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Let L 2K(z)[@] be a linear differential operator, where K is the field of algebraic
numbers. A holonomic function over K is a solution f to the equation Lf =0. We
will also assume that f admits initial conditions in K at a non-singular point z 2K.

Given a broken-line path =z z 0 between z and z 0, which avoids the singularities
of L and with vertices in K, we have shown in a previous paper [Hoeven, 1999] how to
compute n digits of the analytic continuation of f along  in time O(n log3n log logn).
In a second paper [Hoeven, 2001b], this result was generalized to the case when z 0 is
allowed to be a regular singularity, in which case we compute the limit of f when we
approach the singularity along .

In the present paper, we treat the remaining case when the end-point of  is an
irregular singularity. In fact, we will solve the more general problem to compute
�singular transition matrices� between non standard points above a singularity and
regular points in K near the singularity. These non standard points correspond to
the choice of �non-singular directions� in Écalle's accelero-summation process.

We will show that the entries of the singular transition matrices may be approx-
imated up to n decimal digits in time O(n log4 n log log n). As a consequence, the
entries of the Stokes matrices for L at each singularity may be approximated with
the same time complexity.

1. Introduction

Definitions

LetK be a subfield ofC. A holonomic function overK is a solution f to a linear differential
equation Lf =0, where L= @r+Lr¡1 @

r¡1+ � � � +L02K(z)[@] is a monic linear differ-
ential operator of order r. Many classical special functions, such as exp, log, sin, cos, erf,
hypergeometric functions, Bessel functions, the Airy function, etc. are holonomic. More-
over, the class of holonomic functions is stable under many operations, such as addition,
multiplication, differentiation, integration and postcomposition with algebraic functions.
In the sequel, and unless stated otherwise, we will assume that K is the field of algebraic
numbers. We will say that f has initial conditions in K if F (z)=(f(z);:::; f (r¡1)(z))2Kr

for a certain non-singular point z 2K.
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In this paper, we will be concerned with the efficient multidigit evaluation of limits of
holonomic functions at irregular singularities. For this, it will be convenient to introduce
some terminology. We say that z2C is effective, if there exists an approximation algorithm,
which takes "2Q> on input and which returns a dyadic approximation z~2 (Z+ iZ) 2Z

with jz~¡ z j< ". Inside a computer, an effective complex number z is represented as an
object with a method which corresponds to its approximation algorithm [Hoeven, 2005].
We denote by Ceff the set of effective complex numbers.

The time complexity of z 2Ceff is the time complexity of its approximation algorithm,
expressed in terms of n = ¡log ". If an approximation algorithm has time complexity
T (n), then we call it a T (n)-approximation algorithm. An effective number is said to
be fast , if it admits an approximation algorithm with a time complexity of the form
O(n logO(1)n). We denote by Cfast the set of such numbers. A partial function f : (Ceff)n�
Ceff is said to be fast if it maps (Cfast)n into Cfast. For instance, multiplication is fast
[Schönhage and Strassen, 1971], since two n-bit numbers can be multiplied in timeM(n)=
O(n logn log logn). Implicitly defined functions in terms of fast functions, like division, are
also fast, as a result of Newton's method.

Whenever the coefficients of L admit singularities, then solutions f to Lf = 0 are
typically multivalued functions on a Riemann surface. From an effective point of view,
points on such a Riemann surface may be addressed via broken-line paths =z z 0=z0!
z1!���!zl starting at the point z=z0 where we specified the initial conditions for f . Each
straight-line segment zi! zi+1 should be sufficiently short, so that the disk with center zi
and radius jzi+1¡ zij contains no singularities. Given such a path, we will denote by f()
the evaluation of f at the endpoint z 0 of , as obtained via analytic continuation.

Previous work

It was first noticed by Brent [Brent, 1976a, Section 6] that the constant e admits an
efficient O(M(n) logn)-approximation algorithm based on binary splitting. This result was
obtained by analogy with Schönhage's fast algorithm for radix conversion. The paper also
mentions efficient algorithms for the computation of more general exponentials, although
this direction was not investigated in more detail, probably because even more efficient
O(M(n) logn)-algorithms were discovered shortly afterwards [Brent, 1976b].

The binary splitting algorithm was generalized to arbitrary holonomic over Q
in [Chudnovsky and Chudnovsky, 1990]. It was shown there that, given a holonomic func-
tion f over Q with initial conditions in Q, and a broken-line path  = z z 0 as above
with z; z 02Q, the number f() admits an O(M(n) log2 n)-approximation algorithm. In
the case when z 0 is a more general effective number with a T (n)-approximation algo-
rithm, it was also shown that f() admits an O(T (n+O(1))+M(n) log3n)-approximation
algorithm. In particular, the restriction of a holonomic function to an open domain of
Ceff is fast. By what precedes, this result is extremely interesting for the efficient multidigit
evaluation of many special functions. Special cases and a few extensions were rediscov-
ered independently by several authors [Karatsuba, 1991; Karatsuba, 1993; Karatsuba,
1995; Karatsuba, 2000; Hoeven, 1997; Hoeven, 1999; Haible and Papanikolaou, 1997].

Remark 1.1. An early hint to the existence of fast algorithms for the evaluation of holo-
nomic functions occurred in [Gosper and Schroeppel, 1972]. It is plausible that the authors
had something like the binary splitting algorithm in mind (the announced complexity is
the right one up to a factor O(log logn)), but no details are provided.
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Our first paper [Hoeven, 1999] on the subject contained three improvements with
respect to [Chudnovsky and Chudnovsky, 1990]. First, we noticed the possibility to work
over the algebraic numbersK instead ofQ, which allows for the fast evaluation of constants
like ¡( 2

p
). Secondly, we improved the above factor of log3 n (for the evaluation in arbi-

trary points) to log2n log logn. Finally, the evaluation of f() depends on a certain number
of bounds, which were assumed to exist empirically in [Chudnovsky and Chudnovsky,
1990]. In [Hoeven, 1999], it was shown that all necessary bounds can be computed effec-
tively, as a function of the operator L and the path . Stated otherwise, we showed
that there exists an algorithm which takes L,  and the initial conditions for f at z on input,
and which computes f() (as an object with a O(M(n) log2n)-approximation algorithm).

In a second paper [Hoeven, 2001b], we continued our studies by showing how to effi-
ciently evaluate the limit of f along a broken-line path  which ends in a regular singular
point z 0. This extension allows for the efficient evaluation of multiple zeta values, Bessel
functions (whose initial conditions are specified in a regular singular point) and many other
interesting transcendental constants. Some special cases of this more general result were
obtained before in [Karatsuba, 1993; Karatsuba, 1995; Haible and Papanikolaou, 1997].

A related problem to the evaluation of f at the end-point of a broken line path  is
the computation of �transition matrices� along . Given a path =z z 0 from z to z 0, the
�initial conditions� F (z 0)= (f(z 0); : : : ; f (r¡1)(z 0)) of f at z 0 depend linearly on the �initial
conditions� F (z)= (f(z); : : : ; f (r¡1)(z)) at z. Hence, when considering F (z) and F (z 0) as
column vectors, there exists a unique scalar matrix �z z 0=�z z 0

L with

F (z 0)=�z z 0F (z);

which is called the transition matrix along  for L. The relation �z z 00=�z 0 z 00�z z 0
make transition matrices well-suited for the process of analytic continuation. Therefore,
most algorithms from [Chudnovsky and Chudnovsky, 1990; Hoeven, 1999] rely on the com-
putation of transition matrices. In [Hoeven, 2001b], this concept was further generalized
to the case when  is allowed to pass through regular singularities.

Main results
In this paper, we will be concerned with the computation of the limits of holonomic
functions in irregular singularities and, more generally, with the computation of generalized
transition matrices along paths which are allowed to pass through irregular singularities.
The algorithms are based on an effective counterpart of the accelero-summation process, as
introduced by Écalle [Écalle, 1987; Écalle, 1992; Écalle, 1993; Braaksma, 1991; Borel, 1928;
Ramis, 1978]. Since this process is not completely straightforward, let us first motivate its
use for our application.

Consider a holonomic function f with an irregular singularity at the origin. Assume
that f admits a (usually divergent) asymptotic expansion f = f0+ f1 z + � � � 2K[[z]] in
a sector S near the origin. Assume also that we have a bound B for jf(z)j on S. Given
z02S \K, we are interested in computing I =

R
z0

0
f(t) dt. Notice that '(z)=

R
z0

z
f(t) dt is

a holonomic function, so the computation of I is a particular instance of the problem of
computing the limit of a holonomic function in an irregular singularity.

In order to find I~2 (Z+iZ) 2Z with jI~¡ I j<", for a given "2Q>, it clearly suffices to
compute '(z1) with precision "/2 at a point z1 with jz1j<"/(2B). This can be done using
the analytic continuation algorithm from [Chudnovsky and Chudnovsky, 1990; Hoeven,
1999]. However, since the equation Lf =0 may have other solutions g with growth rates of
the form log jg j=O(j1/z j�) at z=0, the transition matrix between z0 and z1 may contain
entries of size eO((1/")

�). The computation of n=O(¡log") digits of I~may therefore require
a time eO(n).
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The situation gets a bit better, if we want to compute J =
R
z0

0
f(t) e¡1/tdt instead of I,

where we assume that z0 2R>. In that case, using a similar method as above, we may
choose z12Q> with z1=O(¡log"). Consequently, the computation of n=O(¡log") digits
of J requires a time O(n� logO(1)n), where �>1. Although this already yields a polynomial
time algorithm, we are really interested in fast approximation algorithms.

Roughly speaking, the main result of this paper is that the computation of an arbitrary
limit of a holonomic function at an irregular singularity may be reduced to the computation
of a finite number of other, more special limits. These special limits, which are similar to J
above, with �=1, will be shown to admit fast O(M(n) log3n)-approximation algorithms.
More generally, we will generalize the concept of transition matrices, so as to allow for
broken-line paths through irregular singularities. In particular, Stokes matrices may be
seen as such �singular transition matrices�. We will both show that singular transition
matrices may be computed as a function of L and a singular broken-line path , and that
their entries admit O(M(n) log3n)-approximation algorithms.

This result admits several interesting applications besides the computation of limits of
holonomic functions in singularities. For instance, we may consider solutions f to Lf =0
with a prescribed asymptotic behaviour in one or several singularities and recover the func-
tion from these �singular initial conditions� and one or more singular transition matrices.
In [Hoeven, 2007a], it has also been shown that the possibility to compute the entries of
Stokes matrices can be used for the numeric computation of the differential Galois group
of L. In particular, we obtained an efficient algorithm for factoring L.

Our results can be compared to the only previous work on effective resummation that
we are aware of [Thomann, 1995]. First of all, the current paper has the advantage that all
necessary error bounds for guaranteeing a certain precision are computed automatically.
Secondly, the almost linear time complexity is far better than those achieved by other
numerical algorithms, like Taylor series expansions (of complexity �O(n2), at best) or the
Runge-Kutta method (of complexity eO( n4p )).

Quick overview

Let us briefly outline the structure of this paper. In section 2, we begin with a survey
of the accelero-summation process. The idea is to give a meaning to the evaluation of a
divergent formal solution to Lf =0 via a succession of transformations. We first make the
formal solution convergent at the origin by applying a formal Borel transform. We next
apply a finite number of integral transforms called �accelerations� followed by an a Laplace
transform. At the end, we obtain an analytic solution to Lf =0 in a sector near the origin,
which admits the divergent formal solution as its asymptotic expansion.

The material in section 3 is more or less classical. We first recall the definition of the
Newton polygon of L in a singularity, as well as the relationship between its slopes and the
shape of formal solutions to Lf =0. In particular, the steepest slope gives us information
about the maximal growth rate � of solutions. We next study the Newton polygons of
other operators related to L, like the operators which annihilate the Borel transforms of
solutions to L.

In section 4, we recall several stability properties [Stanley, 1980] for holonomic functions
and constants, as well as their effective counterparts. In particular, we will show that
the integrands involved in the accelero-summation procedure are holonomic and how to
compute vanishing operators for them. Using the results from section 3, these operators
will be seen to have the required growth rates at infinity.
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In sections 5, we show how to compute uniform bounds for the transition matrices
in suitable sectors near infinity. In section 6, these bounds will be used for the efficient
evaluation of integrals with exponential decrease. In section 7, the different techniques are
assembled into an effective and efficient accelero-summation procedure.

None of the algorithms in this paper have been implemented yet. Nevertheless, at least
some of the algorithms should be implemented inside the standard library of the upcoming
Mathemagix system [Hoeven et al., 2002] and any help would be appreciated.

Notations
The following notations will frequently be used in this paper:

C_ Riemann surface of log
K� Subset fx2K:x� 0g of K, with �2f=/ ;>;>g
Dc;r;D�c;r Open and closed disks with center c and radius r
S��;�;R0 Closed sector fz 2C_ : jarg z¡ � j6�; jz j6Rg at the origin
S��;�;R1 Closed sector fz 2C_ : jarg z¡ � j6�; jz j>Rg at infinity
B~z Formal Borel transform w.r.t. z
L̂z�;L�z� Analytic Laplace transform w.r.t. z (for minors and majors)
Âk;k 0� ;A�k;k 0� Acceleration operators (for minors and majors)

M'L Multiplicative conjugation of L with e
R
'

PpL Compositional conjugation of L with zp

Q!L Compositional conjugation of L with ! z
�
L Transition matrix for L along 

The operators B~z, L̂z�, L�z�, Âk;k 0� , A�k;k 0� are defined in sections 2.1 and 2.2. The transfor-
mationsM', Pp and Q! are introduced in sections 3.2 and 4.2.4. Transition matrices are
defined in section 4.3.

2. Reminders on the accelero-summation process

In this section we survey the process of accelero-summation, give some explicit bounds for
the acceleration kernels, as well as the interpretation of the accelero-summation process
in terms of �majors�. We have aimed to keep our survey as brief as possible. It is more
elegant to develop this theory using resurgent functions and resurgence monomials [Écalle,
1985; Candelberger et al., 1993]. For a more complete treatment, we refer to [Écalle, 1987;
Écalle, 1992; Écalle, 1993; Braaksma, 1991; Martinet and Ramis, 1991].

2.1. The accelero-summation process
Let C[[zQ

>
]] be the differential C-algebra of infinitesimal Puiseux series in z for �= z @

and consider a formal power series solution f~2O=C[[zQ
>
]][log z] to a linear differential

equation over K(z). When applicable, the process of accelero-summation enables to asso-
ciate an analytic meaning f to f~ in a sector near the origin of the Riemann surface C_ of
log, even in the case when f~ is divergent. Schematically speaking, we obtain f through a
succession of transformations:

f~ f

B~z1  
¡

¡!L̂zp
�p

f̂1 ¡!
Âz1!z2

�1
f̂2 ¡! � � � ¡! f̂p¡1 ¡!

