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Efficient accelero-summation of holonomic functions

Let L 2 K(z)[@] be a linear differential operator, where K is the field of algebraic numbers. A holonomic function over K is a solution f to the equation Lf = 0. We will also assume that f admits initial conditions in K at a non-singular point z 2 K.

 how to compute n digits of the analytic continuation of f along in time O(n log 3 n log log n). In a second paper [Hoeven, 2001b], this result was generalized to the case when z 0 is allowed to be a regular singularity, in which case we compute the limit of f when we approach the singularity along .

In the present paper, we treat the remaining case when the end-point of is an irregular singularity. In fact, we will solve the more general problem to compute singular transition matrices between non standard points above a singularity and regular points in K near the singularity. These non standard points correspond to the choice of non-singular directions in Écalle's accelero-summation process.

We will show that the entries of the singular transition matrices may be approximated up to n decimal digits in time O(n log 4 n log log n). As a consequence, the entries of the Stokes matrices for L at each singularity may be approximated with the same time complexity. Efficient accelero-summation of holonomic functions

Introduction

Definitions

Let K be a subfield of C. A holonomic function over K is a solution f to a linear differential equation Lf = 0, where L = @ r + L r ¡1 @ r ¡1 + + L 0 2 K(z)[@] is a monic linear differential operator of order r. Many classical special functions, such as exp, log, sin, cos, erf, hypergeometric functions, Bessel functions, the Airy function, etc. are holonomic. Moreover, the class of holonomic functions is stable under many operations, such as addition, multiplication, differentiation, integration and postcomposition with algebraic functions. In the sequel, and unless stated otherwise, we will assume that K is the field of algebraic numbers. We will say that f has initial conditions in K if F (z) = (f(z);:::; f (r ¡1) (z)) 2 K r for a certain non-singular point z 2 K.

In this paper, we will be concerned with the efficient multidigit evaluation of limits of holonomic functions at irregular singularities. For this, it will be convenient to introduce some terminology. We say that z 2 C is effective, if there exists an approximation algorithm, which takes " 2 Q > on input and which returns a dyadic approximation z ~2 (Z + i Z) 2 Z with jz ~¡ z j < ". Inside a computer, an effective complex number z is represented as an object with a method which corresponds to its approximation algorithm [START_REF] Hoeven | Effective complex analysis[END_REF]. We denote by C eff the set of effective complex numbers.

The time complexity of z 2 C eff is the time complexity of its approximation algorithm, expressed in terms of n = ¡log ". If an approximation algorithm has time complexity T (n), then we call it a T (n)-approximation algorithm. An effective number is said to be fast, if it admits an approximation algorithm with a time complexity of the form O(n log O(1) n). We denote by C fast the set of such numbers. A partial function f: (C eff ) n C eff is said to be fast if it maps (C fast ) n into C fast . For instance, multiplication is fast [START_REF] Schönhage | Schnelle Multiplikation groÿer Zahlen[END_REF], since two n-bit numbers can be multiplied in time M (n) = O(n log n log log n). Implicitly defined functions in terms of fast functions, like division, are also fast, as a result of Newton's method.

Whenever the coefficients of L admit singularities, then solutions f to L f = 0 are typically multivalued functions on a Riemann surface. From an effective point of view, points on such a Riemann surface may be addressed via broken-line paths = z z 0 = z 0 ! z 1 ! ! z l starting at the point z = z 0 where we specified the initial conditions for f . Each straight-line segment z i ! z i+1 should be sufficiently short, so that the disk with center z i and radius jz i+1 ¡ z i j contains no singularities. Given such a path, we will denote by f () the evaluation of f at the endpoint z 0 of , as obtained via analytic continuation.

Previous work

It was first noticed by Brent [Brent, 1976a, Section 6] that the constant e admits an efficient O(M (n) log n)-approximation algorithm based on binary splitting. This result was obtained by analogy with Schönhage's fast algorithm for radix conversion. The paper also mentions efficient algorithms for the computation of more general exponentials, although this direction was not investigated in more detail, probably because even more efficient O(M (n) log n)-algorithms were discovered shortly afterwards [Brent, 1976b].

The binary splitting algorithm was generalized to arbitrary holonomic over Q in [START_REF] Chudnovsky | Computer algebra in the service of mathematical physics and number theory[END_REF]. It was shown there that, given a holonomic function f over Q with initial conditions in Q, and a broken-line path = z z 0 as above with z; z 0 2 Q, the number f () admits an O(M (n) log 2 n)-approximation algorithm. In the case when z 0 is a more general effective number with a T (n)-approximation algorithm, it was also shown that f () admits an O(T (n + O( 1)) + M (n) log 3 n)-approximation algorithm. In particular, the restriction of a holonomic function to an open domain of C eff is fast. By what precedes, this result is extremely interesting for the efficient multidigit evaluation of many special functions. Special cases and a few extensions were rediscovered independently by several authors [START_REF] Karatsuba | Fast evaluation of transcendental functions[END_REF][START_REF] Karatsuba | Fast evaluation of Bessel functions[END_REF][START_REF] Karatsuba | Fast calculation of the Riemann zeta function (s) for integer values of the argument s[END_REF][START_REF] Karatsuba | On the computation of the Euler constant[END_REF][START_REF] Hoeven | Automatic asymptotics[END_REF][START_REF] Hoeven | Fast evaluation of holonomic functions[END_REF][START_REF] Haible | Fast multiple-precision evaluation of elementary functions[END_REF].

Remark 1.1. An early hint to the existence of fast algorithms for the evaluation of holonomic functions occurred in [START_REF] Gosper | Artificial intelligence memo[END_REF]. It is plausible that the authors had something like the binary splitting algorithm in mind (the announced complexity is the right one up to a factor O(log log n)), but no details are provided.

Our first paper [START_REF] Hoeven | Fast evaluation of holonomic functions[END_REF] on the subject contained three improvements with respect to [START_REF] Chudnovsky | Computer algebra in the service of mathematical physics and number theory[END_REF]. First, we noticed the possibility to work over the algebraic numbers K instead of Q, which allows for the fast evaluation of constants like ¡( 2 p ). Secondly, we improved the above factor of log 3 n (for the evaluation in arbitrary points) to log 2 n log log n. Finally, the evaluation of f() depends on a certain number of bounds, which were assumed to exist empirically in [START_REF] Chudnovsky | Computer algebra in the service of mathematical physics and number theory[END_REF]. In [START_REF] Hoeven | Fast evaluation of holonomic functions[END_REF], it was shown that all necessary bounds can be computed effectively, as a function of the operator L and the path . Stated otherwise, we showed that there exists an algorithm which takes L, and the initial conditions for f at z on input, and which computes f () (as an object with a O(M (n) log 2 n)-approximation algorithm).

In a second paper [Hoeven, 2001b], we continued our studies by showing how to efficiently evaluate the limit of f along a broken-line path which ends in a regular singular point z 0 . This extension allows for the efficient evaluation of multiple zeta values, Bessel functions (whose initial conditions are specified in a regular singular point) and many other interesting transcendental constants. Some special cases of this more general result were obtained before in [START_REF] Karatsuba | Fast evaluation of Bessel functions[END_REF][START_REF] Karatsuba | Fast calculation of the Riemann zeta function (s) for integer values of the argument s[END_REF][START_REF] Haible | Fast multiple-precision evaluation of elementary functions[END_REF].

A related problem to the evaluation of f at the end-point of a broken line path is the computation of transition matrices along . Given a path = z z 0 from z to z 0 , the initial conditions F (z 0 ) = (f (z 0 ); : : : ; f (r ¡1) (z 0 )) of f at z 0 depend linearly on the initial conditions F (z) = (f (z); : : : ; f (r ¡1) (z)) at z. Hence, when considering F (z) and F (z 0 ) as column vectors, there exists a unique scalar matrix z z 0 = z z 0 L with F (z 0 ) = z z 0 F (z); which is called the transition matrix along for L. The relation z z 00 = z 0 z 00 z z 0 make transition matrices well-suited for the process of analytic continuation. Therefore, most algorithms from [START_REF] Chudnovsky | Computer algebra in the service of mathematical physics and number theory[END_REF][START_REF] Hoeven | Fast evaluation of holonomic functions[END_REF] rely on the computation of transition matrices. In [Hoeven, 2001b], this concept was further generalized to the case when is allowed to pass through regular singularities.

Main results

In this paper, we will be concerned with the computation of the limits of holonomic functions in irregular singularities and, more generally, with the computation of generalized transition matrices along paths which are allowed to pass through irregular singularities. The algorithms are based on an effective counterpart of the accelero-summation process, as introduced by Écalle [START_REF] Écalle | L'accélération des fonctions résurgentes[END_REF][START_REF] Écalle | Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac[END_REF][START_REF] Écalle | Six lectures on transseries, analysable functions and the constructive proof of Dulac's conjecture[END_REF][START_REF] Braaksma | Multisummability and Stokes multipliers of linear meromorphic differential equations[END_REF][START_REF] Borel | Leçons sur les séries divergentes, 2nd Edition[END_REF][START_REF] Ramis | Dévissage gevrey[END_REF]. Since this process is not completely straightforward, let us first motivate its use for our application.

Consider a holonomic function f with an irregular singularity at the origin. Assume that f admits a (usually divergent) asymptotic expansion f = f 0 + f 1 z + 2 K [[z]] in a sector S near the origin. Assume also that we have a bound B for jf (z)j on S. Given z 0 2 S \ K, we are interested in computing

I = R z 0 0 f (t) dt. Notice that '(z) = R z 0 z f (t) dt is
a holonomic function, so the computation of I is a particular instance of the problem of computing the limit of a holonomic function in an irregular singularity.

