≤ n2k/(2k+1) υ(S)Gn +
(ς∗)

1/(2k+1)

n1/(2k+1)

d∑
j=1

λ̃2(j)

and

Gn =
d∑
j=1

(1− λ̃(j))2 θ2
j,d

= G1,n + G2,n ,

where

G1,n =

[ω̃]∑
j=j∗

(1− λ̃(j))2 θ2
j,d

and G2,n =
d∑

j=[ω̃]+1

θ2
j,d
.

We recall that

ω̃ = ωα̃ =
(
%kt̃n n

)1/(2k+1)

and %k =
(k + 1)(2k + 1)

π2kk
.

Note now, that Lemma A.5 and Lemma A.6 yield

G1,n ≤ (1 + ε̃)

[ω̃]∑
j=j∗

(1− λ̃(j))2 θ2
j

+ 2r(1 + ε̃−1)
ω̃

d2k
.

and
G2,n ≤ (1 + ε̃)

∑
j≥[ω̃]+1

θ2
j

+ (1 + ε̃−1)
r

d2 ω̃2(k−1)
,
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i.e.
Gn ≤ (1 + ε̃)G∗

n
+ 2r(1 + ε̃−1) G̃n , (A.13)

where

G∗
n

=
∑
j≥1

(1− λ̃(j))2 θ2
j

=
∑
j≤ω̃

(1− λ̃(j))2 θ2
j

+
∑
j>ω̃

θ2
j

:= G∗
1,n

+ G∗
2,n

and

G̃n =
ω̃

d2k
+

1

d2ω̃2(k−1)
.

Note, that

n2k/(2k+1)υ(S)G∗
1,n

=

[ω̃]∑
j=j∗

(1− λ̃(j))2 θ2
j

=
υ(S)

(%k̃ln)2k/(2k+1)

[ω̃]∑
j=j∗

j2 θ2
j

≤ υ(S)

(%k̃ln)2k/(2k+1)
a∗
j∗

[ω̃]∑
j=j∗

aj θ
2
j
,

where a∗
n

= sup
j≥n j

2k/aj. It is clear that

lim
n→∞

a∗
n

=
1

π2k
.

Therefore, from (A.12) we obtain that

lim sup
n→∞

sup
S∈Θε,L

n2k/(2k+1)υ(S)G∗
1,n∑[ω̃]

j=j∗
aj θ

2
j

≤ 1

π2k(%kr)
2k/(2k+1)

=
(%∗
k
)2k/(2k+1)

(2kπ r)2k/(2k+1)
,

where

%∗
k

=
2k2

(k + 1)(2k + 1)
=

∫ 1

0

(1− tk)2dt .

Next note, that for any 0 < ε̃ < 1 and for sufficiently large n

G∗
2,n
≤ 1

π2k ω̃2k

∑
j≥[ω̃]+1

aj θ
2
j

≤ (1 + ε̃)
(ς∗%

∗
k
)2k/(2k+1)

π2k/(2k+1) (2krn)2k/(2k+1)

∑
j≥[ω̃]+1

aj θ
2
j
,
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i.e.

lim sup
n→∞

sup
S∈Θε,L

n2k/(2k+1)υ(S)
∑

j≥[ω̃]+1
θ2
j∑[ω̃]

j=j∗
aj θ

2
j

≤
(%∗
k
)2k/(2k+1)

(2kπ r)2k/(2k+1)
.

Moreover, we get directly that

lim
T→∞

sup
S∈Θε,L

∣∣∣∣∣
∑d

j=1 λ̃
2(j)

n1/(2k+1)(r(S))1/(2k+1)gk
− 1

∣∣∣∣∣ = 0 , (A.14)

where

gk =
2k2

(%k)2k/(2k+1)(2k + 1)(k + 1)
.

So, taking into account that in (A.13)

lim
n→∞

sup
S∈Wk,r

n2k/(2k+1)G̃n = 0 ,

we obtain (A.10) and, hence Lemma A.7.

Lemma A.8. For any non random coefficients (uj)1≤j≤d

E

 d∑
j=1

ujηj,d

2

≤ σ1,∗

d∑
j=1

u2
j
.