Âzp¡1!zp

�p¡1
f̂p

(2.1)

Joris van der Hoeven 5



Each f̂i is a �resurgent function� which realizes f~i(zi) = f~(z) in the �convolution model�
with respect to the i-th �critical time� zi= zkip (with ki2Q> and k1> ���>kp). In our case,
f̂i is an analytic function which admits only a finite number of singularities above C. In
general, the singularities of a resurgent function are usually located on a finitely generated
grid. Let us describe the transformations B~, Âzi!zi+1

�i and L̂zp
�p in more detail.

The Borel transform We start by applying the formal Borel transform to the
series f~1(z1)= f~(z)=

P
�;rf

~
1;�;rz1

� logrz12C[[z1
Q>

]][logz1]. This transformation sends each
z1
� logr z1 to

(B~z1 z1� logr z1)(�1)= �1
�¡1X

i=0

r �
r
i

�
(r¡i)(�) logi �1; (2.2)

where (�)= 1/¡(�), and extends by strong linearity:

f̂1(�1)= (B~z1 f~1)(�1)=
X
�2Q>

r2N

f~1;r;� (B~z1 z1� logr z1)(�1);

The result is a formal series f̂12 �1¡1C[[�1
Q>

]][log �1] in �1 which converges near the origin of
the Riemann surfaceC_ of the logarithm. The formal Borel transform is a morphism of differ-
ential algebras which sends multiplication to the convolution product, i.e. B~z1(fg)=(B~z1 f)�
(B~z1 g), and differentiation @z to multiplication by ¡�. Intuitively speaking, the Borel
transform is inverse to the Laplace transform defined below.

Accelerations Given i < p, the function f̂i is defined near the origin of C_ , can be
analytically continued on the axis e�iiR>�C_ , and admits a growth of the form f̂i(�i) =
expO(j�ijki/(ki¡ki+1)) at infinity. The next function f̂i+1 is obtained from f̂i by an accel-
eration of the form

f̂i+1(�i+1)= (Âzi!zi+1
�i f̂i)(�i+1)=

Z
�i2e�iiR>

f̂i(�i) K̂ki;ki+1(�i; �i+1) d�i; (2.3)

where the acceleration kernel K̂ki;ki+1 is given by

K̂ki;ki+1(�i; �i+1) = 1
2 p i

Z
c¡1i

c+1i

e�i+1zi+1¡�izidzi+1

= 1

�i+1
K̂ki+1/ki

�
�i

�i+1
ki+1/ki

�
(2.4)

K̂�(�) = 1
2 p i

Z
c¡1i

c+1i

ez¡�z
�
dz: (2.5)

For large � 2R>, we will show in section 2.4 below that

K̂�(�)6B exp(¡C�1/(1¡�))

for some constants B; C > 0. It follows that the acceleration f̂i+1 of f̂i is well-defined
for small �i+1 on e�iR>, where �= �i ki/ki+1. The set Di�R of directions � such f̂i
admits a singularity on e�iR> is called the set of Stokes directions at the i-th critical
time. Accelerations are morphisms of differentialC-algebras which preserve the convolution
product. Intuitively speaking, one has Âzi!zi+1

�i =Bzi+1 � L̂zi
�i, where the Laplace transform

L̂zi
�i is defined below.
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The Laplace transform The last function f̂p is defined near the origin of C_ , can
be analytically continued on the axis e�iiR>�C_ and admits at most exponential growth
at infinity. The function f is now obtained using the analytic Laplace transform

f(z)= fp(zp)= (L̂zp
�p f̂p)(zp)=

Z
�p2e�piR>

f̂p(�p) e¡�p/zp d�p: (2.6)

For any sufficiently small zp with jarg zp¡�pj<p/2, the value f(z)= fp(zp) is well defined.
The set Dp of Stokes directions is defined in a similar way as in the case of accelerations.
The Laplace transform is a morphism of differential C-algebras which is inverse to the
Borel transform and sends the convolution product to multiplication.

Given tuples k= (k1; : : : ; kp), �=(�1; : : : ; �p) of critical times k1> � � � >kp in Q> and
directions �12R1 :=RnD1;:::; �p2Rp :=RnDp, we say that a formal power series f~2O is
accelero-summable in the multi-direction � if the above scheme yields an analytic function
f := sumk;� f~. For any �< kp p/2, this function is defined in a sufficiently small sector
near 0_ of the form S�kp�p;�;R. We denote the set of accelero-summable power series of this
kind by Ok;�.

The set Ok;� forms a differential subring of O and the map f~ 7! f for f~2Ok;� is injec-
tive. If k 0 and � 0 are obtained from k and � by inserting a new critical time and an arbitrary
direction, then we have Ok;� Ok0;� 0. In particular, Ok;� contains Ocv=CffzQ>gg[log z],
where CffzQ>gg denotes the ring of convergent infinitesimal Puiseux series. Assuming
that each Di is finite modulo 2 p, and setting R :=R1� � � � �Rp, we also denote Ok;R=T
�2ROk;�, Ok=

S
ROk;R and Oas=

S
kOk.

Let E be the group of elements eP with P 2K[zQ<
] and denote by S=OzK[E] the ring

of all polynomials of the form f~=
P

e2Ef
~
ee with fe2OzK. The notion of accelero-summa-

tion extends to elements in S instead of O. Indeed, given g~2Ok;�, �2C, e=eP (1/ zpp )2E,
we may simply take (sumk;� g~z� e)(z) = (sumk;� g~)(z) z� e. It can be checked that this
definition is coherent when replacing g~z� by (zk g~) z�¡k for some k2Q. By linearity, we
thus obtain a natural differential subalgebra Sk;��S of accelero-summable transseries with
critical times k and in the multi-direction �. We also have natural analogues Sk and Sas
of Ok and Oas.

2.2. Majors and minors
In general, the acceleration and Laplace integrands are both singular at zero and at infinity.
Much of the remainder of this paper is directly or indirectly concerned with the efficient
integration near infinity. This leaves us with the integration at zero. A classical trick is
to replace the integrand by a so called major . This allows us to replace the integral from
zero to a point u close to zero by a contour integral around zero from e¡2piu to u. We will
rapidly review this technique and refer to [Écalle, 1985; Candelberger et al., 1993; Écalle,
1992; Écalle, 1993] for details.

Consider an analytic germ f̂ near the origin 0_ of the Riemann surfaceC_ of log. Amajor
for f̂ is an analytic germ f� with

f̂ (�)= f�(�)¡ f�(� e¡2pi):

The minor f̂ only depends on the class f� of f� modulo the set of regular germs at 0. We
call f a microfunction. Given a regular germ ', � 2Q> and k2N, the minor

f̂(�)= '(�) �� logk �

Joris van der Hoeven 7



admits the major

f�=

8<: '(�) ��Pk(log �) if � 2N
1

1¡ e¡2pi�
'(�) ��P�;k(log �) if �2/N (2.7)

for certain polynomials Pk(log �) =
1

2 p i (k+1)
logk+1 � + � � � and P�;k(log �) = logk � + � � �.

More generally, if f̂ is locally integrable in a sector containing a point u near 0_ , then

f�(�)= ¡1
2 p i

Z
0

u f̂(�)
�¡ � d� (2.8)

is a major for f̂ . The class of f� does not depend on the choice of u.

Given majors f�i for the f̂i from section 2.1, we may now replace (2.3) and (2.6) by

f̂i+1(�i+1) =
Z
H�i
f�i(�i) K̂ki;ki+1(�i; �i+1) d�i (2.9)

fp(zp)= (L�zp
�p fp)(zp) =

Z
H�p

f�p(�p) e¡�p/zpd�p; (2.10)

whereH� stands for the contour (see figure 2.1 below) which consists of H�
¡ from e(�¡2p)i1

to e(�¡2p)i " (for some small " > 0), followed by C� from e(�¡2p)i " around 0 to e�i ", and
H�+ from e�i " to e�i1.

Using the formula (2.8) in combination with (2.9) leads to the direct expression

f�i+1(�i+1)= (A�ki;ki+1
�i f�i)(�i+1)=

Z
H�i
f�i(�i)K�ki;ki+1(�i; �i+1) d�i (2.11)

of f�i+1 in terms of f�i, where

K�(�i; �i+1)= K�u (�i; �i+1)=
¡1
2 p i

Z
0

uK̂ki;ki+1(�i; �)
�¡ �i+1

d�:

The integrals (2.11) and (2.10) further decompose into

f�i+1(�i+1) =
Z
C�i
f�i(�i)K�ki;ki+1(�i; �i+1) d�i+Z

H�i
+
f̂i(�i)K�ki;ki+1(�i; �i+1) d�i (2.12)

fp(zp) =
Z
C�p
f�p(�p) e¡�p/zp d�p+

Z
H�p
+
f̂p(�p) e¡�p/zpd�p: (2.13)

More generally, differentiating m2N times w.r.t. �i+1, we obtain the following formulas,
on which we will base our effective accelero-summation algorithms:

f�i+1
(m)(�i+1) =

Z
C�i
f�i(�i)K�ki;ki+1

(m) (�i; �i+1) d�i+Z
H�i

+
f̂i(�i)K�ki;ki+1

(m) (�i; �i+1) d�i (2.14)

fp
(m)(zp) =

Z
C�p
f�p(�p)

@m e¡�p/zp

@zp
m d�p+

Z
H�p
+
f̂p(�p)

@m e¡�p/zp

@zp
m d�p: (2.15)
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In section 2.4 below, we will show that for u small enough, the kernel K�(�i; �i+1) and its
derivatives in �i+1 have the same order of decrease at infinity as K̂(�i; �i+1).

0

ei�i1

C�i

H�i
+H�i

¡

C�i

H�i
+

Figure 2.1. Illustrations of the contours for the acceleration and Laplace integrals. At the left,
the contour for the direct integrals (2.3) and (2.6) using minors. In the middle, the contour in the
case of majors (2.9) and (2.10). At the right hand side, we use majors for integration at 0 and
minors for the integration at infinity, as in (2.12) and (2.13).

2.3. Some elementary bounds

Lemma 2.1. Given �2R and X > 0 with X > 2�, we haveZ
X

1
x� e¡xdx6 2X� e¡X:

Proof. In the case when �6 0, we haveZ
X

1
x� e¡xdx6X�

Z
X

1
e¡xdx=X� e¡X6 2X� e¡X:

If �> 0, then consider the function t= '(x)=x¡� log x and its inverse x=  (t). Given
X > 2�, we obtainZ

X

1
x� e¡xdx =

Z
'(X)

1
 0(t) e¡t dt=

Z
'(X)

1 e¡t dt
1¡ �

 (t)

dt

6 2
Z
'(X)

1
e¡tdt=2X� e¡X:

�

Lemma 2.2. Given �> 0, �> 0, �>�¡ 1 and X > 0 with X >
�
2 �+2

��

�
1/�

, we haveZ
X

1
x� e¡�x

�
dx 6 2

��
X�+1¡� e¡�X

�
;Z

X

1
e¡�x

�
dx 6 X e¡�X

�
:

Proof. For X >
�
2 �+2

��

�
1/�>

�
2 �+1¡�

��

�
1/�

, the above lemma impliesZ
X

1
x� e¡�x

�
dx= 1

��
�+1

�

Z
�X�

1
x
�+1¡�

� e¡xdx6 2
��

X�+1¡� e¡�X
�
:
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The second relation easily follows from the first one by setting �=0. �

Lemma 2.3. Let �; �; ";X > 0. Then

X� e�X6
�
�
" e

�
�

e(�+")X:

Proof. This follows from the fact that the function x� e¡"x admits its minimum
at x= �/". �

Lemma 2.4. Given �> 1 and X 6 2�, we haveZ
X

1
x� e¡xdx6 4 e3�¡(�) e¡X

Proof. By lemma 2.1, we haveZ
X

1
x� e¡xdx6 2��+1 e¡�+2 (2�)� e¡2�;

since x� e¡x admits its maximum in x=�. Furthermore,

2��+1 e¡�+2 (2�)� e¡2�6 2 (e���+1+2���) e¡X6 4 e3�¡(�) e¡X:

The second inequality can be checked for small � by drawing the graph and it holds for
large � because of Stirling's formula. �

Lemma 2.5. Given �2 (0; 1), �> 1, � > 0 and X 6 [2 (�+1¡�)/�]1/�, we haveZ
X

1
x� e¡�x

�
dx6 4 e

4�+4

� ¡(�
�
) e¡�X

�
:

Proof. Application of the previous lemma, after a change of variables. �

2.4. Explicit bounds for the acceleration kernels at infinity

Lemma 2.6. Let �2 (0; 1) and � > 0. Denote

s = (� �)
1

1¡�

� = p
2
�

and assume s> 14. Then

jK̂�(�)j6
8 s

1¡�
p

(cos�)1/�
e¡

1¡�
�
s
:

Proof. Let '(z) = z ¡ � z�. We will evaluate the integral (2.5) using the saddle point
method. In the neighbourhood of the saddlepoint s, we have

'(s+ i ") = �¡ 1
�

s¡ 1¡�
2 s

"2¡ i
2

Z
0

"

'000(s+ i t) ("¡ t)2dt;

'000(z) = ¡� � (1¡�) (2¡�) z�¡3:
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For z on [s; s+i s
p

], we also have

j'000(z)j 6
�

1
1¡ s¡1/2

�
3

� � (1¡�) (2¡�) s�¡3

=
�

1
1¡ s¡1/2

�
3 (1¡�) (2¡�)

s2
;

For j"j6 s
p

, it follows that�������� i2
Z
0

"

'000(s+ i t) (t¡ ")2dt
�������� 6 �

1
1¡ s¡1/2

�
3 (1¡�) (2¡�)

6 s2
"3

6 1¡�
3 s3/2

�
1

1¡ s¡1/2

�
3

"2

6 1¡�
4 s

"2;

where the last bound follows from our assumption s> 14. We infer that

<('(s+ i ")¡ '(s))6¡1¡�
4 s

"2;

whence ����������
Z
¡ s
p

s
p

e'(s+ix)¡'(s) dx

����������6
��������Z
¡1

1
e¡

1¡�
4s

x2 dx
��������= 4 p s

1¡�

r
: (2.16)

Now let != s (cos�)¡1/�> s
p

. We have����������
"Z

¡!

¡ s
p

+
Z

s
p

!
#
e'(s+ix)¡'(s)dx

����������6 2!; (2.17)

since <'(s+ ix) admits a unique maximum at x=0. Furthermore,

< (� (s+ ix)�)> � jxj� cos�;

for all x2R. Lemma 2.2 therefore implies���������Z
¡1

¡!
+
Z
!