In order to find I ~2 (Z + i Z) 2 Z with jI ~¡ I j < ", for a given " 2 Q > , it clearly suffices to compute '(z 1 ) with precision "/2 at a point z 1 with jz 1 j < "/(2 B). This can be done using the analytic continuation algorithm from [START_REF] Chudnovsky | Computer algebra in the service of mathematical physics and number theory[END_REF][START_REF] Hoeven | Fast evaluation of holonomic functions[END_REF]. However, since the equation Lf = 0 may have other solutions g with growth rates of the form log jg j = O(j1/z j ) at z = 0, the transition matrix between z 0 and z 1 may contain entries of size e O((1/") ) . The computation of n = O(¡log ") digits of I ~may therefore require a time e O(n) .

The situation gets a bit better, if we want to compute J = R

z 0 0 f (t) e ¡1/t dt instead of I,
where we assume that z 0 2 R > . In that case, using a similar method as above, we may choose z 1 2 Q > with z 1 = O(¡log "). Consequently, the computation of n = O(¡log ") digits of J requires a time O(n log O(1) n), where > 1. Although this already yields a polynomial time algorithm, we are really interested in fast approximation algorithms. Roughly speaking, the main result of this paper is that the computation of an arbitrary limit of a holonomic function at an irregular singularity may be reduced to the computation of a finite number of other, more special limits. These special limits, which are similar to J above, with = 1, will be shown to admit fast O(M (n) log 3 n)-approximation algorithms. More generally, we will generalize the concept of transition matrices, so as to allow for broken-line paths through irregular singularities. In particular, Stokes matrices may be seen as such singular transition matrices. We will both show that singular transition matrices may be computed as a function of L and a singular broken-line path , and that their entries admit O(M (n) log 3 n)-approximation algorithms.

This result admits several interesting applications besides the computation of limits of holonomic functions in singularities. For instance, we may consider solutions f to Lf = 0 with a prescribed asymptotic behaviour in one or several singularities and recover the function from these singular initial conditions and one or more singular transition matrices. In [Hoeven, 2007a], it has also been shown that the possibility to compute the entries of Stokes matrices can be used for the numeric computation of the differential Galois group of L. In particular, we obtained an efficient algorithm for factoring L.

Our results can be compared to the only previous work on effective resummation that we are aware of [START_REF] Thomann | Procédés formels et numériques de sommation de séries d'équations différentielles[END_REF]. First of all, the current paper has the advantage that all necessary error bounds for guaranteeing a certain precision are computed automatically. Secondly, the almost linear time complexity is far better than those achieved by other numerical algorithms, like Taylor series expansions (of complexity O(n 2 ), at best) or the Runge-Kutta method (of complexity e O( n 4 p ) ).

Quick overview

Let us briefly outline the structure of this paper. In section 2, we begin with a survey of the accelero-summation process. The idea is to give a meaning to the evaluation of a divergent formal solution to Lf = 0 via a succession of transformations. We first make the formal solution convergent at the origin by applying a formal Borel transform. We next apply a finite number of integral transforms called accelerations followed by an a Laplace transform. At the end, we obtain an analytic solution to Lf = 0 in a sector near the origin, which admits the divergent formal solution as its asymptotic expansion. The material in section 3 is more or less classical. We first recall the definition of the Newton polygon of L in a singularity, as well as the relationship between its slopes and the shape of formal solutions to Lf = 0. In particular, the steepest slope gives us information about the maximal growth rate of solutions. We next study the Newton polygons of other operators related to L, like the operators which annihilate the Borel transforms of solutions to L.

In section 4, we recall several stability properties [START_REF] Stanley | Differentially finite power series[END_REF] for holonomic functions and constants, as well as their effective counterparts. In particular, we will show that the integrands involved in the accelero-summation procedure are holonomic and how to compute vanishing operators for them. Using the results from section 3, these operators will be seen to have the required growth rates at infinity.

In sections 5, we show how to compute uniform bounds for the transition matrices in suitable sectors near infinity. In section 6, these bounds will be used for the efficient evaluation of integrals with exponential decrease. In section 7, the different techniques are assembled into an effective and efficient accelero-summation procedure.

None of the algorithms in this paper have been implemented yet. Nevertheless, at least some of the algorithms should be implemented inside the standard library of the upcoming Mathemagix system [START_REF] Hoeven | Mmxlib: the standard library for Mathemagix[END_REF] and any help would be appreciated.

Notations

The following notations will frequently be used in this paper: 

C _ Riemann surface of log K Subset fx 2 K: x 0g of K,
M ' L Multiplicative conjugation of L with e R ' P p L Compositional conjugation of L with z p Q ! L Compositional conjugation of L with ! z L Transition matrix for L along The operators B ~z, L ^z , L z , A ^k;k 0 , A k;k 0
are defined in sections 2.1 and 2.2. The transformations M ' , P p and Q ! are introduced in sections 3.2 and 4.2.4. Transition matrices are defined in section 4.3.

Reminders on the accelero-summation process

In this section we survey the process of accelero-summation, give some explicit bounds for the acceleration kernels, as well as the interpretation of the accelero-summation process in terms of majors. We have aimed to keep our survey as brief as possible. It is more elegant to develop this theory using resurgent functions and resurgence monomials [START_REF] Écalle | Les fonctions résurgentes IIII[END_REF][START_REF] Candelberger | Approche de la résurgence[END_REF]. For a more complete treatment, we refer to [START_REF] Écalle | L'accélération des fonctions résurgentes[END_REF][START_REF] Écalle | Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac[END_REF][START_REF] Écalle | Six lectures on transseries, analysable functions and the constructive proof of Dulac's conjecture[END_REF][START_REF] Braaksma | Multisummability and Stokes multipliers of linear meromorphic differential equations[END_REF][START_REF] Martinet | Elementary acceleration and multisummability[END_REF].

The accelero-summation process

Let C[[z Q >
]] be the differential C-algebra of infinitesimal Puiseux series in z for = z @ and consider a formal power series solution

f ~2 O = C[[z Q > ]][log z]
to a linear differential equation over K(z). When applicable, the process of accelero-summation enables to associate an analytic meaning f to f ~in a sector near the origin of the Riemann surface C _ of log, even in the case when f ~is divergent. Schematically speaking, we obtain f through a succession of transformations: 

f ~f B ~z1 ¡ ¡! L ^zp p f ^1 ¡! A ^z1 !z 2 1 f ^2 ¡! ¡! f ^p¡1 ¡! A ^zp¡1 !zp p¡1 f ^p (2.1) Each f ^i is a resurgent function which realizes f ~i(z i ) = f ~(z) in the convolution model with respect to the i-th critical time z i = z k i p (with k i 2 Q > and k 1 > > k p ).
f ~1(z 1 ) = f ~(z) = P ;r f ~1;;r z 1 log r z 1 2 C[[z 1 Q > ]][log z 1 ]. This transformation sends each z 1 log r z 1 to (B ~z1 z 1 log r z 1 )( 1 ) = 1 ¡1 X i=0 r r i (r¡i) () log i 1 ; (2.2)
where () = 1/¡(), and extends by strong linearity:

f ^1( 1 ) = (B ~z1 f ~1)( 1 ) = X 2Q > r2N f ~1;r; (B ~z1 z 1 log r z 1 )( 1 );
The result is a formal series

f ^1 2 1 ¡1 C[[ 1 Q > ]][log 1
] in 1 which converges near the origin of the Riemann surface C _ of the logarithm. The formal Borel transform is a morphism of differ- ential algebras which sends multiplication to the convolution product, i.e. B ~z1 (f g) = (B ~z1 f ) (B ~z1 g), and differentiation @ z to multiplication by ¡. Intuitively speaking, the Borel transform is inverse to the Laplace transform defined below.

Accelerations Given i < p, the function f ^i is defined near the origin of C _ , can be analytically continued on the axis e i i R > C _ , and admits a growth of the form f ^i( i ) = exp O(j i j k i /(k i ¡k i+1 ) ) at infinity. The next function f ^i+1 is obtained from f ^i by an acceleration of the form

f ^i+1 ( i+1 ) = (A ^zi !z i+1 i f ^i)( i+1 ) = Z i 2e i i R > f ^i( i ) K ^ki ;k i+1 ( i ; i+1 ) d i ;
(2.3)

where the acceleration kernel K ^ki ;k i+1 is given by

K ^ki ;k i+1 ( i ; i+1 ) = 1 2 p i Z c¡1i c+1i e i+1 z i+1 ¡ i z i dz i+1 = 1 i+1 K ^ki+1 /k i i i+1 k i+1 /k i (2.4) K ^() = 1 2 p i Z c¡1i c+1i
e z ¡z dz:

(2.5)

For large 2 R > , we will show in section 2.4 below that

K ^() 6 B exp(¡C 1/(1¡) )
for some constants B; C > 0. It follows that the acceleration f ^i+1 of f ^i is well-defined for small i+1 on e i R > , where 

= i k i /k i+1 .
L ^zi i is defined below.
The Laplace transform The last function f ^p is defined near the origin of C _ , can be analytically continued on the axis e i i R > C _ and admits at most exponential growth at infinity. The function f is now obtained using the analytic Laplace transform

f (z) = f p (z p ) = (L ^zp p f ^p)(z p ) = Z p 2e pi R > f ^p( p ) e ¡ p /z p d p :
(2.6)

For any sufficiently small z p with jarg z p ¡ p j < p/2, the value f (z) = f p (z p ) is well defined. The set D p of Stokes directions is defined in a similar way as in the case of accelerations. The Laplace transform is a morphism of differential C-algebras which is inverse to the Borel transform and sends the convolution product to multiplication.