Proof. Using the definition of ηj,d in (3.5), we obtain that

E

 d∑
j=1

ujηj,d

2

=
b− a
d

E
d∑
l=1

σ2
l

 d∑
j=1

ujφj(zl)

2

≤ σ1,∗
b− a
d

d∑
l=1

 d∑
j=1

ujφj(zl)

2

.

Now, the orthonormality property of the basis functions (φj(·))1≤j≤d implies
this lemma.

Lemma A.9. Now we show that

lim
n→∞

n2k/(2k+1) sup
S∈Wk,r

|Ep,S Un1Γ| = 0 . (A.15)
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Proof. First of all, note that, using the definition of sj,d in (3.13), we obtain

Ep,S η
2
j,d

= Ep,S sj,d =
1

d

d∑
l=1

Ep,S

1

Hl

+
1

d
Ep,Ssj,d ,

where

sj,d =
d∑
l=1

σ2
l
φ
j
(xl) and φj(z) = (b− a)φ2

j
(z)− 1 .

Therefore, we can represent the expectation of Un as

Ep,S Un =
‖λ̃‖2

d2
Ep,SU1,n +

b− a
d2

Ep,SU2,n ,

where ‖λ̃‖2 =
∑d

j=1
λ̃2(j),

U1,n =
b− a
d

d∑
l=1

d

Hl

− ς∗ and U2,n =
d∑
j=1

λ̃2(j)sj,d .

Note now, that using Proposition 2.20 and the dominated convergence the-
orem in the definition (2.17) we obtain that

lim
n→∞

max
1≤l≤d

sup
S∈Θε,L

sup
p∈P

Ep,S

∣∣∣∣ dHl

− (1− S2(zl))

∣∣∣∣ = 0 .

Taking into account that for the functions from the class (2.4) their deriva-
tives are uniformly bounded, we can deduce that

lim
n→∞

sup
S∈Θε,L

∣∣∣∣∣b− ad
d∑
l=1

(1− S2(zl))− ς∗

∣∣∣∣∣ = 0 ,

i.e.
lim
n→∞

sup
S∈Θε,L

sup
p∈P
|Ep,S U1,n| = 0 .

Therefore, taking into account that

lim sup
n→∞

n2k/(2k+1) sup
S∈Θε,L

‖λ̃‖2

d2
<∞ ,

we obtain that

limn→∞ n
2k/(2k+1) sup

S∈Θε,L

sup
p∈P
|Ep,S Un| ≤ (b− a)limn→∞U∗

2,n
, (A.16)
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where

U∗
2,n

=
n2k/(2k+1)

d2
sup

S∈Θε,L

sup
p∈P
|Ep,SU2,n| .

Now, using Lemma A.2 from [14] we obtain that

∣∣Ep,SU2,n

∣∣ =

∣∣∣∣∣
d∑
l=1

Ep,S σ
2
l

d∑
j=1

λ̃2(j)φ
j
(zl)

∣∣∣∣∣
≤ d σ1,∗ (22k+1 + 2k+2 + 1) ≤ 5 d σ1,∗ 22k .

Note that from the definition of σ1,∗ in (2.31) it follows that

lim sup
n→∞

d σ1,∗ <∞ ,

i.e.
lim sup
n→∞

sup
S∈Θε,L

sup
p∈P

∣∣Ep,SU2,n

∣∣ <∞ .

Therefore, the using this bound in (A.16) implies

limn→∞ n
2k/(2k+1) sup

S∈Θε,L

sup
p∈P
|Ep,S Un| = 0 .

Moreover, according to the inequality (A.4) from [4] we have that

Ep,Sη
4
j,d
≤ 64m̌σ2

1,∗ ,

where the coefficient m̌ is given in (2.30). From this we obtain, that

Ep,S|Un|1Γc ≤
(b− a)

d

d∑
j=1

Ep,Sη
2
j,d
1Γc + ς∗Pp,S(Γc)

≤
8σ1,∗(b− a)

√
m̌

d

√
Pp,S(Γc) + ς∗Pp,S(Γc) .

So, Proposition 2.2 implies

lim
n→∞

n2k/(2k+1) sup
S∈Wk,r

Ep,S|Un|1Γc = 0 .

This implies the quality (A.15), and we obtain Lemma A.9.
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