1�
e'(s+ix)¡'(s) dx

�������� 6 2! e�(s
�¡(cos�)!�) 6 2!; (2.18)

since !�> s�/cos �> 2 s�¡1/cos �= 2/(� � cos �). Putting the relations (2.16), (2.17)
and (2.18) together, we obtain

jK̂�(�)j e
1¡�
�
s6 4 p s

1¡�

r
+ 4 s
(cos�)1/�

6 8 s
1¡�
p

(cos�)1/�
:

This completes the proof of our lemma. �

Lemma 2.7. Let �=ki+1/ki and assume that arg �i=�arg �i+1, argu=arg �i+1, 0< juj<
j�i+1j/2 and

j�i/u�j>max
�
141¡�

�
;

�
2

1¡�

�
1¡�

�¡�
�
: (2.19)

Then

jK�ki;ki+1
(m) (�i; �i+1)j6

������������ 22¡mm!

p (cos �p
2
)1/� 1¡�
p

�i+1
m+1

������������ e¡
1¡�
�
(��i/u

�)1/(1¡�)
: (2.20)
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Proof. We first observe that

K�ki;ki+1
(m) (�i; �i+1) = ¡m!

2 p i

Z
0

u K̂�(�i/��)
(�¡ �i+1)m+1

d�
�

= ¡m!
2 p i�

Z
�i/u�

1 K̂�(�)
((�i/ �)1/�¡ �i+1)m+1

d�
�
:

For �> �i/u�, we also have j�i/ � j1/�6 juj6 j�i+1j/2, so that

jK�ki;ki+1
(m) (�i; �i+1)j6

���������� m!
2m+2 p� �i+1

m+1

����������
Z
�i/u�

1
K̂�(�)

d�
�
: (2.21)

Setting �=(� p)/2, the lemmas 2.6 and 2.2 now implyZ
�i/u�

1
K̂�(�)

d�
�
6 8

1¡�
p

(cos�)1/�

Z
�i/u�

1
(� �)

1

1¡� e¡
1¡�
�
(��)1/(1¡�) d�

�

6 16�
(cos�)1/� 1¡�

p e¡
1¡�
�

(��i/u
�)1/(1¡�)

;

because of the assumption (2.19). Combining this bound with (2.21), we obtain (2.20). �

3. Differential operators and Newton polygons

3.1. Definition of the Newton polygon
Let K[zQ] be the set of polynomials of the form P =P�1 z

�1+ � � � +P�l z�l with P�1; : : : ;
P�l2K=/ and �1> � � �>�l2Q. If l=/ 0, then we call v1(P )=¡�1 the valuation of P at
infinity and �l= v0(P ) the valuation of P at zero. If l= 0, then v1(P ) = v0(P ) =+1.
We write v= v1 or v= v0 when it is clear from the context whether we are working near
z=1 or z=0.

Now consider a differential operator

L=Lr �r+ � � �+L02K[zQ][�] (Lr=/ 0);

where �= z @= z @

@z
. The support suppL of L is defined to be the set of all pairs (i; �)2

N�Q with Li;�= (Li)�=/ 0. The Newton polygon (see figure 3.1) of L at infinity (resp.
zero) is the convex hull of

f(x; �+ � y): (i; �)2 suppL; 06x6 i; y> 0g;

where �=¡1 (resp. �=1).
The boundary of the Newton polygon consists of two vertical halflines and a finite

number of edges. The outline of (the Newton polygon of) L is the sequence (i0; �0); : : : ;
(il; �l) of points with 0= i0< � � � < il= r, such that the j-th edge of the Newton polygon
is precisely the segment which joins (ij¡1; �j¡1) to (ij ; �j). We call

�j=
�j¡�j¡1
ij¡ ij¡1

the slope of the j-th edge. From the definition of the Newton polygon as a convex hull, it
follows that

v(Lk)¡ v(Lij)> � �j (k¡ ij)

for all k. We call �=�L= � �l¡1 the growth rate of L.
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Figure 3.1. Illustration of the Newton polygons at infinity and zero of the operator L= �4+
2 z2 �3¡ z3 �2+(7 z¡ 3 z3) �+ 11 z2.

3.2. Operations on differential operators

3.2.1. Multiplicative conjugation

Given L2K[zQ][�] and '2K[zQ], we defineM'L to be the operator which is obtained
by substituting �+ ' for � in L. For all f , we have

(M'L)(f)= e¡
R
'/zL(e

R
'/z f):

In the case when '2K, we have

suppM'L� suppL+(¡N; 0):

In particular, the Newton polygon of M'L and L coincide, both at zero and infinity (see
figure 3.2). In general, only the slopes which are steeper than the exponent of the dominant
monomial of ' coincide.

Figure 3.2. Illustration of the Newton polygons at infinity of L from figure 3.1 and M2M =
�4+(2 z2+8) �3+(12 z2¡ z3+ 24) �2+(24 z2¡ 7 z3+7 z+ 32) �+ 27 z2¡ 10 z3+ 14 z+ 16.

3.2.2. Compositional conjugation

Let � 2Q=/ and consider the transformation P�: z 7! z�. If z=u�, then

z
@
@z

=u� @
@u�

= 1
�
u
@
@u
;
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so the transformation P� naturally extends to K[zQ][�] by sending � to �¡1 �. We have

suppP�L= f(i; � �): (i; �)2 suppLg:
Consequently, if

(i0; �0); : : : ; (il; �l)

is the outline of L, then

(i0; � �0); : : : ; (il; � �l)

is the outline of P�L. In particular, �P�L= j� j�L. Of course, if � < 0, then we understand
that the roles of infinity and zero are interchanged. In figure 3.3, we have illustrated the
effect of the transformation P� on the Newton polygon.

Figure 3.3. Illustration of the Newton polygons at infinity of L from figure 3.1 and P1/2L=
16 �4+ 16 z �3¡ 4 z3/2 �2+(14 z1/2¡ 6 z3/2) �+ 11 z.

3.3. The Borel transform
Let us now consider the analogue of the formal Borel transform B~ from section 2.1 for
differential operators. It is classical that the formal Borel transform satisfies

B~(z2 @z f) = �B~ f ;
B~(z¡1 f) = @�B~ f:

for f 2 zK[[z]]. Rewritten in terms of the operators �z= z @z and ��= � @�, this yields

B~(�z f) = (��+1)B~ f ;
B~(z¡1 f) = (�¡1��)B~ f:

This induces a natural K-algebra morphism B:K[z¡1][�z]!K[�¡1][��], by setting

Bz¡1 = �¡1 ��;
B�z = ��+1:

Each term Li;j z
j �i of an operator L2K[z¡1][�z] gives rise to a contribution

B(Li;j zj �zi)= � j (Lj ;i ��
i¡j+ ci¡j¡1 ��

i¡j¡1+ � � �+ c0)

to BL, for suitable constants ci¡j¡1; : : : ; c02K. In particular,

suppB(Li;j zj �zi)� (i¡ j; j)+ (¡1; 0)N:
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Let (i0; �0); : : : ; (il; �l) be the outline of L at infinity and for all j, let

�̂j=
�j

1¡�j
:

If 0<�j< 1, then the j-th edge gives rise to an edge with slope �̂j in the Newton polygon
of BL at zero. If �j>1, then it gives rise to an edge with slope �̂j in the Newton polygon
of BL at infinity (see figure 3.4). In addition, if Lr contains several terms, then the Newton
polygon of BL at infinity also contains an edge with slope ¡1.

Figure 3.4. The left hand column shows the Newton polygons at infinity of the operators L=
�4¡ 6

z
�3¡ 1

z2
�¡ 7

z2
and P2L= 1

16 �
4¡ 3

4 z2
�3¡ 1

2 z4
�¡ 7

z4
. At the right hand side, we have drawn the

Newton polygons of their Borel transforms BL=
�
1¡ 6

�

�
�4+

�
4¡ 18

�
¡ 1

�2

�
�3+

�
6¡ 18

�
¡ 7

�2

�
�2+�

4¡ 6

�
+

8

�2

�
�+1 and BP2L=

�
¡ 3

4 �2
¡ 1

2 �4

�
�5+

�
1

16
¡ 3

2 �2
¡ 9

2 �4

�
�4+

�
1

4
+

79
2 �4

�
�3+

�
3

8
+

3

2 �2
¡

159
2 �4

�
�2+

�
1

4
+

3

�2
+

45
�4

�
�+

1

16 at infinity (the middle column) and at zero (the right hand column).

3.4. Formal solutions
Having chosen whether we work near infinity or near the origin, let

O = K[[z�Q
>
]][log z];

E = expK[z�Q
<
];

S = (O zQ)[E]:

Given f 2S, the set Ef = fe2E: fe=/ 0g is called the set of exponential parts of f , and the
number �f=maxf¡��: eP (z)2Ef ;P�=/ 0g[f0g the growth rate of f . More generally given
a subvector space V of S, we denote EV= fEf: f 2Vg and �V=max f�f: f 2Vg.

The Newton polygon provides a lot of information about the structure of the subvector
space VL�S of formal solutions to Lf =0. In the sequel, we will use the following classical
consequences of the Newton polygon method:

Theorem 3.1. Let L2K(z)[�]=/ be monic, of order r and assume that K is algebraically
closed. Then the equation Lf admits a full basis of solutions in S, i.e. dimVL=r. Moreover,
each basis element may be chosen so as to have a unique exponential part. �
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Theorem 3.2. Let �1< � � �<�l be the slopes of the Newton polygon of L. Then

a) f�f : f 2VL
=/g= f� �1; : : : ; � �lg.

b) �VL=�L. �

4. Holonomy

4.1. Holonomic functions in several variables
Let K be an algebraically closed subfield of C. Consider the coordinates z=(z1;:::; zn) and
corresponding derivatives @ =(@1; : : : ; @n) w.r.t. z1; : : : ; zn. An analytic function f in z is
said to be holonomic over K, if it satisfies a non-trivial linear differential equation Li f =0
with Li2K(z)[@i] for each i2 f1; : : : ; ng. Equivalently, we may require that K[@] f is a
finitely generated module over K(z). The second criterion implies the following classical
proposition [Stanley, 1980]:

Proposition 4.1. Let f and g be holonomic functions in z. Then

a) Any rational function in K(z) is holonomic.

b) f + g is a holonomic function.

c) f g is a holonomic function.

d) @i f is a holonomic function for all i2f1; : : : ; ng.

e) Given a point u on the Riemann-surface R of f, the specialization f(zn= un) is
holonomic.

f ) Given algebraic functions g1; : : : ; gn over K(z) the composition

f � (g1; : : : ; gn):z 7! f(g1(z); : : : ; gn(z))

is holonomic.

Proof. The property (c) follows from the inclusion

K[@](f g)� (K[@] f) (K[@] g)

and the fact that the dimension of the right-hand side is finite over K(z). All other
properties are proved in a similar way. �

A more interesting closure property is the stability under definite integration. Consider
a holonomic function f in z and a point u on its Riemann surface R. Let Rn be the
Riemann surface of the specialization f(z 0=u0), where z 0=(z1; : : :; zn¡1) and u0=(u1; : :: ;
un¡1). Consider a path : (0; 1)!Rn on Rn with possibly singular end-points. If  is
singular at � 2 f0; 1g, then we assume that there exists a neighbourhood U 0 of u0, such
that (z 0; ): (0;1)!R is a path onR for all z 02U 0 and limt!�f(z 0; (t))=0. We now have:

Proposition 4.2. The integral g(z 0)=
R

f(z 0; zn) dzn is a holonomic function.

Proof. It suffices to show that g is holonomic in a neighbourhood of u0. Let p=(p1; : : : ;
pn)2Nn be such that

K[@] f �K[@]<p f =Vect(@k f : 06 k1< p1; : : : ; 06 kn< pn):
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Let f+ and f¡ be the specializations of f in zn at the end-point resp. starting point of .
Notice that f+ and f¡ are defined in a neighbourhood of u0. Setting @ 0=(@1; : : : ; @n¡1),
the space

R := (K[@ 0]<p0 f+)+ (K[@ 0]<p0 f¡)

is finite dimensional over K(z 0). For each k2Nn and l2N, let

Ik;l=
Z

zn
l (@k f)(z) dzn:

The differential equation for f in zn yields a finite relationX
kn=0

pn X
i

Ckn;i I(k0;kn);l+i=0;

with Ckn;i2K(z 0) for all kn. Partial integration also yields a relation

I(k0;i);l¡
1

l+1
I(k0;i+1);l+12R

for every i. Combining these relations, we obtain a non-trivial relation

Ak 0;0 I(k0;0);l+ � � �+Ak 0;q I(k 0;0);l¡q 2R;

where Ak0;0; : : : ; Ak0;q 2K(z 0)[l]. For l which are not a root of Ak0;0, we thus obtain a
recurrence relation for I(k0;0);l. Therefore, the space

I =Vect(Ik;l: 06 k1< p1; : : : ; 06 kn¡1< pn¡1; kn=0; l 2N)+R

is again finite dimensional over K(z 0). We conclude our proof with the observation that
I is stable under @ 0. �

4.2. Computation of vanishing operators
Let us now turn our attention to the one-dimensional case. Given a monic differential
operator L2K(z)[@], we denote by HL the space of solutions to the equation Lf =0 at a
given point. In the case of formal solutions at zero or infinity, we will also write EL=EHL.
Inversely, given a vector space V of formal series, analytic germs or analytic functions
on some domain, we say that L 2K(z)[@] vanishes on V if LV = 0. We say that L is a
vanishing operator for V if HL=V , in which case V is said to be closed .

Given two operators K;L2K(z)[@], we know by proposition 4.1 that there exists an
operatorM 2K(z)[@] which vanishes on HK+HL. It turns out that the operator K�L of
minimal order with this property is actually a vanishing operator for HK+HL. A similar
property holds for the operators K �L, L� and L�p of minimal orders which vanish on
Vect(HKHL), HL0 , resp. Vect(HL � ': 'p= z), where p 2N>. What is more, there exist
algorithms for computing these vanishing operators.

In this section, we will briefly recall these algorithms, and thereby give an effective
proof of lemma 4.3 below. The algorithms are all more or less classical, but we could not
find a reference where they are all described together. We will also prove a slightly weaker
result for the operation (2.8) which associates a major to a minor.

Lemma 4.3. Let K;L be monic differential operators in K(z)[@] and p2N=/ .

a) There exists a unique monic K �L2K(z)[@] with HK�L=HK+HL.
b) There exists a unique monic K �L2K(z)[@] with HK�L=Vect(HKHL).
c) There exists a unique monic L�2K(z)[@] with HL�=HL0 .
d) There exists a unique monic L�p2K(z)[@] with HL�p=Vect(HL � ': 'p= z).
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4.2.1. Addition

We notice that K�L coincides with the least common left multiple of K and L in the Ore
ring K(z)[@]. Indeed, any common left multiple vanishes on HK +HL and any operator
which vanishes on HK resp. HL right divides K resp. L. One may thus compute K �L
using any classical algorithm for the computation of least common left multiples, such as
the Euclidean algorithm.