Given tuples k = (k 1 ; : : : ; k p ), = ( 1 ; : : : 

; p ) of critical times k 1 > > k p in Q > and directions 1 2 R 1 := R n D 1 ;:::; p 2 R p := R n D p ,

Majors and minors

In general, the acceleration and Laplace integrands are both singular at zero and at infinity. Much of the remainder of this paper is directly or indirectly concerned with the efficient integration near infinity. This leaves us with the integration at zero. A classical trick is to replace the integrand by a so called major . This allows us to replace the integral from zero to a point u close to zero by a contour integral around zero from e ¡2pi u to u. We will rapidly review this technique and refer to [START_REF] Écalle | Les fonctions résurgentes IIII[END_REF][START_REF] Candelberger | Approche de la résurgence[END_REF][START_REF] Écalle | Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac[END_REF][START_REF] Écalle | Six lectures on transseries, analysable functions and the constructive proof of Dulac's conjecture[END_REF] for details. Consider an analytic germ f ^near the origin 0 _ of the Riemann surface C _ of log. A major for f ^is an analytic germ f with

f ^() = f () ¡ f ( e ¡2pi ):
The minor f ^only depends on the class f of f modulo the set of regular germs at 0. We call f a microfunction. Given a regular germ ', 2 Q > and k 2 N, the minor

f ^() = '() log k admits the major f = 8 < : '() P k (log ) if 2 N 1 1 ¡ e ¡2pi '() P ;k (log ) if 2 / N (2.7)
for certain polynomials P k (log ) = 1 2 p i (k + 1) log k+1 + and P ;k (log ) = log k + . More generally, if f ^is locally integrable in a sector containing a point u near 0 _ , then

f () = ¡1 2 p i Z 0 u f ^() ¡ d (2.8)
is a major for f ^. The class of f does not depend on the choice of u.

Given majors f i for the f ^i from section 2.1, we may now replace (2.3) and (2.6) by

f ^i+1 ( i+1 ) = Z H i f i ( i ) K ^ki ;k i+1 ( i ; i+1 ) d i (2.9) f p (z p ) = (L z p p f p )(z p ) = Z H p f p ( p ) e ¡ p /z p d p ;
(2.10)

where H stands for the contour (see figure 2.1 below) which consists of H ¡ from e ( ¡2p)i 1 to e ( ¡2p)i " (for some small " > 0), followed by C from e ( ¡2p)i " around 0 to e i ", and H + from e i " to e i 1.

Using the formula (2.8) in combination with (2.9) leads to the direct expression

f i+1 ( i+1 ) = (A k i ;k i+1 i f i )( i+1 ) = Z H i f i ( i ) K k i ;k i+1 ( i ; i+1 ) d i (2.11)
of f i+1 in terms of f i , where

K ( i ; i+1 ) = K u ( i ; i+1 ) = ¡1 2 p i Z 0 u K ^ki ;k i+1 ( i ; ) ¡ i+1 d :
The integrals (2.11) and (2.10) further decompose into

f i+1 ( i+1 ) = Z C i f i ( i ) K k i ;k i+1 ( i ; i+1 ) d i + Z H i + f ^i( i ) K k i ;k i+1 ( i ; i+1 ) d i (2.12) f p (z p ) = Z C p f p ( p ) e ¡ p /z p d p + Z H p + f ^p( p ) e ¡ p /z p d p : (2.13)
More generally, differentiating m 2 N times w.r.t. i+1 , we obtain the following formulas, on which we will base our effective accelero-summation algorithms:

f i+1 (m) ( i+1 ) = Z C i f i ( i ) K k i ;k i+1 (m) ( i ; i+1 ) d i + Z H i + f ^i( i ) K k i ;k i+1 (m) ( i ; i+1 ) d i (2.14) f p (m) (z p ) = Z C p f p ( p ) @ m e ¡ p /z p @z p m d p + Z H p + f ^p( p ) @ m e ¡ p /z p @z p m d p :
(2.15)

In section 2.4 below, we will show that for u small enough, the kernel K ( i ; i+1 ) and its derivatives in i+1 have the same order of decrease at infinity as K ^( i ; i+1 ). 0

e i i 1 C i H i + H i ¡ C i H i + Figure 2.1.
Illustrations of the contours for the acceleration and Laplace integrals. At the left, the contour for the direct integrals (2.3) and (2.6) using minors. In the middle, the contour in the case of majors (2.9) and (2.10). At the right hand side, we use majors for integration at 0 and minors for the integration at infinity, as in (2.12) and (2.13).

Some elementary bounds

Lemma 2.1. Given 2 R and X > 0 with X > 2 , we have

Z X 1 x e ¡x dx 6 2 X e ¡X :
Proof. In the case when 6 0, we have

Z X 1 x e ¡x dx 6 X Z X 1 e ¡x dx = X e ¡X 6 2 X e ¡X :
If > 0, then consider the function t = '(x) = x ¡ log x and its inverse x = (t). Given X > 2 , we obtain

Z X 1 x e ¡x dx = Z '(X) 1 0 (t) e ¡t dt = Z '(X) 1 e ¡t dt 1 ¡ (t) dt 6 2 Z '(X) 1 e ¡t dt = 2 X e ¡X : Lemma 2.2. Given > 0, > 0, > ¡ 1 and X > 0 with X > 2 + 2 1/ , we have Z X 1 x e ¡x dx 6 2 X +1¡ e ¡X ; Z X 1 e ¡x dx 6 X e ¡X : Proof. For X > 2 + 2 1/ > 2 + 1 ¡ 1/
, the above lemma implies

Z X 1 x e ¡x dx = 1 +1 Z X 1 x +1¡ e ¡x dx 6 2 X +1¡ e ¡X :
The second relation easily follows from the first one by setting = 0.

Lemma 2.3. Let ; ; "; X > 0. Then X e X 6 " e e (+")X :

Proof. This follows from the fact that the function x e ¡"x admits its minimum at x = /".

Lemma 2.4. Given > 1 and X 6 2 , we have

Z X 1
x e ¡x dx 6 4 e 3 ¡() e ¡X Proof. By lemma 2.1, we have

Z X 1 x e ¡x dx 6 2 +1 e ¡ + 2 (2 ) e ¡2 ;
since x e ¡x admits its maximum in x = . Furthermore,

2 +1 e ¡ + 2 (2 ) e ¡2 6 2 (e +1 + 2 ) e ¡X 6 4 e 3 ¡() e ¡X :
The second inequality can be checked for small by drawing the graph and it holds for large because of Stirling's formula.

Lemma 2.5. Given 2 (0; 1), > 1, > 0 and X 6 [2 ( + 1 ¡ )/] 1/ , we have

Z X 1 x e ¡x dx 6 4 e 4+4 ¡(
) e ¡X :

Proof. Application of the previous lemma, after a change of variables.

Explicit bounds for the acceleration kernels at infinity

Lemma 2.6. Let 2 (0; 1) and > 0. Denote s = ( )

1 1¡ = p 2 and assume s > 14. Then jK ^()j 6 8 s 1 ¡ p (cos ) 1/ e ¡ 1¡ s : Proof. Let '(z) = z ¡ z .
We will evaluate the integral (2.5) using the saddle point method. In the neighbourhood of the saddlepoint s, we have

'(s + i ") = ¡ 1 s ¡ 1 ¡ 2 s " 2 ¡ i 2 Z 0 " ' 000 (s + i t) (" ¡ t) 2 dt; ' 000 (z) = ¡ (1 ¡ ) (2 ¡ ) z ¡3 :
For z on [s; s +i s p ], we also have

j' 000 (z)j 6 1 1 ¡ s ¡1/2 3 (1 ¡ ) (2 ¡ ) s ¡3 = 1 1 ¡ s ¡1/2 3 (1 ¡ ) (2 ¡ ) s 2 ;
For j"j 6 s p , it follows that i 2

Z 0 " ' 000 (s + i t) (t ¡ ") 2 dt 6 1 1 ¡ s ¡1/2 3 (1 ¡ ) (2 ¡ ) 6 s 2 " 3 6 1 ¡ 3 s 3/2 1 1 ¡ s ¡1/2 3 " 2 6 1 ¡ 4 s " 2 ;
where the last bound follows from our assumption s > 14. We infer that

<('(s + i ") ¡ '(s)) 6 ¡ 1 ¡ 4 s " 2 ; whence Z ¡ s p s p e '(s+ix)¡ '(s) d x 6 Z ¡1 1 e ¡ 1¡ 4s x 2 dx = 4 p s 1 ¡ r : (2.16) Now let ! = s (cos ) ¡1/ > s p . We have " Z ¡! ¡ s p + Z s p ! # e '(s+ix)¡'(s) d x 6 2 !;
(2.17) since < '(s + i x) admits a unique maximum at x = 0. Furthermore,

< ( (s + i x) ) > jxj cos ; for all x 2 R. Lemma 2.2 therefore implies Z ¡1 ¡! + Z ! 1 e '(s+ix)¡ '(s) d x 6 2 ! e (s ¡(cos)! ) 6 2 !; (2.18) since ! > s /cos > 2 s ¡1 / cos = 2 / ( cos ).
Putting the relations (2.16), (2.17) and (2.18) together, we obtain

jK ^()j e 1¡ s 6 4 p s 1 ¡ r + 4 s (cos ) 1/ 6 8 s 1 ¡ p (cos ) 1/ :
This completes the proof of our lemma.