4.2.2. Multiplication

Given formal solutions F and G to KF =0 and LG=0, the product FG and its successive
derivatives F 0G+FG0, F 00G+2F 0G0+FG00, etc. may all be reduced using the relations
KF =LG=0. In other words, (FG)(k)2V =

L
i<r;j<sK(z)F

(i)G(j), for all k, where r
and s denote the orders of K resp. L. Consequently, there exists a K(z)-linear relation
among FG; : : : ; (FG)(rs) in V. By linear algebra, we may compute the monic operator M
of smallest order withM(FG)=0 in V . Using an adaptation of the proof of [Hendriks and
Singer, 1999, Lemma 6.8], we will show that M =K�L.

Let f1; : : : ; fr and g1; : : : ; gs be fundamental systems of solutions to Kf =0 resp. Lg=0
at a non-singular point, considered as elements of the field K of convergent Laurent series
at this point. Let C1;:::;Cr andD1;:::;Ds be formal indeterminates. Then the substitutions

F (i) 7! C1 f1
(i)+ � � �+Cr fr

(i) (i < r)

G(j) 7! D1 g1
(j)+ � � �+Ds gs

(j) (j < s)

yield an isomorphism

':A=K[F ; : : : ; F (r¡1); G; : : : ; G(s¡1)]!B=K[C1; : : : ; Cr; D1; : : : ; Ds]:

Now consider a monic operator N 2K(z)[@] of smaller order than M . Using the rela-
tions KF =LG=0, we may rewrite N(FG) as a non-zero element of V �A. It follows
that '(N(F G)) =/ 0. Consequently, there exist constants c1; : : : ; cr; d1; : : : ; ds 2K with
'(N(FG))(c1; : : : ; cr; d1; : : : ; ds)=/ 0. Setting f = c1 f1+ � � �+ cr fr and g=d1 g1+ � � �+ds gs,
we infer that N(fg)=/ 0, so N is not a vanishing operator of Vect(HKHL). This shows that
M is indeed the differential operator of lowest order which vanishes on Vect(HKHL).

The proof that Vect(HKHL) is closed is based on differential Galois theory [van der
Put and Singer, 2003]: when computing the solutions to operators in K(z)[@] in a suitable
Picard-Vessiot or D-algebraic closure K, any differential automorphism of K over K(z)
leaves both HK and HL, whence Vect(HKHL), invariant. But, given a finite dimensional-
subvector space V of K which is invariant under any differential automorphism, we may
explicitly construct an operator 
2K(z)[@] with H
=V , e.g. [Hoeven, 2007a, proposition
21(b)]. This shows that Vect(HKHL) is closed.

4.2.3. Differentiation

If L(1)=0, then L is right divisible by @, so we must have L=L� @. Otherwise, the least
common multiple of L and @ inK(z)[@] has order r+1, so there exist operators A of order 1
and B of order r and with AL=B @. These operators may again be computed using a
modified version of the Euclidean algorithm. Since dimHL�= dimHL and BHL0 = 0, we
have L�=B.

4.2.4. Ramification

In order to compute the operator L�p, it is more convenient to work with the derivation �
instead of @. It is easy to see that this changes the definitions operators K �L, K �L,
L� and L�p only up to a multiple by a power of z.
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Given a primitive p-th root of unity !2K, let Q!L be the operator with (Q!L)i(z)=
Li(! z) for all i. Then we have (Q!L)(f � (! z)) =L(f) � (! z) for all f , whence f � (! z)
is a root of Q!L if and only if f is a root of L. By what precedes, it follows that 
=
L�Q!L� � � ��Q!p¡1L satisfies H
=HL+HL� (!z)+ � � �+HL � (!p¡1 z). Furthermore,
Q!
=
 implies that 
i2K(zp) for all i. Consequently, P1/p
2K(z)[�] and we conclude
that L�p=P1/p
.

4.2.5. Majors

Consider the operationM which associates

f�=M f̂ = ¡1
2 p i

Z
0

u f̂(�)
�¡ � d�

to f̂ . We have

M f̂ 0 = (M f̂)0+ 1
2 p i

 
f̂(u)
� ¡u ¡

f̂ (0)
�

!

M(� f̂) = �M f̂ ¡ 1
2 p i

Z
0

u

f̂(�) d�:

Given a relation L̂ f̂ =0 for f̂ , where L2K[�][@] has order r, we thus obtain a relation

L̂ f�= P (�)
�r (� ¡u)r

for some polynomial P with transcendental coefficients. Setting

L� := @degP+1 [�r (� ¡u)rL]; (4.1)

it follows that L� f�= 0. By theorem 3.2, we notice that the growth rate of L� at zero or
infinity is the same as the growth rate of L̂ at zero resp. infinity, since O e is stable under
differentiation and integration without constant term, for each e2E.

4.2.6. Applications

Lemma 4.3 admits several useful consequences for what follows.

Corollary 4.4. If the coefficients of K and L are analytic on an open or closed subset
U of C, then the same thing holds for the coefficients of K�L, K �L and L�.

Proof. Given functions h1; : : : ; hr, let Wh1; : : : ;hr denote their Wronskian. If h1; : : : ; hr is
a basis of the solution space HL of a monic operator L2K(z)[@], then we recall that the
operator L is determined in terms of h1; : : : ; hr by the formula

Lf =
Wf ;h1; : : : ;hr
Wh1; : : : ;hr

(4.2)

In particular, if h1; : : : ; hr are analytic on U , then so are the coefficients of L, as is seen by
expanding the right-hand side of (4.2). It now suffices to apply this observation to K�L,
K �L and L�. �

Corollary 4.5. Let K;L2K(�)[�] be monic and p2N=/ . Then

a) EK�L= EK [EL.

b) EK�L= EK EL.
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c) EL�= EL.

d) EL�p= EL
1/p.

Proof. This follows directly from the lemma together with theorem 3.2. �

4.3. Transition matrices

4.3.1. Classical transition matrices

Consider a monic differential operator L= @r+Lr¡1@r¡1+ � � �+L0 whose coefficients are
analytic function on a Riemann surface R. Given a point z 2R it is well known that there
exists a unique canonical fundamental system

f z=( f0z � � � fr¡1z )

of analytic solutions to Lf =0 at z with the property that fj
(i)= �i;j for all i; j. Since L

is linear, an arbitrary solution f to Lf =0 is uniquely determined by the vector

F (z)=

0BB@ f(z)
���

f (r¡1)(z)

1CCA
of its initial conditions at z by

f = f zF (z): (4.3)

More generally, given a path z z 0 on R from z to another point z 0, the values of the
analytic continuations of f ; : : : ; f (r¡1) along the path also linearly depend on F (z). Con-
sequently, there exists a unique scalar matrix �z z 0=�z z 0

L with

F (z 0)=�z z 0F (z): (4.4)

We call �z z 0
L the transition matrix for L along the path z z 0. Dually, we have

f z= f z
0
�z z 0; (4.5)

because of (4.3). Also, if z 0 z 00 is a second path, then

�z z 0 z 00=�z 0 z 00�z z 0 (4.6)

and in particular

�z 0 z=�z z 0
¡1 : (4.7)

4.3.2. Singular transition matrices

The notion of transition matrices can be generalized to allow for paths which pass through
regular or irregular singularities of the operator L. In order to do this, we start by general-
izing the idea of a canonical fundamental system of formal solutions f z in the singularity z.

In the case when the coefficients of L are in K(z), then theorem 3.1 tells us that
there exists a fundamental system of solutions at z=0. This result is refined in [Hoeven,
2001a], where we show how to compute a canonical basis f0; : : : ; fr¡1 of so called �complex
transseries� solutions, which is uniquely characterized by suitable asymptotic properties.
In particular,

� Each fi is of the form fi= 'i z
�i ei with 'i2O, �i2K and ei2E.

� Whenever ei= ej and �i2�j+Z for i=/ j, then 'i;v('j)+�j¡�i=0.
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Notice that there are other definitions of �canonical� systems of solutions [van Hoeij, 1997],
which share the property that they can be computed effectively in terms of the operator L.

Given a notion of a �canonical system of formal solutions at a singularity z�, we obtain a
dual notion of �initial conditions at z� for arbitrary formal solutions, via the relation (4.3).
Now assume in addition that, for a suitable sectorial neighbourhood U �R of z, we are
able to associate a genuine analytic function �(f) to any formal solution f at z. Then
either (4.4) or (4.5) yields a definition for the transition matrix along a straight-line from
z to z 0. In general, the association �: f 7! �(f) depends on one or several parameters, like
the non-singular directions in the accelero-summation procedure. We will now show how
to encode these parameters in a suitable generalization of a broken-line path.

Assume from now on that L2K(z)[@]. We define a singular broken-line path as being
a path z0! z1! � � � ! zl, where each zi is either

� A non singular point �i in K.

� A regular singular point �i2K with a direction � (and we denote zi=(�i)�).

� An irregular singular point �i2K with critical times k and directions � (and we
denote zi= (�i)k;�). Furthermore, we assume that f+�i

�i 2 Sk;�
r (where f+�i

�i (") =
f�i(�i+ ") for " with jarg "¡ kp �pj<�/2), jarg (�i�1¡�i)¡ kp �pj< p/2.

Moreover, for each i < l, the open ball with center �i and radius j�i+1¡�ij is assumed to
contain no other singularities than �i. If the �i are all non singular or regular singular,
then we call z0! z1! � � � ! zl a regular singular broken-line path.

Now given an irregular singular point � 2K, such that f+�� 2Sk;�r for critical times k
and directions �, we define the transition matrix

��k;�!z=

0BBBB@
sumk;� f+�;0

� (z) � � � sumk;� f�;r¡1
� (z)

��� ���
sumk;� (f+�;0� )(r¡1)(z) � � � sumk;� (f+�;r¡1� )(r¡1)(z)

1CCCCA;
for any z with jarg (z ¡ �)¡ kp �pj< p/2 and such that z is sufficiently close to �. For
regular singular points � 2K, a similar definition was given in [Hoeven, 2001b].

In view of (4.6) and (4.7), we may extend this definition to arbitrary singular broken-
line paths. In particular, it can be checked that the Stokes matrices for L are all of the form

��;k;�;� 0=��k;�!�+"!�k;� 0=��k;� 0!�+"
¡1 ��k;�!�+":

Notice that this definition does not depend on the choice of ". In a similar way as in [Hoeven,
2001b], it is also possible to construct a suitable extension R̂ of R with �irregular sin-
gular points�, in such a way that singular broken-line paths may be lifted to R̂. However,
such an extension will not be needed in what follows.

4.3.3. Transition matrices for the multivariate case

It is well known that the theory of Gröbner bases generalizes to partial differential operators
in the ring K(z1; : : : ; zn)[@1; : : : ; @n]. Consider a zero-dimensional system of such operators
given by a Gröbner basis L=(L1; : : : ; Ls). Let K be the set of tuples (k1; : : : ; kn), such that
l16k1;:::; ln6kn holds for no leading monomial @1

l1 ���@n
ln of one of the Li. We may enumerate

K= fk0; : : : ;kr¡1g, with k0< � � �<kr¡1 for a fixed total ordering < on the monoid Nn.
Given a non-singular point z 2Cn for L, there again exists a unique canonical funda-

mental system

fz=( f0z � � � fr¡1z )
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of analytic solutions to Lf =0 at z with the property that @kifj= �i;j for all i; j. Also,
an arbitrary solution f to Lf =0 is uniquely determined by the vector

F (z)=

0BB@ @k0 f(z)
���

@kr¡1 f(z)

1CCA
of its initial conditions at z by f = f z F (z). Consequently, the definitions and proper-
ties (4.4�4.7) naturally generalize to the multidimensional paths z z 0 which avoid the
singularities of L.

4.4. Holonomic constants

Recall that Dc;r and D�c;r stand for the open and closed disks of center c and radius r.
A constant � inC is said to be holonomic overK if there exists a linear differential operator
L=@n+Ln¡1@n¡1+ ���+L02K(z)[@] and a vector of initial conditions v2Kn, such that
the Li are defined on D�0;1 and �= f(1), where f is the unique solution to Lf = 0 with
f (i)(0)= vi+1 for i <n. We denote by Khol the set of holonomic constants over K.

Proposition 4.6.

a) Khol is a subring of C.

b) Let L be a linear differential operator of order n in K(z)[@]. Then �
L2Matr(Khol)

for any non singular broken-line path  with end-points in K.

c) Let L=(L1; : : : ; Ls) be a Gröbner basis for a zero-dimensional system of differential
operators in K(z)[@]. Then for any non singular broken-line path  with end-points
in Kn, we have �

L2Matr(Khol).

Proof. Consider holonomic constants �= f(1) and �= g(1), where f and g are solutions
to Kf = 0 and Lg=0 with initial conditions in Km resp. Kn and where the coefficients
of K and L are defined on D�0;1. By the corollary 4.4, the coefficients of K �L are again
defined on D�0;1 and � � = h(1), where h is the unique solution with initial conditions
h(i)(0)=

P
j=0
i �

j
i

�
f (j)(0) g(i¡j)(0)2K for i<mn. A similar argument shows the stability

of Khol under addition.
As to (b), we first observe that the transition matrix �0!1 along the straight-line path

from 0 to 1 has holonomic entries, provided that the coefficients of L are defined on D�0;1.
Indeed, by corollary 4.4, the coefficients of the monic operators L�

i
with solution spaces

HL
(i) are defined on D�0;1. Using a transformation z 7! (�¡�) z+� with �2K and �2K,

it follows that ��!� has holonomic entries whenever the Li are defined on the closed disk
D��;j�¡�j. Now any broken-line path  is homotopic to a broken-line path �1!���!�l such
that the Li are defined on the closed disks D��j ;j�j+1¡�j j. From (a), we therefore conclude
that �=��l¡1!�l � � ���1!�2 has holonomic entries.

As to the last property, we first notice that the function f(u+ t v) is holonomic in t
for any fixed u and v in Kn. In a similar way as above, it follows that the multivariate
transition matrix from section 4.3.3 along a straight-line path u! v has entries in K for
sufficiently close u and v in Kn. Since any non singular broken-line path is homotopic to
the finite composition of straight-line paths of this kind, we conclude by the multivariate
analogue of (4.6) and (a). �
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A number � in C is said to be a singular holonomic constant over K if there exists a
linear differential operator L= @n+Ln¡1 @n¡1+ � � �+L02K(z)[@] and a vector of initial
conditions v2Kn, such that the Li are defined on D0;1 and �= limz!1f(z), where f is the
unique solution to Lf =0 with f (i)(0)=vi+1 for i<n. We understand that the limit z!1
is taken on the straight-line path from 0 to 1. If L is regular singular at 1, then we call
� a regular singular holonomic constant over K. We denote by Kshol the class of singular
holonomic constants over K and by Krhol the class of regular singular holonomic constants
over K.

Proposition 4.7.

a) Krhol is a subring of C.

b) Kshol is a subring of C.

c) Let L be a linear differential operator of order n in K(z)[@]. Then �2Matn(Krhol)
for any regular singular broken-line path  as in section 4.3.2.

d) Let L be a linear differential operator of order n in K(z)[@]. Then �2Matn(Kshol)
for any singular broken-line path  as in section 4.3.2.

Proof. Several errors slipped into the original proof. We provided an updated proof in
Appendix ?. Note that we only prove � 2Matn(Khola) in (c). �

5. Bounds for the transition matrices

5.1. Integral formula for transition matrices
Consider a linear differential operator

L= @r+Lr¡1@r¡1+ � � �+L0
whose coefficients are analytic functions on an open or closed subset R of C. We will give
an explicit formula for the transition matrix �=�

L along a path  in R.
Let us first rewrite the equation Lf =0 as a first order system and give an alternative

characterization for the transition matrix. Let

M =

0BBBBBB@
0 1 0
��� �� �
0 0 1
¡L0 ¡L1 � � � ¡Lr¡1

1CCCCCCA
Then the differential equation

�0=M � (5.1)

admits a unique solution � with �(�)= I. Given a path � � 0 in R, it is not hard to see
that �� � 0 coincides with the analytic continuation of � along � � 0.

Given an analytic function f on R, we will denote by
R
�
f the unique analytic function

on R given by �Z
�
f

�
(� 0)=

Z
�

� 0

f(�) d�:

Then the system (5.1) with our initial condition admits a natural solution

�� � 0=
�
I +

Z
�
M +

Z
�
M

Z
�
M + � � �

�
(� 0): (5.2)
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We will show below that this �integral series� indeed converges when � � 0 is a straight-line
path. In fact, using a similar technique, one can show that the formula is valid in general,
but we will not need that in what follows.

5.2. Majorants
Let C(R;C) and C(R;R>) denote the spaces of continuous C-valued resp. R>-valued
functions on R. Given matrices A and B of the same sizes and with coefficients in C(R;C)
resp. C(R;R>), we say that A is majored by B, and we write APB, if

jAi;j(�)j6Bi;j(�)

for all i; j. Given majorations APB and A~PB~, we clearly have majorations

A+A~ P B+B~ (5.3)
AA~ P BB~ (5.4)

Assuming that every point in R can be reached by a straight-line path starting at �, we
also have R

�
A P

R
�

real
B; (5.5)

where �Z
�

real
B

�
(� 0)=

Z
0

j� 0¡� j
B(� + � ¡ �

j� ¡ � j �) d�:

Assume now that M is bounded on R. Then there exist constants �0; : : : ; �r¡1> 0 with

M PB=

0BBBBBB@
0 1 0
��� �� �
0 0 1
�0 �1 � � � �r¡1

1CCCCCCA
and we may assume without loss of generality that B admits pairwise distinct eigenvalues.
From the rules (5.3), (5.4) and (5.5), it follows that

�� � 0P
�
I +

Z
�

real
B+

Z
�

real
B

Z
�

real
B+ � � �

�
(� 0):

The right-hand side of this majoration can be rewritten as 	(j� 0¡ � j), where 	 is the
unique solution on R> to the equation

	0=B	;

such that 	(0)= I . Now let U and D be matrices with

B=U¡1DU ;

where

D=

0BB@ �1 0
�� �

0 �r

1CCA:
Then we have

	(x)=U¡1

0BB@ e�1x 0
�� �

0 e�rx

1CCAU:
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This shows in particular that (5.2) converges when � � 0 is a straight-line path, since it
suffices to replaceR by a compact convex subset which contains a neighbourhood of �! � 0.

5.3. Bounds for the transition matrices
Given an operator L with coefficients in K(�Q) which are bounded at infinity, it is not
hard to explicitly compute a sector S��;�;R1 with �<p/2 on which the Li have no poles and
a majorating matrix B with coefficients in K. The aperture � may chosen as close to p/2
as desired. Then the results from the previous section yield:

Theorem 5.1. There exists an algorithm which, given an operator

L= @r+Lr¡1 @r¡1+ � � �+L02K(�Q)[@]

with Li=O(1) for all i at infinity, computes a sector S��;�;R1 and constants K;�2R> with

k��!� 0k6K e� j�
0¡� j

for all straight-line path inside S��;�;R1 .

More generally, given an operator L 2K(�Q)[�] of growth rate � > 0, the operator
L~ =P1/�L has growth rate one and we have

��!� 0
L~ =���!(� 0)�

L

for all straight-line paths �! � 0 whose image under � 7! �� is homotopic to the straight-
line path ��! (� 0)�. Moreover, after replacing � by � @ in L~ and dividing by a suitable
power of �, we observe that L~ fulfills the conditions of theorem 5.1. We thus obtain:

Theorem 5.2. There exists an algorithm which, given an operator

L= @r+Lr¡1 @r¡1+ � � �+L02K(�Q)[@]

with growth rate �> 0 at infinity, computes a sector S��;�;R1 and constants K;�2R> with

k��!� 0k6K e� j�
0�¡��j

for all straight-line path inside S��;�;R1 .

Remark 5.3. In fact, the hypothesis that �  � 0 is a straight-line path is not really
necessary in theorem 5.1. With some more work, one may actually consider sectors of C_
at infinity with aperture larger than p/2. In theorem 5.2, this allows you to impose the
aperture of � to be as large as desired.

6. Effective integral transforms

Consider an operator

L=Lr �r+ � � �+L02K[�][�]

with growth rate �>0 at infinity. Let S��;�;R1 be a sector of aperture �<p/2 such that Lr
does not vanish on S��;�;R1 and such that we have a bound

k��!� 0k6K e� j�
0�¡��j (6.1)
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for all � ; � 02S��;�;R1 . Let

� = sin�
1¡ sin�

R;

so that the ball centered at (R + �) ei� with radius � is just contained in S��;�;R1 (see
figure 6.1), and let � 2N 2Z be a fixed constant of small bit-size, with 1< � < �= 1+
�/(R+ �).

�

R

�

S��;�;R1

�

Figure 6.1. The sector S��;�;R1 and the associated constants R, �, � and �.

6.1. Uniformly fast approximation of transition matrices
Let � ; � 02R> ei� with j� 0j> j� j>R+ � and ">0. Assuming that ei�; � ; � 0; "2K, we may
now use the algorithm approx below in order to approximate ��!� 0 at precision ". The
computation of�~ :=�0+ ���+�k¡1(� 0¡ �)k¡1 is done using the binary splitting algorithm
from [Chudnovsky and Chudnovsky, 1990; Hoeven, 1999].

Algorithm approx(� ; � 0; " )

Input: � ; � 0; "2K as above
Output: a matrix �~ with k�~ ¡��!� 0k<"

if j� 0j6 � j� j then
Let k 2N be minimal with K e�(�

�¡1)j� j� �k

1¡ � <
"

2
, where �= j� 0¡ � j

� j� j
Consider the expansion ��!�+t=�0+�1 t+�2 t

2+ � � �
Compute �~ :=�0+�1 (� 0¡ �)+ � � �+�k¡1 (� 0¡ �)k¡1 at precision "/2
Return �~

else
Let M2 :=K e� j�

0�¡(��)�j

Compute �~ 1 := approx(� ; � � ; "/(2M2))

Compute �~ 2 := approx(� � ; � 0; "/(2 k�~ 1k))
Return �~ 2�~ 1

Theorem 6.1.

a) The algorithm approx is correct.

b) Let n=max (j� 0j�;¡log ") and let s be the sum of the bit-sizes of � and � 0. Then the
running time of the algorithm is uniformly bounded by O(M(n) log2n (logn+ s)).
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Proof. The correctness of the algorithm in the �single-step case� when j� 0j6 � j� j follows
from (6.1) and Cauchy's formula, since

k�~ ¡��!� 0k 6
X
i>k
k�ik j� 0¡ � jk

6
X
i>k

K e� j(��)
�¡��j j� 0¡ � ji

j� � ji

= K e�(�
�¡1)j� j� �k

1¡ �:

In the �multi-step case� when j� 0j>� j� j, we have

k���!� 0��!�� ¡�~ 2�~ 1k 6 k���!� 0 (��!��¡�~ 1)k+ k(���!� 0¡�~ 2)�~ 1k
6 M2 k��!�� ¡�~ 1k+ k���!� 0¡�~ 2k k�~ 1k;

and the result follows by induction.
As to the complexity analysis, let l be minimal such that j� j � l> j� 0j and denote

�i = � �i (i< l)
�l = � 0:

Then the recursive application of the algorithm gives rise to l single-step cases for each
��i!�i+1 with i < l. We have l=O(log j� 0j) =O(log n) and claim that the precision "i at
which we approximate each ��i!�i+1 satisfies "i> "/(2lM), where M =K e� j�

0�¡��j.
Indeed, using induction over l, this is clear in the case when l= 1. In the multi-step

case, we have M26M and k�~ 1k6M1=K e� j(��)
�¡��j. Hence, ��0!�1 is approximated at

precision "/(2M2)>"/(2lM). The induction hypothesis also implies that each ��i!�i+1 is

approximated at precision "i> "0/(2l¡1M 0), where "0="/(2M1) andM 0=K e� j�
0�¡(��)�j.

We conclude that "i> "0/(2l¡1M 0)= "/(2lM1M
0)= "/(2lM).

Having proved our claim, let us now estimate the cost of each single-step approximation
of ��i!�i+1 at precision "i> "/(2lM). Since 0<� < (� ¡1)/�<1, the minimal k satisfies

k = O

�
¡log

�
"

2lM e�(�
�¡1)j�ij�

��
= O(¡log ")+O(l)+O(logM)+O(j�ij�)
= O(n):

Furthermore, the entries of �~ are O(n)-digit numbers, since

��i!�i+16K e� j�i+1
� ¡�i�j

and the size of �i is bounded by O(s) +O(i) =O(s+ log n). By a similar argument as
in the start of section 4.1 of [Hoeven, 1999], it follows that the "i-approximation of �~ is
computed in time O(M(n) logn (logn+ s)) using binary splitting. Since l=O(logn), the
overall running time is therefore bounded by O(M(n) log2n (logn+ s)). �

6.2. Fast approximation of integral transforms
Consider a second differential operator 
2K[�][�] with growth rate � at infinity. Let f
be a solution to 
f =0 with initial conditions in K at a point � 2K with arg � = � and
j� j>R+ �. Assume that f satisfies a bound

jf(�)j6K 0 e¡�
0j�j� (6.2)
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on [� ; ei�1], where K 0; �0> 0. Our aim is to compute

�=
Z
�

ei�1
f(�) d�:

Now the primitive

f8 (� 0)=
Z
�

� 0

f(�) d�

satisfies the equation ( 
8 )(f8 )=0, where the operator 
8 := (M¡1
) �2K[�][�] has growth
rate � at infinity. Moreover, f8 admits initial conditions in K at �.

Assuming that we chose L = 
8 and that the bound (6.1) holds for the transition
matrices associated to L, we may now use the following simple algorithm for the approx-
imation of �.

Algorithm integral_approx(" )

Input: "2K>

Output: an approximation �~ for � with j�~ ¡�j<"

Let I be the vector of initial conditions for f8 at �, so that f8 (� 0)=��!� 0
L I

Take � 02K with arg � 0= � such that j
R
j� 0j
1
K 0 e¡�

0t� dtj<"/2
Return approx(� ; � 0; "/(2 kIk)) I

In the case when �> 1, we notice thatZ
T

1
K 0 e¡�

0t�dt=
Z
T�

1 K 0

� t1¡1/�
e¡�

0tdt6
Z
T�

1K 0

�
e¡�

0t dt= K 0

��0
e¡�

0T�

for all T > 1, so we may take

j� 0j=max

 
lround

max (log(2K 0/(��0 ")); 0)
�0

�

r
; 1

!
; (6.3)

where lround(x) is the largest number in 2Z f0; : : : ; 232¡ 1g below x. In the case when
�< 1, we may use lemma 2.3 to replace the bound (6.2) by a bound of the form

jf(�)j6K 0 e¡�
0j� j�6K 00 j� j1¡1/� e¡�00j� j�;

with 0<�00<�. ThenZ
T

1
K 0 e¡�

0t�dt6
Z
T

1
K 00 t1¡1/� e¡�

00t�dt6
Z
T�

1K 00

�
e¡�

00t dt= K 00

��00
e¡�

00T�

and we may take

j� 0j= lround
max (log(2K 00/ (��00 ")); 0)

�00
�

r
: (6.4)

For both formulas (6.3) and (6.4), we have j� 0j=O( ¡log "�
p

). Applying theorem 6.1, it
follows that

Theorem 6.2. The algorithm integral_approx is correct and its running time is bounded
by O(M(n) log3n), where n=¡log ". �
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Example 6.3. Consider the formulas

¡(z) =
Z
0

1
xz¡1 e¡xdx

1
¡(z)

= i
2 p

Z
H
(¡t)¡z e¡t dt

(m)(z) = i
2 p

Z
H
(¡log(¡t))m (¡t)¡z e¡t dt;

where (z)=1/¡(z), m2N, and H is a Hankel contour from 1 around 0 and then back
to 1. For any z 2K, these integrals can be evaluated using our fast algorithm, whenever
they are defined. So the values of these integrals are inKshol and they have O(M(n) log2n)-
approximation algorithms. Using Euler's reflection formula

¡(1¡ z) ¡(z) = p
sin (p z)

;

and Proposition 4.7(b), we also see that sin(pz)¡1 2Kshol and (1¡ e¡2piz)¡1 2Kshol for
all z 2KnZ. Note that (1¡ e¡2piz)¡1 has an O(M(n) log2n)-approximation algorithm.

7. Effective accelero-summation

Let us now show how to put the results from the previous sections together into an accelero-
summation algorithm for holonomic functions. Let f~2O be a formal solution with initial
conditions in K at the origin to the equation Lf =0 with L2K[z][�]. We will first show
how to determine the critical times k1> � � � >kp in Q> and the Stokes directions at each
critical time. Having fixed �12R1 :=RnD1;:::; �p2Rp :=RnDp, we next detail the effective
acceleration-procedure and show how to efficiently evaluate f = sumk;� f~ in a sector close
to the origin.

7.1. Setting up the framework

Normalization Without loss of generality, we may assume that the valuation of f at
zero is larger than the degree d of L in z. Indeed, it suffices to replace f by f zn and L by
MnL for a sufficiently large n.

Critical times Let �1< � � � < �p be the non-horizontal slopes of the Newton polygon
of L at the origin. We take k1=1/�1; : : : ; kp=1/�p, so the critical times are z1= z�1; : : : ;
zp= z�p. For example, in figure 3.4, the critical times are z1= z

p
and z2= z.