Lemma 2.7. Let = k i+1 /k i and assume that arg i = arg i+1 , arg u = arg i+1 , 0 < juj < j i+1 j/2 and

j i /u j > max 14 1¡ ; 2 1 ¡ 1¡ ¡ : (2.19) Then jK k i ;k i+1 (m) ( i ; i+1 )j 6 2 2¡m m! p (cos p 2 ) 1/ 1 ¡ p i+1 m+1 e ¡ 1¡ ( i /u ) 1/(1¡)

:

(2.20)

Proof. We first observe that

K k i ;k i+1 (m) ( i ; i+1 ) = ¡m! 2 p i Z 0 u K ^( i / ) ( ¡ i+1 ) m+1 d = ¡m! 2 p i Z i /u 1 K ^() (( i / ) 1/ ¡ i+1 ) m+1 d :
For > i /u , we also have j i / j 1/ 6 juj 6 j i+1 j/2, so that

jK k i ;k i+1 (m) ( i ; i+1 )j 6 m! 2 m+2 p i+1 m+1 Z i /u 1 K ^() d :
(2.21) Setting = ( p)/2, the lemmas 2.6 and 2.2 now imply

Z i /u 1 K ^() d 6 8 1 ¡ p (cos ) 1/ Z i /u 1 ( ) 1 1¡ e ¡ 1¡ () 1/(1¡) d 6 16 (cos ) 1/ 1 ¡ p e ¡ 1¡ ( i /u ) 1/(1¡)
; because of the assumption (2.19). Combining this bound with (2.21), we obtain (2.20).

Differential operators and Newton polygons

Definition of the Newton polygon

Let K[z Q ] be the set of polynomials of the form P = P 1 z 1 + + P l z l with P 1 ; : : : ; P l 2 K = / and 1 > > l 2 Q. If l = / 0, then we call v 1 (P ) = ¡ 1 the valuation of P at infinity and l = v 0 (P ) the valuation of P at zero. If l = 0, then v 1 (P ) = v 0 (P ) = +1.

We write v = v 1 or v = v 0 when it is clear from the context whether we are working near z = 1 or z = 0. Now consider a differential operator

L = L r r + + L 0 2 K[z Q ][] (L r = / 0); where = z @ = z @ @z . The support supp L of L is defined to be the set of all pairs (i; ) 2 N Q with L i; = (L i ) = / 0. The Newton polygon (see figure 3.1) of L at infinity (resp. zero) is the convex hull of f(x; + y): (i; ) 2 supp L; 0 6 x 6 i; y > 0g;
where = ¡1 (resp. = 1).

The boundary of the Newton polygon consists of two vertical halflines and a finite number of edges. The outline of (the Newton polygon of) L is the sequence (i 0 ; 0 ); : : : ; (i l ; l ) of points with 0 = i 0 < < i l = r, such that the j-th edge of the Newton polygon is precisely the segment which joins (i j ¡1 ; j ¡1 ) to (i j ; j ). We call

j = j ¡ j ¡1 i j ¡ i j ¡1
the slope of the j-th edge. From the definition of the Newton polygon as a convex hull, it follows that

v(L k ) ¡ v(L i j ) > j (k ¡ i j )
for all k. We call = L = l¡1 the growth rate of L. 

L = 4 + 2 z 2 3 ¡ z 3 2 + (7 z ¡ 3 z 3 ) + 11 z 2 .

Operations on differential operators

Multiplicative conjugation

Given L 2 K[z Q ][] and ' 2 K[z Q ],
we define M ' L to be the operator which is obtained by substituting + ' for in L. For all f , we have

(M ' L)(f ) = e ¡ R '/z L(e R '/z f ):
In the case when ' 2 K, we have supp M ' L supp L + (¡N; 0):

In particular, the Newton polygon of M ' L and L coincide, both at zero and infinity (see figure 3.2). In general, only the slopes which are steeper than the exponent of the dominant monomial of ' coincide. 

M 2 M = 4 + (2 z 2 + 8) 3 + (12 z 2 ¡ z 3 + 24) 2 + (24 z 2 ¡ 7 z 3 + 7 z + 32) + 27 z 2 ¡ 10 z 3 + 14 z + 16.

Compositional conjugation

Let 2 Q = / and consider the transformation

P : z 7 ! z . If z = u , then z @ @z = u @ @u = 1 u @ @u ;
so the transformation P naturally extends to K[z Q ][] by sending to ¡1 . We have

supp P L = f(i; ): (i; ) 2 supp Lg:
Consequently, if

(i 0 ; 0 ); : : : ; (i l ; l )
is the outline of L, then

(i 0 ; 0 ); : : : ; (i l ; l )
is the outline of P L. In particular, P L = j j L . Of course, if < 0, then we understand that the roles of infinity and zero are interchanged. In figure 3.3, we have illustrated the effect of the transformation P on the Newton polygon. 

The Borel transform

Let us now consider the analogue of the formal Borel transform B ~from section 2.1 for differential operators. It is classical that the formal Borel transform satisfies

B ~(z 2 @ z f) = B ~f ; B ~(z ¡1 f) = @ B ~f : for f 2 z K[[z]].
Rewritten in terms of the operators z = z @ z and = @ , this yields

B ~( z f ) = ( + 1) B ~f ; B ~(z ¡1 f ) = ( ¡1 ) B ~f: This induces a natural K-algebra morphism B: K[z ¡1 ][ z ] ! K[ ¡1 ][ ], by setting Bz ¡1 = ¡1 ; B z = + 1: Each term L i;j z j i of an operator L 2 K[z ¡1 ][ z ] gives rise to a contribution B(L i;j z j z i ) = j (L j ;i i¡j + c i¡j ¡1 i¡j ¡1 + + c 0 )
to BL, for suitable constants c i¡j ¡1 ; : : : ; c 0 2 K. In particular, supp B(L i;j z j z i ) (i ¡ j ; j) + (¡1; 0) N:

Let (i 0 ; 0 ); : : : ; (i l ; l ) be the outline of L at infinity and for all j, let ^j = j 1 ¡ j :

If 0 < j < 1, then the j-th edge gives rise to an edge with slope ^j in the Newton polygon of BL at zero. If j > 1, then it gives rise to an edge with slope ^j in the Newton polygon of BL at infinity (see figure 3.4). In addition, if L r contains several terms, then the Newton polygon of BL at infinity also contains an edge with slope ¡1. 

4 + 4 ¡ 18 ¡ 1 2 3 + 6 ¡ 18 ¡ 7 2 2 + 4 ¡ 6 + 8 2 + 1 and BP 2 L = ¡ 3 4 2 ¡ 1 2 4 5 + 1 16 ¡ 3 2 2 ¡ 9 2 4 4 + 1 4 + 79 2 4 3 + 3 8 + 3 2 2 ¡ 159 2 4 2 + 1 4 + 3 2 + 45 4 + 1 16
at infinity (the middle column) and at zero (the right hand column).

Formal solutions

Having chosen whether we work near infinity or near the origin, let

O = K[[z Q > ]][log z]; E = exp K[z Q < ]; S = (O z Q )[E]: Given f 2 S, the set E f = fe 2 E: f e = / 0g
is called the set of exponential parts of f , and the number f = max f¡ : e P (z) 2 E f ; P = / 0g [ f0g the growth rate of f. More generally given a subvector space V of S, we denote

E V = fE f : f 2 V g and V = max f f : f 2 V g.
The Newton polygon provides a lot of information about the structure of the subvector space V L S of formal solutions to Lf = 0. In the sequel, we will use the following classical consequences of the Newton polygon method:

Theorem 3.1. Let L 2 K(z)[] = /
be monic, of order r and assume that K is algebraically closed. Then the equation Lf admits a full basis of solutions in S, i.e. dim V L = r. Moreover, each basis element may be chosen so as to have a unique exponential part.

Theorem 3.2. Let 1 < < l be the slopes of the Newton polygon of L. Then a)

f f : f 2 V L = / g = f 1 ; : : : ; l g. b) V L = L .

Holonomy

Holonomic functions in several variables

Let K be an algebraically closed subfield of C. Consider the coordinates z = (z 1 ;:::; z n ) and corresponding derivatives @ = (@ 1 ; : : : ; @ n ) w.r.t. z 1 ; : : : ; z n . An analytic function f in z is said to be holonomic over K, if it satisfies a non-trivial linear differential equation

L i f = 0 with L i 2 K(z)[@ i ]
for each i 2 f1; : : : ; ng. Equivalently, we may require that K[@] f is a finitely generated module over K(z). The second criterion implies the following classical proposition [START_REF] Stanley | Differentially finite power series[END_REF]:

Proposition 4.1. Let f and g be holonomic functions in z. Then a) Any rational function in K(z) is holonomic. b) f + g is a holonomic function. c) f g is a holonomic function. d) @ i f is a holonomic function for all i 2 f1; : : : ; ng. e) Given a point u on the Riemann-surface R of f, the specialization f(z n = u n ) is holonomic.
f ) Given algebraic functions g 1 ; : : : ; g n over K(z) the composition f (g 1 ; : : : ; g n ): z 7 ! f(g 1 (z); : : : ; g n (z))

is holonomic.

Proof. The property (c) follows from the inclusion

K[@](f g) (K[@] f) (K[@] g)
and the fact that the dimension of the right-hand side is finite over K(z). All other properties are proved in a similar way.

A more interesting closure property is the stability under definite integration. Consider a holonomic function f in z and a point u on its Riemann surface R. Let R n be the Riemann surface of the specialization f(z 0 = u 0 ), where z 0 = (z 1 ;:::; z n¡1 ) and u 0 = (u 1 ;:::; u n¡1 ). Consider a path : (0; 1) ! R n on R n with possibly singular end-points. If is singular at 2 f0; 1g, then we assume that there exists a neighbourhood U 0 of u 0 , such that (z 0 ; ): (0; 1) ! R is a path on R for all z 0 2 U 0 and lim t! f(z 0 ; (t)) = 0. We now have:

Proposition 4.2. The integral g(z 0 ) = R f (z 0 ; z n ) dz n is a holonomic function.
Proof. It suffices to show that g is holonomic in a neighbourhood of u 0 . Let p = (p 1 ; : : : ; p n ) 2 N n be such that

K[@] f K[@] <p f = Vect(@ k f : 0 6 k 1 < p 1 ; : : : ; 0 6 k n < p n ):
Let f + and f ¡ be the specializations of f in z n at the end-point resp. starting point of .

Notice that f + and f ¡ are defined in a neighbourhood of u 0 . Setting @ 0 = (@ 1 ; : : : ; @ n¡1 ), the space

R := (K[@ 0 ] <p 0 f + ) + (K[@ 0 ] <p 0 f ¡ )
is finite dimensional over K(z 0 ). For each k 2 N n and l 2 N, let

I k;l = Z z n l (@ k f )(z) dz n :
The differential equation for f in z n yields a finite relation

X k n =0 p n X i C k n ;i I (k 0 ;k n );l+i = 0; with C k n ;i 2 K(z 0
) for all k n . Partial integration also yields a relation

I (k 0 ;i);l ¡ 1 l + 1 I (k 0 ;i+1);l+1 2 R for every i.
Combining these relations, we obtain a non-trivial relation

A k 0 ;0 I (k 0 ;0);l + + A k 0 ;q I (k 0 ;0);l¡q 2 R;
where A k 0 ;0 ; : : : ; A k 0 ;q 2 K(z 0 )[l]. For l which are not a root of A k 0 ;0 , we thus obtain a recurrence relation for I (k 0 ;0);l . Therefore, the space

I = Vect(I k;l : 0 6 k 1 < p 1 ; : : : ; 0 6 k n¡1 < p n¡1 ; k n = 0; l 2 N) + R
is again finite dimensional over K(z 0 ). We conclude our proof with the observation that I is stable under @ 0 .

Computation of vanishing operators

Let us now turn our attention to the one-dimensional case. Given a monic differential operator L 2 K(z)[@], we denote by H L the space of solutions to the equation Lf = 0 at a given point. In the case of formal solutions at zero or infinity, we will also write E L = E H L . Inversely, given a vector space V of formal series, analytic germs or analytic functions on some domain, we say that L 2 K(z)[@] vanishes on V if LV = 0. We say that L is a vanishing operator for V if H L = V , in which case V is said to be closed.

Given two operators K ; L 2 K(z)[@], we know by proposition 4.1 that there exists an operator M 2 K(z)[@] which vanishes on H K + H L . It turns out that the operator K L of minimal order with this property is actually a vanishing operator for H K + H L . A similar property holds for the operators K L, L and L p of minimal orders which vanish on

Vect(H K H L ), H L 0 , resp. Vect(H L ': ' p = z)
, where p 2 N > . What is more, there exist algorithms for computing these vanishing operators.

In this section, we will briefly recall these algorithms, and thereby give an effective proof of lemma 4.3 below. The algorithms are all more or less classical, but we could not find a reference where they are all described together. We will also prove a slightly weaker result for the operation (2.8) which associates a major to a minor. Lemma 4.3. Let K ; L be monic differential operators in K(z)[@] and p 2 N = / . a) There exists a unique monic

K L 2 K(z)[@] with H K L = H K + H L . b) There exists a unique monic K L 2 K(z)[@] with H K L = Vect(H K H L ). c) There exists a unique monic L 2 K(z)[@] with H L = H L 0 .
d) There exists a unique monic L p 2 K(z)[@] with H L p = Vect(H L ': ' p = z).

Addition

We notice that K L coincides with the least common left multiple of K and L in the Ore ring K(z)[@]. Indeed, any common left multiple vanishes on H K + H L and any operator which vanishes on H K resp. H L right divides K resp. L. One may thus compute K L using any classical algorithm for the computation of least common left multiples, such as the Euclidean algorithm.

Multiplication

Given formal solutions F and G to KF = 0 and LG = 0, the product F G and its successive derivatives

F 0 G + F G 0 , F 00 G + 2 F 0 G 0 + F G 00 , etc
. may all be reduced using the relations j) , for all k, where r and s denote the orders of K resp. L. Consequently, there exists a K(z)-linear relation among F G; : : : ; (F G) (rs) in V. By linear algebra, we may compute the monic operator M of smallest order with M (F G) = 0 in V. Using an adaptation of the proof of [Hendriks and Singer, 1999, Lemma 6.8], we will show that M = K L.

KF = LG = 0. In other words, (F G) (k) 2 V = L i<r;j <s K(z) F (i) G (
Let f 1 ; :::; f r and g 1 ;::: ; g s be fundamental systems of solutions to Kf = 0 resp. Lg = 0 at a non-singular point, considered as elements of the field K of convergent Laurent series at this point. Let C 1 ;:::; C r and D 1 ;:::; D s be formal indeterminates. Then the substitutions we infer that N (f g) = / 0, so N is not a vanishing operator of Vect(H K H L ). This shows that M is indeed the differential operator of lowest order which vanishes on Vect(H K H L ).

F (i) 7 ! C 1 f 1 (i) + + C r f r (i) (i < r) G (j) 7 ! D 1 g 1 (j) + + D s g s (j) (j < s)
The proof that Vect(H K H L ) is closed is based on differential Galois theory [van der [START_REF] Van Der | Galois Theory of Linear Differential Equations[END_REF]: when computing the solutions to operators in K(z)[@] in a suitable Picard-Vessiot or D-algebraic closure K, any differential automorphism of K over K(z) leaves both H K and H L , whence Vect(H K H L ), invariant. But, given a finite dimensionalsubvector space V of K which is invariant under any differential automorphism, we may explicitly construct an operator 2 K(z)[@] with H = V, e.g. [Hoeven, 2007a, proposition 21(b)]. This shows that Vect(H K H L ) is closed.

Differentiation

If L(1) = 0, then L is right divisible by @, so we must have L = L @. Otherwise, the least common multiple of L and @ in K(z)[@] has order r + 1, so there exist operators A of order 1 and B of order r and with A L = B @. These operators may again be computed using a modified version of the Euclidean algorithm. Since dim

H L = dim H L and B H L 0 = 0, we have L = B.

Ramification

In order to compute the operator L p , it is more convenient to work with the derivation instead of @. It is easy to see that this changes the definitions operators K L, K L, L and L p only up to a multiple by a power of z.

Given a primitive p-th root of unity

! 2 K, let Q ! L be the operator with (Q ! L) i (z) = L i (! z) for all i. Then we have (Q ! L)(f (! z)) = L(f ) (! z) for all f , whence f (! z) is a root of Q ! L if and only if f is a root of L. By what precedes, it follows that = L Q ! L Q ! p¡1 L satisfies H = H L + H L (! z) + + H L (! p¡1 z). Furthermore, Q ! = implies that i 2 K(z p
) for all i. Consequently, P 1/p 2 K(z)[] and we conclude that L p = P 1/p .

Majors

Consider the operation M which associates

f = M f ^= ¡1 2 p i Z 0 u f ^() ¡ d to f ^. We have M f ^0 = (M f ^)0 + 1 2 p i f ^(u) ¡ u ¡ f ^(0) ! M( f ^) = M f ^¡ 1 2 p i Z 0 u f ^() d :
Given a relation L ^f ^= 0 for f ^, where L 2 K[][@] has order r, we thus obtain a relation

L ^f = P () r ( ¡ u) r
for some polynomial P with transcendental coefficients. Setting

L := @ degP +1 [ r ( ¡ u) r L]; (4.1)
it follows that L f = 0. By theorem 3.2, we notice that the growth rate of L at zero or infinity is the same as the growth rate of L ^at zero resp. infinity, since O e is stable under differentiation and integration without constant term, for each e 2 E.

Applications

Lemma 4.3 admits several useful consequences for what follows. Proof. Given functions h 1 ; : : : ; h r , let W h 1 ; : : : ;h r denote their Wronskian. If h 1 ; : : : ; h r is a basis of the solution space H L of a monic operator L 2 K(z)[@], then we recall that the operator L is determined in terms of h 1 ; : : : ; h r by the formula

Lf = W f ;h 1 ; : : : ;h r W h 1 ; : : : ;h r (4.2)
In particular, if h 1 ; : : : ; h r are analytic on U , then so are the coefficients of L, as is seen by expanding the right-hand side of (4.2). It now suffices to apply this observation to K L, K L and L .

Corollary 4.5. Let K ; L 2 K()[] be monic and p 2 N = / . Then

a) E K L = E K [ E L . b) E K L = E K E L . c) E L = E L . d) E L p = E L 1/p .
Proof. This follows directly from the lemma together with theorem 3.2.