Equations for f̂i and f�i For each critical time zi, let us show how to compute vanishing
operators for f̂i and f�i. Let a; b 2N=/ be relatively prime with ki= a/b. Since b6 d, we
notice that the valuation of fi in zi=0 is larger than one.

1. We first compute L�b2K[z][�] and PaL�b2K[z][�]. We may reinterpret PaL�b as
an operator in K[zi][�] and notice that (PaL�b)(fi)=0.

2. Let n be minimal, such that zi
¡nPaL�b2K[zi¡1][�]. We compute the Borel transform

L̂i=B(zi¡nPaL�b)2K[�i¡1] [�]. Since vzi=0(fi)> 1, we formally have L̂i f̂i=0. In
fact, since the accelero-summation process preserves differentially algebraic rela-
tions, we will also have L̂i f̂i=0.

3. Compute L�i with L�i f�i=0 using the procedure from section 4.2.5.
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Singular directions For our accelero-summation process to work, it will suffice to avoid
the non-zero singularities of the operator L�i at each critical time zi. In other words,
denoting by r�i the order of L�i, we take Di= fargu:u2K=/ ; L�i;r�i(u)=0g.
Growth rates of L̂i and L�i Given a critical time zi, let us now study the growth rates
of L̂i and L�i at zero and infinity. By corollary 4.5, and with a; b as above, the slopes of
the Newton polygon of Pa L�b are �1 ki= ki/k1; : : : ; �p ki= ki/kp. By section 3.3 and
formula (4.1), it follows that the non-horizontal slopes of the Newton polygons of L̂i and L�i
at the origin are

ki
k1¡ ki

< � � �< ki
ki¡1¡ ki

:

In particular, if i=1, then L�i is regular singular at 0 and [Hoeven, 2001b] shows how to
compute the values of f�1 in the neighbourhood of 0_ . We also infer that the non-horizontal
slopes of the Newton polygon of L̂i and L�i at infinity are

ki
ki+1¡ ki

< � � �< ki
kp¡ ki

and possibly ¡1. In particular, if i < p, then the growth rate of L�i at infinity is ki
ki¡ki+1

.

In view of theorem 5.2, we may thus apply A�ki;ki+1
�i to f�i (see below for further details).

Also, if i= p, then the growth rate of L�i at infinity is zero or one and theorem 5.2 shows
that we are allowed to apply L�zp

�p to f�p.

The acceleration kernels Given a critical time zi with i < p and �= ki+1/ki, consider
the acceleration kernel

K�ki;ki+1(�i; �i+1) = ¡1
2 p i

Z
0

uK̂ki;ki+1(�i; �)
�¡ �i+1

d�

= 1
4 p2

Z
c¡i1

c+i1Z
0

u e�t¡�it
�

�¡ �i+1
d� dt

The choices of �i+1 and u will be detailed in the next section. In order to compute (2.15),
we need an equation forK� in �i, of growth rate 1/(1¡�)=ki/(ki¡ki+1) at infinity. Setting

'(t)= ¡1
2 p i

Z
0

u e�t

�¡ �i+1
d�;

we have

'0(t)= �i+1 '(t)¡
etu¡ 1
2 p i t

;

whence (t '0¡ �i+1 t ')00=u (t '0¡ �i+1 t ')0 and


'= t '000¡ ((�i+1+u) t¡ 2) '00+(u �i+1 t¡ (2 �i+1+u)) '0+u �i+1 f =0

By looking at the Newton polygon, we observe that 
 has growth rate 1 at t=1. Now

K�ki;ki+1(�i; �i+1) = 1
2 p i

Z
c¡i1

c+i1
'(t) e¡�it

�
dt

= 1
2 p i�

Z
C
(¡t)1/�¡1 '((¡t)1/�) e�itdt; (7.1)

for a suitable contour C. Applying a suitable ramification, followed by M1¡1/� and Q¡1
to 
, we obtain a vanishing operator Ai for (¡t)1/�¡1 '((¡t)1/�), with growth rate 1/�
at infinity. Although (7.1) is not really a Borel transform (at t=1), it does satisfy the
formal properties of a Borel transform. In other words, A�i=BP¡1Ai is a vanishing operator
for K� with respect to �i, of growth rate 1/(1¡�) at �i=1.
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Equations for the integrands We finally need equations for the integrands of (2.14)
and (2.15). If i < p, then we have shown above how to construct a vanishing operator A�i
for K�ki;ki+1 at infinity. In section 4.2.3, we have also shown how to construct a vanishing
operator (A�i)�

m
for eachK�ki;ki+1

(m) . It follows that ��i;m=(A�i)�
m�L�i and �̂i;m=(A�i)�

m� L̂i
are vanishing operators for the first and second integrands in (2.14). Moreover, the operator
(A�i)�

m� L̂i has growth rate ki/(ki¡ ki+1) at infinity, by lemma 4.3. Similarly, ��p;m=
(� + zp

¡1)�
m�L�p and �̂p;m= (� + zp

¡1)�
m� L̂p are vanishing operators for the first and

second integrands in (2.15), and (�+ zp
¡1)�

m� L̂p has growth rate 1 at infinity.

7.2. Calibration
Assume now that �12R1;:::; �p2Rp are fixed non singular directions with ei�1;:::;ei�p2K.
In order to approximate f(z) for z close to 0_ , we first have to precompute a certain number
of parameters for the acceleration process, which do not depend on the precision of the
desired approximation for f(z). In particular, we will compute a suitable sector Sgeom
near the origin, such that the effective accelero-summation procedure will work for every
z 2Sgeom. Besides Sgeom, for each critical time zi, we precompute

� The operators L̂i, L�i, �̂i;m and �� i;m from the previous section, form<r�i :=order(L�i)
if i < p and m<r := order(L) if i= p.

� The starting point ai2K_ for C�i and H�i
+ in (2.14) resp. (2.15). If i>1, then we will

require that arg ai= ki¡1 �i¡1/ki.

� A sector Si=S��i;�i;Ri
1 near infinity as in section 6.

� The point bi=Ri ei�i/(1¡ sin�i)2K_ , which corresponds to the center of the ball
in figure 6.1.

� A point ui+1 above K such that K�i(�i; �i+1)= K�ui+1
i(�i; �i+1), for i< p.

Let us show more precisely how to do this.

Computing a1 If ! is the smallest non-zero singularity of L�1, then we may take a1
arbitrarily with ja1j<!. By construction, L̂1 is (at worst) regular singular at 0, whence so
is L�1, as we see from (4.1). Using the algorithms from [Hoeven, 2001b], it follows that the
entries of the transition matrices for L̂1 and L�1 between 0 and a1 can be approximated in
time O(M(n) log2n); these entries belong toKhola using the terminology from Appendix B.
From (2.2), we also see that f̂1 is aK[(N)(K)]-linear combination of the canonical solutions
of L̂1 at the origin, where K[(N)(K)] is the smallest K-algebra that contains all constants
of the form (m)(�) with (z)=1/¡(z),m2N, and �2K. Similarly, using (2.7), we deduce

that f�1 is a K[(N)(K); (1¡e¡2piK=/
)¡1]-linear combination of the canonical solutions of L�1

at the origin. In view of Example 6.3, it follows that f�1
(m)(a1) has an O(M(n) log3 n)-

approximation algorithm for eachm2N. Moreover, f�1
(m)(a1)2Kshola using the terminology

from Appendix B.

Computing Si, ai+1 and ui+1 Given i < p, and setting �= ki/(ki¡ ki+1), we use
theorem 5.2 to compute a sector Si

pre=S��i;�ipre;Ripre
1 and constants K, � with

k��!�i
L̂i k6K e� j�i

�¡��j6K e� j�i
�j

for all straight-line paths �! �i in Si
pre. By lemmas 2.7 and 2.3, we may compute a

subsector Si=S��i;�i;Ri
1 �Si

pre and small ai+1 and ui+1 with argai+1=argui+1=ki�i/ki+1,
such that we have a bound

jui+1K�ki;ki+1
(m) (�i; ai+1)j6K 0 e�

0j�i�j (�0<¡�)
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for allm<r�i+1 and all �i2Si. We notice thatK�ki;ki+1(�;ai+1) is regular singular at the origin
(for the same reason as L�1 above) with initial conditions inK[(N)(K);(1¡e¡2piK=/

)¡1]. We

thus have O(M(n) log3 n)-approximation algorithms for K�ki;ki+1
(m) (�i; ai+1) for any �i2K_ =/

and m2N.

Computing Sp and Sgeom By theorem 5.2, we may also compute a sector Sp
pre=

S��p;�ppre;Rppre
1 and constants K, � with

k��!�p

L̂p k6K e� j�p¡� j6K e� j�pj

for all straight-line paths �! �p in Sp
pre. Choosing Rgeom sufficiently small and Rp suffi-

ciently large, we obtain a subsector Sp=S��p;�p;Rp
1 �Sp

pre with

j(e¡�p/zp)(m)j6K 0 e¡�
0j�pj

for all m<r, �p2Sp and zp2Sgeom=S��p;�geom;Rgeom
0 , with �geom as close to p

2
as desired.

7.3. Approximation of f(z)
For each i 2 f1; : : : ; pg and j < r�i, let '�i;j be the unique solution to L�i('�i;j) = 0 with
'�i;j
(m)(ai) = �j ;m for all m< r�i. Using the analytic continuation algorithm from [Hoeven,

1999], we may efficiently evaluate all derivatives of '�i;j and its minor '̂i;j at any non-
singular point above K. For each j <r, we also denote by 'j the unique solution to L'j=0
with 'j

(m)(zr)= �j ;m for all m<r.
Given i < p and m< r�i+1, there now exist O(M(n) log3 n)-approximation algorithms

for the integrals.

Ai;m;j1 =
Z
C�i
'�i;j(�i)K�ki;ki+1

(m) (�i; ai+1) d�i;

Ai;m;j2 =
Z
ai

bi

'̂i;j(�i)K�ki;ki+1
(m) (�i; ai+1) d�i;

Ai;m;j3 =
Z
bi

ei�i1
'̂i;j(�i)K�ki;ki+1

(m) (�i; ai+1) d�i:

Indeed, the first two integrals can be approximated using the algorithm from [Hoeven,
1999], applied to the operators @ �� i;m and @ �̂i;m. The last one is computed using the
algorithm integral_approx. Notice that the path in the second integral consists of a
circular arc composed with a straight-line segment of constant argument. We regard the
numbers

Ai;m;j = Ai;m;j1 +Ai;m;j2 +Ai;m;j3

=
Z
C�i
'�i;j(�i)K�ki;ki+1

(m) (�i; ai+1) d�i+
Z
H�i

+
'̂i;j(�i)K�ki;ki+1

(m) (�i; ai+1) d�i

as the entries of a matrix

Ai=

0BB@ Ai;0;0 � � � Ai;0;r�i¡1
��� ���

Ai;r�i+1¡1;0 � � � Ai;r�i+1¡1;r�i¡1

1CCA:
By construction, we thus have

A�ki;ki+1
�i

¡
'�i;0 � � � '�i;r�i¡1

�
=
¡
'�i+1;0 � � � '�i+1;r�i+1¡1

�
Ai : (7.2)
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Similarly, if i= p, then there exist O(M(n) log3n)-approximation algorithms for

�m;j=
Z
C�p
'�i;j(�i) (e¡�p/zp)(m) d�p+

Z
H�p
+
'̂i;j(�i) (e¡�p/zp)(m) d�i;

and these numbers again form the entries of a matrix �. By construction, we have

L��p
¡
'�p;0 � � � '�p;r�p¡1

�
=( '0 � � � 'r¡1 )� : (7.3)

Now we already observed in section 7.2 that we have O(M(n) log3n)-approximation algo-
rithms for the entries of the vector

��1=

0BBBB@ f�1(a1)
���

f�1
(r�1¡1)(a1)

1CCCCA:
From (7.2) and (7.3), it follows that

�Ap¡1 � � �A1��1=

0BBBB@
fp(zp)
���

fp
(r¡1)(zp)

1CCCCA
and the entries of this vector admit O(M(n) log3n)-approximation algorithms.

7.4. Main results
Summarizing the results from the previous sections, we have proved:

Theorem 7.1.

a) There exists an algorithm which takes L 2K[z][�] with an irregular singularity at

z=0 on input and which computes the critical times z1= zk1p ; : : : ; zp= z
kpp for L,

together with the sets of singular directions D1; : : : ;Dp modulo 2 p. In addition,
given �<kpp/2, �12RnD1; : : : ; �p2RnDp with ei�; ei�1; : : : ; ei�p2K, the algorithm
computes a sector S�kp�p;�;�

0 with � 2Q> to be used below.

b) There exists an algorithm which takes the following data on input:

� L, �, �1; : : : ; �p and � as above ;

� A formal solution f~2O to Lf~=0 (determined by initial conditions in K) ;

� z 2S�kp�p;�;�
0 above K, m2N and "2Q>.

Setting f=sumk;�f~, the algorithm computes v~2K with jf (m)(z)¡v~j<". Moreover,
setting n=¡log ", this computation takes a time O(M(n) log3n).

Corollary 7.2. Singular holonomic constants in Kshol admit O(M(n) log3n)-approxima-
tion algorithms.

The theorem 7.1 in particular applies to the fast approximation of singular transition
matrices from section 4.3.2. Indeed, let fi= 'i z

�i ei with 'i2O, �i2K and ei2E be one
of the canonical solutions to Lf =0 at the origin. Then 'i may be accelero-summed by
theorem 7.1 and z�i ei may be evaluated at points above K using fast exponentiation and
logarithms. We thus obtain:
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Corollary 7.3. There exists an algorithm which takes the following data on input:

� An operator L2K[z][�].
� A singular broken-line path .

� A precision "2Q>.

The algorithm computes a matrix �~ with entries in K and k�~ ¡�
Lk<". Moreover, setting

n=¡log ", the algorithm takes a time O(M(n) log3n). �

We have summarized the complexities of efficient evaluation algorithms for holonomic
functions in table 7.1 below. In the rightmost column, the complexity bound for divergent
series follows from corollary 7.3, when composing the transition matrix between zero and
a point z~2K close to z with the non singular transition matrix from z~ to z.

series of type evaluation in z 2K evaluation in general zP
n=0
1 fn

(n!)�
zn O(M(n) logn) O(M(n) log2n log logn)P

n=0
1 fn z

n O(M(n) log2n) O(M(n) log2n log logn)P
n=0
1 fn (n!)� zn O(M(n) log3n) O(M(n) log3n)

Table 7.1. Summary of the complexities of evaluation of different types of holonomic series. We
assume that �2Q> and that the fn satisfy jfnj6K�n for certain K;�> 0. For the series in the
last row, we assume that �evaluation� is done using an appropriate accelero-summation scheme.
For the rightmost column, we do not count the cost of the approximation of the constant z itself.