Transition matrices

Classical transition matrices

Consider a monic differential operator L = @ r + L r ¡1 @ r ¡1 + + L 0 whose coefficients are analytic function on a Riemann surface R. Given a point z 2 R it is well known that there exists a unique canonical fundamental system

f z = ( f 0 z f r¡1 z )
of analytic solutions to Lf = 0 at z with the property that f j (i) = i;j for all i; j. Since L is linear, an arbitrary solution f to Lf = 0 is uniquely determined by the vector

F (z) = 0 B B @ f(z) f (r ¡1) (z) 1 C C A of its initial conditions at z by f = f z F (z): (4.3)
More generally, given a path z z 0 on R from z to another point z 0 , the values of the analytic continuations of f ; : : : ; f (r ¡1) along the path also linearly depend on F (z). Consequently, there exists a unique scalar matrix z z 0 = z z 0 L with

F (z 0 ) = z z 0 F (z): (4.4)
We call z z 0 L the transition matrix for L along the path z z 0 . Dually, we have

f z = f z 0 z z 0; (4.5)
because of (4.3). Also, if z 0 z 00 is a second path, then z z 0 z 00 = z 0 z 00 z z 0 (4.6) and in particular

z 0 z = z z 0 ¡1 : (4.7)

Singular transition matrices

The notion of transition matrices can be generalized to allow for paths which pass through regular or irregular singularities of the operator L. In order to do this, we start by generalizing the idea of a canonical fundamental system of formal solutions f z in the singularity z.

In the case when the coefficients of L are in K(z), then theorem 3.1 tells us that there exists a fundamental system of solutions at z = 0. This result is refined in [Hoeven, 2001a], where we show how to compute a canonical basis f 0 ; ::: ; f r ¡1 of so called complex transseries solutions, which is uniquely characterized by suitable asymptotic properties. In particular,

Each f i is of the form f i = ' i z i e i with ' i 2 O, i 2 K and e i 2 E.
Whenever e i = e j and i 2 j + Z for i = / j, then ' i;v(' j )+ j ¡ i = 0.

Notice that there are other definitions of canonical systems of solutions [van Hoeij, 1997], which share the property that they can be computed effectively in terms of the operator L.

Given a notion of a canonical system of formal solutions at a singularity z, we obtain a dual notion of initial conditions at z for arbitrary formal solutions, via the relation (4.3). Now assume in addition that, for a suitable sectorial neighbourhood U R of z, we are able to associate a genuine analytic function (f ) to any formal solution f at z. Then either (4.4) or (4.5) yields a definition for the transition matrix along a straight-line from z to z 0 . In general, the association : f 7 ! (f) depends on one or several parameters, like the non-singular directions in the accelero-summation procedure. We will now show how to encode these parameters in a suitable generalization of a broken-line path.

Assume from now on that L 2 K(z)[@]. We define a singular broken-line path as being a path z 0 ! z 1 ! ! z l , where each z i is either A non singular point i in K.

A regular singular point i 2 K with a direction (and we denote z i = ( i ) ).

An irregular singular point i 2 K with critical times k and directions (and we denote z i = ( i ) k; ). Furthermore, we assume that f

+ i i 2 S k; r (where f + i i (") = f i ( i + ") for " with jarg " ¡ k p p j < /2), jarg ( i1 ¡ i ) ¡ k p p j < p/2.
Moreover, for each i < l, the open ball with center i and radius j i+1 ¡ i j is assumed to contain no other singularities than i . If the i are all non singular or regular singular, then we call z 0 ! z 1 ! ! z l a regular singular broken-line path. Now given an irregular singular point 2 K, such that f + 2 S k; r for critical times k and directions , we define the transition matrix

k; !z = 0 B B B B @ sum k; f +;0 (z) sum k; f ;r ¡1 (z) sum k; (f +;0 ) (r ¡1) (z) sum k; (f +;r ¡1 ) (r¡1) (z) 1 C C C C A ;
for any z with jarg (z ¡ ) ¡ k p p j < p/2 and such that z is sufficiently close to . For regular singular points 2 K, a similar definition was given in [Hoeven, 2001b].

In view of (4.6) and (4.7), we may extend this definition to arbitrary singular brokenline paths. In particular, it can be checked that the Stokes matrices for L are all of the form

;k;; 0 = k; !+"! k; 0 = k; 0!+" ¡1 k; !+" :
Notice that this definition does not depend on the choice of ". In a similar way as in [Hoeven, 2001b], it is also possible to construct a suitable extension R ^of R with irregular singular points, in such a way that singular broken-line paths may be lifted to R ^. However, such an extension will not be needed in what follows.

Transition matrices for the multivariate case

It is well known that the theory of Gröbner bases generalizes to partial differential operators in the ring K(z 1 ; : : : ; z n )[@ 1 ; : : : ; @ n ]. Consider a zero-dimensional system of such operators given by a Gröbner basis L = (L 1 ; :: :; L s ). Let K be the set of tuples (k 1 ;: :: ; k n ), such that l 1 6 k 1 ;:::; l n 6 k n holds for no leading monomial @ 1 l 1 @ n l n of one of the L i . We may enumerate K = fk 0 ; : : : ; k r¡1 g, with k 0 < < k r ¡1 for a fixed total ordering < on the monoid N n .

Given a non-singular point z 2 C n for L, there again exists a unique canonical fundamental system

f z = ( f 0 z f r ¡1 z )
of analytic solutions to Lf = 0 at z with the property that @ k i f j = i;j for all i; j. Also, an arbitrary solution f to Lf = 0 is uniquely determined by the vector

F (z) = 0 B B @ @ k 0 f (z) @ k r ¡1 f(z) 1 C C A
of its initial conditions at z by f = f z F (z). Consequently, the definitions and properties (4.44.7) naturally generalize to the multidimensional paths z z 0 which avoid the singularities of L.

Holonomic constants

Recall that D c;r and D c;r stand for the open and closed disks of center c and radius r.

A constant in C is said to be holonomic over K if there exists a linear differential operator L = @ n + L n¡1 @ n¡1 + + L 0 2 K(z)[@] and a vector of initial conditions v 2 K n , such that the L i are defined on D 0;1 and = f (1), where f is the unique solution to Lf = 0 with f (i) (0) = v i+1 for i < n. We denote by K hol the set of holonomic constants over K.

Proposition 4.6.

a) K hol is a subring of C. b) Let L be a linear differential operator of order n in K(z)[@].
Then L 2 Mat r (K hol ) for any non singular broken-line path with end-points in K. c) Let L = (L 1 ; : :: ; L s ) be a Gröbner basis for a zero-dimensional system of differential operators in K(z)[@]. Then for any non singular broken-line path with end-points in K n , we have L 2 Mat r (K hol ).

Proof. Consider holonomic constants = f (1) and = g(1), where f and g are solutions to K f = 0 and Lg = 0 with initial conditions in K m resp. K n and where the coefficients of K and L are defined on D 0;1 . By the corollary 4.4, the coefficients of K L are again defined on D 0;1 and = h(1), where h is the unique solution with initial conditions h (i) (0) = P j=0 i j i f (j) (0) g (i¡ j) (0) 2 K for i < m n. A similar argument shows the stability of K hol under addition.

As to (b), we first observe that the transition matrix 0!1 along the straight-line path from 0 to 1 has holonomic entries, provided that the coefficients of L are defined on D 0;1 . Indeed, by corollary 4.4, the coefficients of the monic operators L i with solution spaces H L (i) are defined on D 0;1 . Using a transformation z 7 ! ( ¡ ) z + with 2 K and 2 K, it follows that ! has holonomic entries whenever the L i are defined on the closed disk D ;j¡j . Now any broken-line path is homotopic to a broken-line path 1 ! ! l such that the L i are defined on the closed disks D j ;j j +1 ¡ j j . From (a), we therefore conclude that = l¡1 ! l 1 ! 2 has holonomic entries.

As to the last property, we first notice that the function f(u + t v) is holonomic in t for any fixed u and v in K n . In a similar way as above, it follows that the multivariate transition matrix from section 4.3.3 along a straight-line path u ! v has entries in K for sufficiently close u and v in K n . Since any non singular broken-line path is homotopic to the finite composition of straight-line paths of this kind, we conclude by the multivariate analogue of (4.6) and (a).

A number in C is said to be a singular holonomic constant over K if there exists a linear differential operator L = @ n + L n¡1 @ n¡1 + + L 0 2 K(z)[@] and a vector of initial conditions v 2 K n , such that the L i are defined on D 0;1 and = lim z!1 f (z), where f is the unique solution to Lf = 0 with f (i) (0) = v i+1 for i < n. We understand that the limit z ! 1 is taken on the straight-line path from 0 to 1. If L is regular singular at 1, then we call a regular singular holonomic constant over K. We denote by K shol the class of singular holonomic constants over K and by K rhol the class of regular singular holonomic constants over K.

Proposition 4.7.

a) K rhol is a subring of C. b) K shol is a subring of C. c) Let L be a linear differential operator of order n in K(z)[@]. Then 2 Mat n (K rhol )
for any regular singular broken-line path as in section 4.3.2. d) Let L be a linear differential operator of order n in K(z)[@]. Then 2 Mat n (K shol ) for any singular broken-line path as in section 4.3.2.

Proof. Several errors slipped into the original proof. We provided an updated proof in Appendix ?. Note that we only prove 2 Mat n (K hola ) in (c).

Bounds for the transition matrices

Integral formula for transition matrices

Consider a linear differential operator L = @ r + L r ¡1 @ r¡1 + + L 0 whose coefficients are analytic functions on an open or closed subset R of C. We will give an explicit formula for the transition matrix = L along a path in R. Let us first rewrite the equation Lf = 0 as a first order system and give an alternative characterization for the transition matrix. Let

M = 0 B B B B B B @ 0 1 0 0 0 1 ¡L 0 ¡L 1 ¡L r¡1 1 C C C C C C A Then the differential equation 0 = M (5.1)
admits a unique solution with () = I. Given a path 0 in R, it is not hard to see that 0 coincides with the analytic continuation of along 0 . Given an analytic function f on R, we will denote by R f the unique analytic function on R given by Z

f ( 0 ) = Z 0 f () d :
Then the system (5.1) with our initial condition admits a natural solution

0 = I + Z M + Z M Z M + ( 0 ): (5.2)
We will show below that this integral series indeed converges when 0 is a straight-line path. In fact, using a similar technique, one can show that the formula is valid in general, but we will not need that in what follows.

Majorants

Let C(R; C) and C(R; R > ) denote the spaces of continuous C-valued resp. R > -valued functions on R. Given matrices A and B of the same sizes and with coefficients in C(R; C) resp. C(R; R > ), we say that A is majored by B, and we write A P B, if jA i;j ()j 6 B i;j () for all i; j. Given majorations A P B and A ~P B ~, we clearly have majorations

A + A ~P B + B ~(5.3) A A ~P B B ~(5.4)
Assuming that every point in R can be reached by a straight-line path starting at , we also have

R A P R real B ; (5.5)
where

Z real B ( 0 ) = Z 0 j 0 ¡ j B( + ¡ j ¡ j ) d :
Assume now that M is bounded on R. Then there exist constants 0 ; : : : ; r ¡1 > 0 with

M P B = 0 B B B B B B @ 0 1 0 0 0 1 0 1 r¡1 1 C C C C C C A
and we may assume without loss of generality that B admits pairwise distinct eigenvalues. From the rules (5.3), (5.4) and (5.5), it follows that

0 P I + Z real B + Z real B Z real B + ( 0 ):
The right-hand side of this majoration can be rewritten as (j 0 ¡ j), where is the unique solution on R > to the equation

0 = B ;
such that (0) = I. Now let U and D be matrices with

B = U ¡1 D U ;
where

D = 0 B B @ 1 0 0 r 1 C C A:
Then we have

(x) = U ¡1 0 B B @ e 1 x 0 0 e r x 1 C C AU :
This shows in particular that (5.2) converges when 0 is a straight-line path, since it suffices to replace R by a compact convex subset which contains a neighbourhood of ! 0 .

Bounds for the transition matrices

Given an operator L with coefficients in K( Q ) which are bounded at infinity, it is not hard to explicitly compute a sector S ;;R 1 with < p/2 on which the L i have no poles and a majorating matrix B with coefficients in K. The aperture may chosen as close to p/2 as desired. Then the results from the previous section yield:

Theorem 5.1. There exists an algorithm which, given an operator 1) for all i at infinity, computes a sector S ;;R 1 and constants K ; 2 R > with k ! 0k 6 K e j 0 ¡ j for all straight-line path inside S ;;R 1 .

L = @ r + L r ¡1 @ r¡1 + + L 0 2 K( Q )[@] with L i = O(
More generally, given an operator L 2 K( Q )[] of growth rate > 0, the operator L ~= P 1/ L has growth rate one and we have

! 0 L ~= !( 0 )
L for all straight-line paths ! 0 whose image under 7 ! is homotopic to the straightline path ! ( 0 ) . Moreover, after replacing by @ in L ~and dividing by a suitable power of , we observe that L ~fulfills the conditions of theorem 5.1. We thus obtain: Theorem 5.2. There exists an algorithm which, given an operator

L = @ r + L r ¡1 @ r¡1 + + L 0 2 K( Q )[@]
with growth rate > 0 at infinity, computes a sector S ;;R 1 and constants K ; 2 R > with k ! 0k 6 K e j 0 ¡ j for all straight-line path inside S ;;R 1 . Remark 5.3. In fact, the hypothesis that 0 is a straight-line path is not really necessary in theorem 5.1. With some more work, one may actually consider sectors of C _ at infinity with aperture larger than p/2. In theorem 5.2, this allows you to impose the aperture of to be as large as desired.

Effective integral transforms

Consider an operator

L = L r r + + L 0 2 K[][]
with growth rate > 0 at infinity. Let S ;;R 1 be a sector of aperture < p/2 such that L r does not vanish on S ;;R 1 and such that we have a bound k ! 0k 6 K e j 0 ¡ j (6.1) for all ; 0 2 S ;;R

1 . Let = sin 1 ¡ sin R;
so that the ball centered at (R + ) e i with radius is just contained in S ;;R 1 (see figure 6.1), and let 2 N 2 Z be a fixed constant of small bit-size, with 

1 < < = 1 + /(R + ).

Uniformly fast approximation of transition matrices

Let ; 0 2 R > e i with j 0 j > j j > R + and " > 0. Assuming that e i ; ; 0 ; " 2 K, we may now use the algorithm approx below in order to approximate ! 0 at precision ". The computation of ~:= 0 + + k ¡1 ( 0 ¡ ) k¡1 is done using the binary splitting algorithm from [START_REF] Chudnovsky | Computer algebra in the service of mathematical physics and number theory[END_REF][START_REF] Hoeven | Fast evaluation of holonomic functions[END_REF].

Algorithm approx( ; 0 ; " ) Input: ; 0 ; " 2 K as above Output: a matrix ~with k ~¡ ! 0k < " if j 0 j 6 j j then Let k 2 N be minimal with K e ( ¡1)j j k 1 ¡ < " 2 , where =

j 0 ¡ j j j
Consider the expansion

! +t = 0 + 1 t + 2 t 2 + Compute ~:= 0 + 1 ( 0 ¡ ) + + k¡1 ( 0 ¡ ) k¡1 at precision "/2 Return ẽlse Let M 2 := K e j 0 ¡() j
Compute ~1 := approx( ; ; "/(2 M 2 ))

Compute ~2 := approx( ; 0 ; "/(2 k ~1k))

Return ~2 ~1

Theorem 6.1.

a) The algorithm approx is correct.

b) Let n = max (j 0 j ; ¡log ") and let s be the sum of the bit-sizes of and 0 . Then the running time of the algorithm is uniformly bounded by O(M (n) log 2 n (log n + s)).

Proof. The correctness of the algorithm in the single-step case when j 0 j 6 j j follows from (6.1) and Cauchy's formula, since

k ~¡ ! 0k 6 X i>k k i k j 0 ¡ j k 6 X i>k K e j() ¡ j j 0 ¡ j i j j i
= K e ( ¡1)j j k 1 ¡ :

In the multi-step case when j 0 j > j j, we have

k ! 0 ! ¡ ~2 ~1k 6 k ! 0 ( ! ¡ ~1)k + k( ! 0 ¡ ~2) ~1k 6 M 2 k ! ¡ ~1k + k ! 0 ¡ ~2k k ~1k;
and the result follows by induction.

As to the complexity analysis, let l be minimal such that j j l > j 0 j and denote

i = i (i < l) l = 0 :
Then the recursive application of the algorithm gives rise to l single-step cases for each i ! i+1 with i < l. We have l = O(log j 0 j) = O(log n) and claim that the precision " i at which we approximate each i ! i+1 satisfies " i > "/(2 l M ), where M = K e j 0 ¡ j . Indeed, using induction over l, this is clear in the case when l = 1. In the multi-step case, we have M 2 6 M and k ~1k 6 M 1 = K e j() ¡ j . Hence, 0 ! 1 is approximated at precision "/(2 M 2 ) > "/(2 l M ). The induction hypothesis also implies that each i ! i+1 is approximated at precision " i > " 0 /(2 l¡1 M 0 ), where " 0 = "/(2 M 1 ) and M 0 = K e j 0 ¡() j . We conclude that

" i > " 0 /(2 l¡1 M 0 ) = "/(2 l M 1 M 0 ) = "/(2 l M ).
Having proved our claim, let us now estimate the cost of each single-step approximation of i ! i+1 at precision " i > "/(2 l M ). Since 0 < < ( ¡ 1)/ < 1, the minimal k satisfies

k = O ¡log " 2 l M e ( ¡1)j i j = O(¡log ") + O(l) + O(log M ) + O(j i j ) = O(n): Furthermore, the entries of ~are O(n)-digit numbers, since i ! i+1 6 K e j i+1 ¡ i j
and the size of i is bounded by O(s) + O(i) = O(s + log n). By a similar argument as in the start of section 4.1 of [START_REF] Hoeven | Fast evaluation of holonomic functions[END_REF], it follows that the " i -approximation of ~is computed in time O(M (n) log n (log n + s)) using binary splitting. Since l = O(log n), the overall running time is therefore bounded by O(M (n) log 2 n (log n + s)).

Fast approximation of integral transforms

Consider a second differential operator 2 K[][] with growth rate at infinity. Let f be a solution to f = 0 with initial conditions in K at a point 2 K with arg = and j j > R + . Assume that f satisfies a bound jf()j 6 K 0 e ¡ 0 jj (6.2) on [ ; e i 1], where K 0 ; 0 > 0. Our aim is to compute

= Z e i 1 f () d :
Now the primitive

f 8 ( 0 ) = Z 0 f () d
satisfies the equation ( 8)( f 8 ) = 0, where the operator 8 := (M ¡1 ) 2 K[][] has growth rate at infinity. Moreover, f 8 admits initial conditions in K at .

Assuming that we chose L = 8 and that the bound (6.1) holds for the transition matrices associated to L, we may now use the following simple algorithm for the approximation of .