Remark 7.4. A mistake slipped into the present remark in the published version of this
paper. In the meantime, Marc Mezzarobba has improved the upper two entries of the right-
most column in Table 7.1, which can now be replaced by O(M(n) log2n); see [Mezzarobba,
2011].

Remark 7.5. In [Hoeven, 1999], we assumed that K is an algebraic number field (i.e. a
finite dimensional field extension of Q) rather than the field Qalg of all algebraic numbers
over Q. Of course, both point of views are equivalent, since given a finite number of
algebraic numbers x1; : : : ; xk2Qalg, there exists an algebraic number field K with x1; : : : ;
xk2K.

It is convenient to work w.r.t. a fixed algebraic number field K in order to have an
algorithm for fast multiplication. For instance, given a basis x1;:::; xk of K, we may assume
without loss of generality that

xi xj= a1
i;jx1+ � � �+ ak

i;jxk; (al
i;j 2Z) (7.4)

after multiplication of the xi by suitable integers. Then we represent elements of K as
non-simplified fractions (p1 x1+ � � � + pk xk)/ q, where p1; : : : ; pk 2Z and q 2N>. In this
representation, and using (7.4), we see that two fractions of size n can be multiplied in
time O(M(n)).

Remark 7.6. In the case when K is a subfield of Ceff which is not contained in the
field Qalg of algebraic numbers, the algorithms from this paper and [Hoeven, 1999; Hoeven,
2001b] still apply, except that the complexity bounds have to be adjusted. Let us make
this more precise, by using the idea from [Chudnovsky and Chudnovsky, 1990] for the
computation of Taylor series coefficients of holonomic functions. We first observe that the
efficient evaluation of holonomic functions essentially boils down to the efficient evaluation
of matrix products

Mm¡1 � � �M0;
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whereMk is a matrix with entries in K[k] (in the regular singular case, one also has a finite
number of exceptional values of k for which Mk is explicitly given and with entries in K).
Even if K Qalg, then we may still compute the matrix products

Mk;l=Mk+l¡1 � � �Mk

using dichotomy
Mk;l1+l2=Mk+l1;l2Mk;l1

as polynomials in K[k] of degree O(l). This requires a time O(M(n l) log l), when working
with a precision of n digits. Assuming for simplicity that m is a perfect square, and taking
l= m
p

, we next use an efficient evaluation algorithm [Moenck and Borodin, 1972; Borodin
and Moenck, 1974] for the substitution of k=f0; l;::: ;m¡ lg inMk;l. This requires a time
O(M(n m

p
) log (m)). We finally compute

M0;m=Mm¡l;l � � �M0;l

in time O(M(n) m
p

). Assuming that logn� logm, this yields an algorithm for the n-digit
evaluation of M0;m of complexity O(M(n m

p
logm)). In table 7.1, the complexities in the

three different rows should therefore be replaced by O(M(n3/2) logn
p

), O(M(n3/2) logn)
resp. O(M(n3/2) log2 n). Indeed, for the first two cases, we have m=O(n/ log n) resp.
m=O(n). In the last case, we have the usual O(log n) overhead. Notice that there is no
need to distinguish between the columns.

8. Conclusion
This last paper in a series [Hoeven, 1999; Hoeven, 2001b] on the efficient evaluation of
holonomic functions deals with the most difficult case of limit computations in irregular
singularities, where the formal solutions are generally divergent. We have not only shown
how to compute such limits and so called singular transition matrices in terms of the
equation and broken-line paths, but we have also shown that the resulting constants are
comprised in the very special class Cfast of complex numbers whose digits can be computed
extremely fast.

Since it is quite remarkable for a number to belong to Cfast, an interesting question is
whether there are any other �interesting constants� in Cfast which cannot be obtained using
the currently available systematic techniques: the resolution of implicit equations using
Newton's method and the evaluation of holonomic functions, including their �evaluation�
in singular points.

Because of the emphasis in this paper on fast approximation algorithms, we have not
yet investigated in detail the most efficient algorithms for obtaining approximations with
limited precision. Indeed, given an initial operator L2K[z][�] of order r and degree d in z,
ramification, the Borel transform and the multiplication with the acceleration kernel lead
to vanishing operators of far larger (although polynomial) size O((d r)3). If only limited
precision is required, one may prefer to use a naive O(n2)-algorithm for computing the
integral transforms, but which avoids the computation of large vanishing operators. In some
cases, one may also use summation up to the least term, as sketched in the appendix below.

In this paper, we have restricted ourselves to the very special context of holonomic
functions, even though Écalle's accelero-summation process has a far larger scope. Of
course, the results in our paper are easily generalized to the case of more general alge-
braically closed subfields K of C, except that we only get O(n2 logO(1)n)-approximation
algorithms; using improvements from [Chudnovsky and Chudnovsky, 1990], this can be
reduced to O(n3/2 logO(1)n). Following [Écalle, 1987; Braaksma, 1991; Braaksma, 1992], it
should also be possible to give algorithms for the accelero-summation of solutions to non-
linear differential equations.
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Appendix A. Summation up to the least term

Let L 2K(z)[�] and let f be a solution to Lf = 0 with a formal power series expansion
f~= f~0+ f~1 z+ � � �. It is well known [Poincaré, 1886] that the truncated sum

(sumN f~)(z)= f~0+ � � �+ f~N zN

up to the term f~N zN for which jf~N zN j is minimal usually provides an exponentially good
approximation for f(z). Even though such truncations do not allow for the computation
of an arbitrarily good approximation of the value f(z) for fixed z, it is well adapted to
the situation in which only a limited precision is required. Indeed, for any N 2N, in
order to compute (sumN f~)(z), we may directly apply the binary splitting algorithm from
[Chudnovsky and Chudnovsky, 1990; Hoeven, 1999].

In this appendix, we will sketch how summation up to the least term can be made
more precise using the accelero-summation process. We start from a formal solution f~=
f0~ + � � �+ f~l logl z 2O to Lf =0. Given N 2N, we define

g~(z)= (sumN f~)(z)=
X
06i6l

X
06n6N

(f~i)n zn logi z:

Our aim is to compute an explicit bound for g~(z)¡(sumk;�f~)(z) for a suitable non singular
multi-direction �. Modulo a change of variables z!! z, we may take �=0.

Consider a critical time zi. If i=1, then B~z1 f~ is convergent at the origin, so we may
compute a bound of the form

j(ĝ1¡ f̂1)(�1)j6B1C1N �1k1N¡1 (A.1)

on an interval (0; c1] at the origin, using [Hoeven, 2001b]. For i> p, we assume by induction
that we have a bound

j(ĝi¡ f̂i)(�i)j6BiCiN
¡(k1N)
¡(kiN)

�
�i
kiN¡1+ exp (¡Di �i

¡ ki
ki¡1¡ki)

�
(A.2)

on a sector (0; ci] at the origin and for sufficiently large N >Ni. Using [Hoeven, 2001b]
a second time, we may also compute bounds for the coefficients of f̂1 as a polynomial in
log �1. At each critical time zi, this leads to further bounds

jĝi(�i)j6Bi0 (Ci0)N �ikiN¡1
¡(k1N)
¡(kiN)

; (A.3)

for �i2 [ci;1).
Assuming that i < p, we now have

j(ĝi+1¡ f̂i+1)(�i+1)j 6 I1+ I2+ I3;

I1 =
��������Z
ci

1
ĝi(�i) K̂ki;ki+1(�i; �i+1) d�i

�������� ;
I2 =

��������Z
0

ci

(ĝ(�i)¡ f̂(�i)) K̂ki;ki+1(�i; �i+1) d�i

��������;
I3 =

��������Z
ci

1
f̂i(�i) K̂ki;ki+1(�i; �i+1) d�i

��������:

36 Efficient accelero-summation of holonomic functions



We may further decompose

I2 6 I4+ I5+ I6;

I4 = BiCi
N ¡(k1N)
¡(kiN)

��������Z
0

1
�i
kiN¡1 K̂ki;ki+1(�i; �i+1) d�i

��������
= BiCi

N �i+1
ki+1N¡1 ¡(k1N)

¡(ki+1N)
; (A.4)

I5 = BiCi
N ¡(k1N)
¡(kiN)

��������Z
ci

1
�i
kiN¡1 K̂ki;ki+1(�i; �i+1) d�i

�������� ;
I6 = BiCi

N ¡(k1N)
¡(kiN)

����������
Z
0

ci

exp (¡Di �i
¡ ki
ki¡1¡ki) K̂ki;ki+1(�i; �i+1) d�i

����������;
if i > 1 and similarly with I6=0 if i=1.

By lemmas 2.6 and 2.5, we may compute ci+1
0 , Ni+1, Ai;1, Ai;2 and Ai;3 with��������Z

ci

1
�i
kiN¡1 K̂ki;ki+1(�i; �i+1) d�i

��������6Ai;1 ¡(kiN)
¡(ki+1N)

Ai;2
N exp (¡Ai;3 �i+1

¡ ki+1
ki¡ki+1);

for �i+12 (0; ci+10 ] and N >Ni+1. Using (A.3), we thus get

I1+ I56Ai;1Ai;2N (BiCiN +Bi0 (Ci0)N)
¡(k1N)
¡(ki+1N)

exp (¡Ai;3 �i+1
¡

ki+1
ki¡ki+1): (A.5)

Using the techniques from section 7, we may also compute a bound

jf̂i(�i)j6Ai;4 eAi;5�i
ki/ki+1

;

for �i2 [ci;1). Using lemma 2.6 and (A.5), we may thus compute ci+1, Ai;6, Ai;7 and Ai;8
with

I1+ I3+ I5+ I66Ai;6Ai;7N
¡(k1N)
¡(ki+1N)

exp (¡Ai;8 �i+1
¡ ki+1
ki¡ki+1); (A.6)

for �i+12 (0; ci+1] and N >Ni+1. Combining (A.4) and (A.6), we may therefore compute
Bi+1 and Ci+1 such that (A.2) recursively holds at stage i+1.

In the case when i= p, similar computations yield constants B, C,D,Ngeom and a small
sector S =S0;�;R with aperture �< p/(2 kp), such that

j(g¡ f)(z)j6BCN ¡(k1N) (jz jN + exp (¡D jz j¡1/kp)): (A.7)

for all z 2 S and all N >Ngeom. The optimal N =Nopt for which this bound is minimal
satisfies

Nopt� k1¡1 (C jz j)¡1/k1:
We thus have

j(g¡ f)(z)j6B 0 e¡(C jz j)¡1/k1;

for some explicitly computable B 0. This completes the proof of the following:

Theorem A.1. There exists an algorithm which takes on input

� A differential operator L2K(z)[�] with an irregular singularity at z=0 ;

� The critical times k and non singular directions � with ki �i= ki+1 �i+1 for all i,

and which computes B;C;R;�> 0 and Ngeom2N, such that the bound

j(sumN f~¡ sumk;� f~)(z)j6BCN ¡(k1N) (jz jN + exp (¡D jz j¡1/kp))
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holds for any z 2Skp�p;�;R and N >Ngeom. In particular, for some computable constant n0
and precisions "=e¡n with

n6 (C jz j)¡1/k1¡n0 (A.8)

we may compute an "-approximation of (sumk;� f~)(z) for z 2K \ Skp�p;�;R in time
O(M(n) log2 n), where the complexity bound is uniform in z, provided that the bit-size
of z is bounded by O(logn).

Remark A.2. In the published version of the paper, we forgot to mention the restriction
that the bit-size of z should remain bounded by O(log n). In fact, this restriction can
be removed using a bit more work: see [Hoeven, 2016, section 3]. Another afterthought:
if size(z) =O(log n), then the bound can actually be reduced to O(M(n) log n) through
a careful analysis of the binary splitting algorithm in this specific context.

Acknowledgment The author would like to thank the first anonymous referee for several
helpful comments and corrections.

Appendix B. Errata: notes on holonomic constants
There were several problems with the proofs of proposition 4.7(c) and (d). In this appendix,
we present corrected proofs (in the case of proposition 4.7(c), we slightly modified the
statement), as well as a theorem that the class Krhol regular singular holonomic constants
is essentially the same as the class of Khol of ordinary holonomic constants. Until subsec-
tion B.8, we will assume that K=Qalg is the field of algebraic numbers. In subsection B.8,
we also discuss a few related questions and results from [Fischler and Rivoal, 2011]; we are
grateful to Marc Mezzarobba for this reference.

B.1. Notations
Let Lhol and Lshol denote for the sets of monic L2K(z)[@] whose coefficients are respec-
tively defined on D�0;1 and D0;1. Let Lrhol be the set of L2Lshol such that L is at worst
regular singular at z = 1. We define Fhol, F rhol, and F shol to be the sets of solutions
f 2Kffzgg to an equation Lf =0, where L2Lhol, L2Lrhol, or L2Lshol, respectively, and
such that limz!1 f(z) exists. We recall that Khol=ff(1) : f 2Fholg, Krhol=flimz!1 f(z) :
f 2F rholg, and Kshol= flimz!1 f(z) : f 2F sholg.

It will be convenient to also introduce the variants Lhola, Lrhola, and Lshola of Lhol, Lrhol,
and Lshol for which we allow L to be at most regular singular at z=0. For instance, Lhola
consists of monic operators L 2K(z)[@] whose coefficients are defined on D�0;1 n f0g and
such that L is at worst regular singular at z=0. The counterparts Fhola, F rhola, and F shola

are defined in a similar way as before; we still require analytic solutions f 2Kffzgg of
Lf =0 at z=0. We again set Khola=ff(1) : f 2Fholag, Krhol=flimz!1 f(z) : f 2F rholag,
and Kshola= flimz!1 f(z) : f 2F sholag.

B.2. Ring structure

Proposition B.1. Khol, Krhol, Kshol, Khola, Krhola, and Kshola are all subrings of C.

Proof. This is proved in a similar way as proposition 4.6(a). For instance, in order to
see that Krhol is closed under multiplication, consider solutions f and g of Kf = 0 and
Lg = 0 with initial conditions in Km resp. Kn, where the coefficients of K and L are
defined on D0;1, where K and L are regular singular at z = 1, and such that the limits
of f and g at z= 1 exist. Then corollary 4.4 implies that K �L is defined on D0;1 and
corollary 4.5 implies thatK�L is regular singular at z=1. Consequently, limz!1(fg)(z)=
(limz!1 f(z)) (limz!1 g(z)) belongs to Krhol. �
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This proposition also allows us to consider initial conditions in Khol instead of K
in many circumstances. For instance, by definition, the value of a function f 2Fhol at
a point in D�0;1\K lies in Khol. Thanks to the proposition, this even holds for solutions
f 2Kholffzgg to an equation Lf =0 with f 2Lhol. Indeed, given z 2K, we have F (z)=
�0!zF (0); since �0!z and F (0) both have coefficients in Khol, the same holds for F (z).

B.3. Regular singular transition matrices

Lemma B.2. Let L 2 Lhola, � 2K, and consider a solution f 2 z�iKffzgg[log z] of the
equation Lf =0. Then f 2 z�iFhola[log z].

Proof. Without loss of generality, we may assume that �=0. Now write f= fd(logz)d+ ���+
f0 with f0;:::; fd2Kffzgg. Then f(z e2pi)= fd (log z+2p i)d+ ���+ f02Kffzgg[log z][2p i]
is also annihilated by L. Since 2 p i is transcendental, each of the coefficients of f(z e2pi)
as a polynomial in 2 p i is again annihilated by L; these coefficients are

fd; d fd log z+ fd¡1; : : : ; fd (log z)d+ � � �+ f0:

It follows that

fd2Fhola; fd¡12Fhola+Fhola log z; : : : ; f02Fhola+ � � �+Fhola (log z)d;

whence f 2Fhola[log z]. �

Proposition B.3. Let L be a linear differential operator of order n in K(z)[@]. Then
� 2Matn(Khola) for any regular singular broken-line path  as in section 4.3.2.

Proof. In view of (4.6), it suffices to prove the result for paths of the form ��!�+ z and
for paths of the form �+z!��. Without loss of generality we may assume that �=0. By
what precedes, the entries of �0�!z as functions in z are all in Fhola[zK][log z]. Now values
of functions z� (log z)k with �2K and k 2N at points z 2K=/ are in Khol. Consequently,
values of entries of �0�!z at z 2K=/ are in Khola. Let h1; : : : ; hr be the canonical basis of
solutions of Lf =0 at the origin. Then we recall that

�0�!z =

0BBBB@
h1(z) � � � hr(z)
��� ���

h1
(r¡1)(z) � � � hr

(r¡1)(z)

1CCCCA:
The determinant W =Wh1; : : : ;hr of this matrix satisfies the equation W 0+Lr¡1W =0 and
its inverse W¡1 satisfies (W¡1)0¡Lr¡1W¡1=0. Since L is at worst regular singular at
z= 0, we have Lr¡1=

�

z
+Q, where � 2K and Q 2K(z) is analytic at z= 0. It follows

that W = c¡1 z¡� e¡
R
Q and W¡1= c z� e

R
Q for some c2K, where (

R
Q)(0)=0 (here c2K

follows from the fact that the coefficients of all hi
(j) are in K as oscillatory transseries).

Given z 2K=/ where W¡1 is defined, it follows that W¡1(z)2Khol. Since Khola is a ring,
it follows that the coefficients of

�z!0�=�0�!z
¡1 =W¡1(z) adj(�0�!z)

are in Khola. �

Corollary B.4. We have Krhol�Khola.
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Proof. Given c2Krhol, let L2Lrhol and f 2F rhol such that Lf =0 and c= limz!1 f(z).
Let �1; : : : ; �r 2Khola be the entries of �0!1 F (0). Then f = �1 h1+ � � � + �r hr, where
h1; : : : ; hr is the canonical fundamental system of solutions of Lf =0. Since limz!1 f(z)
exists, we must have hi=O(1) whenever �i=/ 0 and f(1)=

P
i;�i=/ 0

�ihi(0)2Khola. �

B.4. Alien operators
Given an analytic function f defined on a neighbourhood of the origin on the Riemann sur-
face of the logarithm, we define (rf)(z)= f(z)¡ f(z e¡2pi). Setting �=(2p i)¡1 log z, the
operator f(z) 7! f(z e¡2pi) acts onCffzgg[�] by sending � to �¡1, whencer=1¡e¡@�=
@�¡ /1 2 @�+ � � �. Given d2N, let Cffzgg[�]<d be the set of f 2Cffzgg[�] of degree <d
in �. For 06 i6 j, we note that the operator

Zi;j := (i¡�r) � � � (j ¡ 1¡�r)

sends Cffzgg[�]<j into Cffzgg[�]<i. We also note that Zi;j(�i¡1)� (i¡ j)! �i¡1.
For each �2K, let r� := z�r z¡� and L� := z�Cffzgg[log z]. Then r�L� �L� for

all � and r� acts like multiplication by 1¡ e¡2pi(�¡�) on z� Cffzgg. Moreover, given
'2L� of degree <d in log z, we have r�d '=0. We define X to be the monoid of power
products (1¡ e¡2pi�1)k1 � � � (e1¡2pi�`)k` with �1; : : : ; �`2 (K\R) nQ and k1; : : : ; k`2N.
For 06 i6 j, we also define

Z�
i;j= z�Zi;j z¡�=(i¡�r�) � � � (j ¡ 1¡�r�):

We note that Z�
i;j sends z�Cffzgg[�]<j into z�Cffzgg[�]<i.

Let H be the space of holonomic functions f on D�0;1 n f0g that are regular singular at
the origin and such that F (1)= (f(1); : : : ; f (r¡1)(1))2 (Khol)r. Such a function f satisfies
an equation Lf =0 with L2Lhola. We regard F (1) as a column vector, as usual, and recall
that f(z e¡2pi) is another solution of Lf =0 with F (e¡2pi)=�1�1F (1)2 (Khol)r. Indeed,
the monodromy matrix �1�1 of L around z=0 with end-points at z=1 has coefficients
in Khol. It follows that rf 2H. Moreover, H is a ring with zK�H and logz2H. It follows
that r� f 2H and Z�

i;j f 2H for all �2K and 06 i6 j. Note that r� f always satisfies
the same equation as f , contrary to Z�

i;j f .

B.5. Eschewing regular singularities

Theorem B.5. We have
Khol�Krhol�Khola�X¡1Khol:

Proof. The inclusion Khol�Krhol is trivial and we already proved that Krhol�Khola, so
we focus on the remaining inclusion Khola�X¡1Khol.

Consider a monic L2Lhola of order r. Then Lh=0 has a canonical fundamental system
of solutions

hi;j 2 z�iKffzgg[log z]6j ; hi;j� z�i (log z)j ; i=1; : : : ; `; j=0; : : : ; �i¡ 1:

In particular, we have r= �1+ � � �+ �`. For each i2f1; : : : ; `g, let

�i :=r�1
�1 � � � r�i¡1

�i¡1 r�i+1
�i+1 � � � r�`

�` ;

so that �i f 2L�i for any solution f of Lf =0. We also define

ui :=
Y
i0=/ i

(1¡ e¡2pi(�i0¡�i))�i0;

so that �i f =ui f whenever f 2 z�iCffzgg.
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Let f be a solution of Lf =0 with F (1)= (f(1); : : : ; f (r¡1)(1))2Khol and let �i;j 2C
be such that f =

P
i;j �i;j hi;j. We need to show that �i;j 2 X¡1Khol for all i and j.

Given i 2 f1; : : : ; `g, let us show by induction on j that �i;j 2 ui¡1Khol. To this effect,
given j 2 f0; : : : ; �i¡ 1g, assume that �i;j+1; : : : ; �i;�i¡12 ui

¡1Khol, and let us show that
�i;j 2 ui¡1Khol.

Let g :=Z�
j+1;�i f and let f�=�i;0hi;0+ � � �+�i;�i¡1hi;�i¡1 and g�=Z�

j+1;�i f� be the
components of f and g in z�Cffzgg[log z]. By construction, g� has degree at most j in
log z and the coefficient (g�)j of degree j is of the form

(g�)j=(�i¡ j ¡ 1)!�i;j+ cj+1�i;j+1+ � � �+ c�i¡1�i;�i¡1+ o(1)

for constants cj+1; : : : ; c�i¡12K[(2 p i)¡1] that can be computed explicitly.
We next consider the function '= z¡�i�ir�

j g. By construction, '2Cffzgg and

'= j!ui ((�i¡ j ¡ 1 )!�i;j+ cj+1�i;j+1+ � � �+ c�i¡1�i;�i¡1+ o(1)):

Moreover, both g and ' belong to H, so the value of the contour integral

'(0) = 1
2 p i

I
jz j=1

'(z)
z

dz

actually lies in Khol. By our assumption that �i;j+1; : : : ; �i;�i¡12ui
¡1Khol, it follows that

'(0)¡ j!ui (cj+1�i;j+1+ � � �+ c�i¡1�i;�i¡1)2Khol;

whence ui�i;j 2Khol. By induction on j, this shows that �i;j 2ui¡1Khol, for all j. �

Remark B.6. In the special case when `=1 or when �i¡�j2Q for all i; j, we note that
the numbers ui are all in K. It follows that �0�!z and �z!0� have coefficients in Khol.

B.6. Irregular singularities

Proposition B.7. Let L be a linear differential operator of order n in K(z)[@]. Then
� 2Matn(Kshola) for any singular broken-line path  as in section 4.3.2.

Proof. In view of (4.6), it suffices to prove the result for paths of the form �k;�!�+ z
or �+ z! �k;�. In fact, it suffices to consider paths of the form �k;�! �+ z, by using
a similar argument as in the regular singular case, based on the Wronskian. Without loss
of generality we may assume that �=0.

Now, as shown in detail in section 7.3, the matrix�0k;�!z can be expressed as a product
of matrices whose entries are either in Kshola, or of the formZ

bi

ei�i1
'̂i(�i)K�ki;ki+1

(m) (�i; ai+1) d�i; (B.1)

or Z
bp

ei�p1
'̂p(�p) (e¡�p/zp)(m) d�i; (B.2)

where ai+1; bi; zp2K,m2N and '̂i is holonomic with initial conditions inKshola. Moreover,
bi and bp may be chosen as large as desired. By the results from section 4.2, the kernels

K�ki;ki+1
(m) (�i; ai+1), (e¡�p/zp)(m) and the integrands are all holonomic, with initial conditions

in Kshola at bi. Note that the m-th derivatives are taken with respect to ai+1 and zp, so
they amount to multiplying the integrands with a polynomial in �i or �p of degree m.
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Let us focus on the integrals of type (B.1); the integrals of type (B.2) are treated
similarly. The function '̂i satisfies a holonomic equation (i.e. a monic linear differential
equation with coefficients in K(�i)) of which all solutions have a growth bounded by

B eC j�ij
ki/(ki¡ki+1)

, for some fixed constant C > 0 and a constant B that depends on the
solution. Likewise, as shown in section 7.1, K�ki;ki+1

(m) (�i; ai+1) satisfies a holonomic equation

of which all solutions are bounded by B e¡C j�ij
ki/(ki¡ki+1)

for a fixed constant C > 0 that
can be made arbitrarily large (by taking bi large). By Lemma 4.3(b), it follows that the

same holds for the integrand I(�) := '̂i(�i)K�ki;ki+1
(m) (�i; ai+1).

Given such a holonomic equation satisfied by I , consider the canonical fundamental
basis h1;:::; hs of solutions to this equation at �i= bi. For each j, the function hj has initial
conditions in K at bi and the integralZ

bi

ei�i1
hj(�i) d�i;

converges. Taking bi sufficiently large and applying a change of variables of the form
(�i/bi)c= (1¡ �)¡1, we see that the value of the integral lies in Kshol. Since I can be
rewritten as a Kshola-linear combination of h1; : : : ; hs, we conclude that (B.1) also takes
a value in Kshola. �

B.7. Invertible elements
Given an integral domain R, let R� be its subgroup of invertible elements. An inter-
esting question is to determine the sets (Khol)�, (Krhol)�, etc. Obviously, K=/ � (Khol)�

and eK� (Khol)�. We also know that pZ� (Khol)�, since

p = 4
�
arctan

1
2
+ arctan

1
3

�
2 Khol

1
p

=
2 2
p

9801

X
k2N

(4 k)! (1103+ 26390 k)
(k!)4 3964k

2 Khol;

and p /
1
2Z� (Kshol)�, since

�
p

= ¡
�
1
2

�
:

It would be interesting to know whether p� 2 (Kshol)� for other rational numbers
�2Q n ( /1 2Z). From

¡(z) =
Z
0

1
xz¡1 e¡xdx

1
¡(z)

= i
2 p

Z
H
(¡t)¡z e¡t dt;

we deduce that ¡(K nZ)� (Kshol)�, where H is a Hankel contour from 1 around 0 and
then back to 1. From the above facts and Euler's reflection formula

¡(1¡ z) ¡(z) = p
sin (p z)

;

we also deduce that sin(p(KnZ))�(Kshol)�. This is noteworthy, since sinz is a well known
example of a holonomic function whose inverse 1

sinz is not holonomic.
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Apart from the invertible elements that directly follow from the above list of examples,
the author is not aware of any other invertible holonomic constants. In particular, the
precise status of X is unclear. From sin (p (K nZ))�Kshol, it follows that X¡1�Kshol,
whence

Kshol=Kshola:

In combination with proposition B.7, this actually provides a correct proof of [Hoeven, 2007b,
proposition 4.7 (d)]. If X¡1�Khol, then this would also implyKhol=Krhol=Khola=Krhola.
It seems plausible though that X \Khol=f1g and Khol=Krhol=Khola=Krhola both hold.

B.8. Further comments
For simplicity, we have assumed thatK=Qalg is the field of algebraic numbers, throughout
our exposition. Most results go through without much change for arbitrary algebraically
closed fields K. Only in the proof of Lemma B.2, we used the assumption that 2 p i2/K;
if 2 p i2K, then the same conclusion can be obtained by induction on d, by applying the
induction hypothesis on f(z e2pi)¡ f(z), when d> 0.

Another interesting direction of generalization would be to consider holonomic func-
tions that are completely defined over Qalg, but to consider values at points in larger
fields K. Such classes of constants contain numbers like ee

p
, sin¡( 2

p
), etc.

In [Fischler and Rivoal, 2011], the authors consider values of so-called Siegel G-func-
tions, which are a particular type of Fuchsian holonomic functions. They prove an analogue
of theorem B.5 in this setting. Their proof is significantly simpler, thanks to special proper-
ties of G-functions [Fischler and Rivoal, 2011, theorem 3], and based on similar arguments
as our proof of proposition B.3. The paper [Fischler and Rivoal, 2011] also contains several
results about fraction fields of fields of values of G-functions. It would be interesting to
investigate analogues of these results in our setting.

Still in [Fischler and Rivoal, 2011], the authors study the case when K Qalg is an alge-
braic number field that is strictly contained in Qalg. They showed that any real algebraic
number can be obtained as the value at z=1 of a G-function overQ that is defined on D�0;1.
In our setting, this immediately implies that Qalg�Qhol[i], whence (Qalg)hol=Qhol[i].
More generally, for any algebraic number field K, we obtain (Qalg)hol=Khol[i] if K�R

and (Qalg)hol=Khol if K R.
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