Algorithm integral_approx(" ) Input: " 2 K > Output: an approximation ~for with j ~¡ j < " Let I be the vector of initial conditions for f 8 at , so that f

8 ( 0 ) = ! 0 L I Take 0 2 K with arg 0 = such that j R j 0 j 1 K 0 e ¡ 0 t dtj < "/2
Return approx( ; 0 ; "/(2 kI k)) I

In the case when > 1, we notice that

Z T 1 K 0 e ¡ 0 t dt = Z T 1 K 0 t 1¡1/ e ¡ 0 t dt 6 Z T 1 K 0 e ¡ 0 t dt = K 0 0 e ¡ 0 T
for all T > 1, so we may take

j 0 j = max lround max (log(2 K 0 /( 0 ")); 0) 0 r ; 1 ! ; (6.3)
where lround(x) is the largest number in 2 Z f0; : : : ; 2 32 ¡ 1g below x. In the case when < 1, we may use lemma 2.3 to replace the bound (6.2) by a bound of the form jf ()j 6 K 0 e ¡ 0 j j 6 K 00 j j 1¡1/ e ¡ 00 j j ;

with 0 < 00 < . Then Z T 1 K 0 e ¡ 0 t dt 6 Z T 1 K 00 t 1¡1/ e ¡ 00 t dt 6 Z T 1 K 00 e ¡ 00 t dt = K 00 00 e ¡ 00 T
and we may take j 0 j = lround max (log(2 K 00 / ( 00 ")); 0) 00 r : (6.4)

For both formulas (6.3) and (6.4), we have j 0 j = O( ¡log " p ). Applying theorem 6.1, it follows that Theorem 6.2. The algorithm integral_approx is correct and its running time is bounded by O(M (n) log 3 n), where n = ¡log ". Example 6.3. Consider the formulas

¡(z) = Z 0 1 x z ¡1 e ¡x dx 1 ¡(z) = i 2 p Z H (¡t) ¡z e ¡t dt (m) (z) = i 2 p Z H (¡log(¡t)) m (¡t) ¡z e ¡t dt;
where (z) = 1/¡(z), m 2 N, and H is a Hankel contour from 1 around 0 and then back to 1. For any z 2 K, these integrals can be evaluated using our fast algorithm, whenever they are defined. So the values of these integrals are in K shol and they have O(M (n) log 2 n)approximation algorithms. Using Euler's reflection formula

¡(1 ¡ z) ¡(z) = p sin (p z) ;
and Proposition 4.7(b), we also see that sin(pz

) ¡1 2 K shol and (1 ¡ e ¡2piz ) ¡1 2 K shol for all z 2 K n Z. Note that (1 ¡ e ¡2piz ) ¡1 has an O(M (n) log 2 n)-approximation algorithm.

Effective accelero-summation

Let us now show how to put the results from the previous sections together into an accelerosummation algorithm for holonomic functions. Let f ~2 O be a formal solution with initial conditions in K at the origin to the equation

Lf = 0 with L 2 K[z][].
We will first show how to determine the critical times k 1 > > k p in Q > and the Stokes directions at each critical time. Having fixed 1 2 R 1 := R n D 1 ;:::; p 2 R p := Rn D p , we next detail the effective acceleration-procedure and show how to efficiently evaluate f = sum k; f ~in a sector close to the origin.

Setting up the framework

Normalization Without loss of generality, we may assume that the valuation of f at zero is larger than the degree d of L in z. Indeed, it suffices to replace f by f z n and L by M n L for a sufficiently large n.

Critical times Let 1 < < p be the non-horizontal slopes of the Newton polygon of L at the origin. We take k 1 = 1/ 1 ; : : : ; k p = 1/ p , so the critical times are z 1 = z 1 ; : : : ; z p = z p . For example, in figure 3.4, the critical times are z 1 = z p and z 2 = z.

Equations for f ^i and f i For each critical time z i , let us show how to compute vanishing operators for f ^i and f i . Let a; b 2 N = / be relatively prime with

k i = a/b. Since b 6 d, we notice that the valuation of f i in z i = 0 is larger than one. 1. We first compute L b 2 K[z][] and P a L b 2 K[z][]. We may reinterpret P a L b as an operator in K[z i ][] and notice that (P a L b )(f i ) = 0. 2. Let n be minimal, such that z i ¡n P a L b 2 K[z i ¡1 ][]. We compute the Borel transform L ^i = B(z i ¡n P a L b ) 2 K[ i ¡1 ] []. Since v z i =0 (f i ) > 1,
we formally have L ^i f ^i = 0. In fact, since the accelero-summation process preserves differentially algebraic relations, we will also have L ^i f ^i = 0.

3. Compute L i with L i f i = 0 using the procedure from section 4.2.5.

Singular directions

For our accelero-summation process to work, it will suffice to avoid the non-zero singularities of the operator L i at each critical time z i . In other words, denoting by r i the order of L i , we take

D i = farg u: u 2 K = / ; L i;r i (u) = 0g.
Growth rates of L ^i and L i Given a critical time z i , let us now study the growth rates of L ^i and L i at zero and infinity. By corollary 4.5, and with a; b as above, the slopes of the Newton polygon of P a L b are 1 k i = k i / k 1 ; : : : ; p k i = k i / k p . By section 3.3 and formula (4.1), it follows that the non-horizontal slopes of the Newton polygons of L ^i and L i at the origin are

k i k 1 ¡ k i < < k i k i¡1 ¡ k i :
In particular, if i = 1, then L i is regular singular at 0 and [Hoeven, 2001b] shows how to compute the values of f 1 in the neighbourhood of 0 _ . We also infer that the non-horizontal slopes of the Newton polygon of L ^i and L i at infinity are

k i k i+1 ¡ k i < < k i k p ¡ k i
and possibly ¡1. In particular, if i < p, then the growth rate of L i at infinity is

k i k i ¡ k i+1 .
In view of theorem 5.2, we may thus apply A

k i ;k i+1 i
to f i (see below for further details). Also, if i = p, then the growth rate of L i at infinity is zero or one and theorem 5.2 shows that we are allowed to apply L z p p to f p .

The acceleration kernels Given a critical time z i with i < p and = k i+1 /k i , consider the acceleration kernel

K k i ;k i+1 ( i ; i+1 ) = ¡1 2 p i Z 0 u K ^ki ;k i+1 ( i ; ) ¡ i+1 d = 1 4 p 2 Z c¡i1 c+i1 Z 0 u e t¡ i t ¡ i+1 d dt
The choices of i+1 and u will be detailed in the next section. In order to compute (2.15), we need an equation for K in i , of growth rate 1/(1

¡ ) = k i /(k i ¡ k i+1 ) at infinity. Setting '(t) = ¡1 2 p i Z 0 u e t ¡ i+1 d ; we have ' 0 (t) = i+1 '(t) ¡ e tu ¡ 1 2 p i t ; whence (t ' 0 ¡ i+1 t ') 00 = u (t ' 0 ¡ i+1 t ') 0 and ' = t ' 000 ¡ (( i+1 + u) t ¡ 2) ' 00 + (u i+1 t ¡ (2 i+1 + u)) ' 0 + u i+1 f = 0
By looking at the Newton polygon, we observe that has growth rate 1 at t = 1. Now

K k i ;k i+1 ( i ; i+1 ) = 1 2 p i Z c¡i1 c+i1 '(t) e ¡ i t dt = 1 2 p i Z C (¡t) 1/¡1 '((¡t) 1/ ) e i t dt; (7.1)
for a suitable contour C. Applying a suitable ramification, followed by M 1¡1/ and Q ¡1 to , we obtain a vanishing operator A i for (¡t) 1/¡1 '((¡t) 1/ ), with growth rate 1/ at infinity. Although (7.1) is not really a Borel transform (at t = 1), it does satisfy the formal properties of a Borel transform. In other words, A i = BP ¡1 A i is a vanishing operator for K with respect to i , of growth rate 1/(1 ¡ ) at i = 1.

for all m < r i+1 and all i 2 S i . We notice that K k i ;k i+1 (; a i+1 ) is regular singular at the origin (for the same reason as

L 1 above) with initial conditions in K[ (N) (K); (1 ¡ e ¡2piK = / ) ¡1 ]. We thus have O(M (n) log 3 n)-approximation algorithms for K k i ;k i+1 (m) ( i ; a i+1 ) for any i 2 K _ = /
and m 2 N.

Computing S p and S geom By theorem 5.2, we may also compute a sector S p pre = S p ; p pre ;R p pre 1 and constants K, with

k ! p L ^p k 6 K e j p ¡ j 6 K e j p j
for all straight-line paths ! p in S p pre . Choosing R geom sufficiently small and R p sufficiently large, we obtain a subsector S p = S p ; p ;R p 1 S p pre with j(e ¡ p /z p ) (m) j 6 K 0 e ¡ 0 j p j for all m < r, p 2 S p and z p 2 S geom = S p ; geom ;R geom 0 , with geom as close to p 2 as desired.

Approximation of f (z)

For each i 2 f1; : : : ; pg and j < r i , let ' i;j be the unique solution to L i (' i;j ) = 0 with

' i;j (m)
(a i ) = j ;m for all m < r i . Using the analytic continuation algorithm from [START_REF] Hoeven | Fast evaluation of holonomic functions[END_REF], we may efficiently evaluate all derivatives of ' i;j and its minor ' ^i;j at any nonsingular point above K. For each j < r, we also denote by ' j the unique solution to L' j = 0 with ' j (m) (z r ) = j ;m for all m < r.

Given i < p and m < r i+1 , there now exist O(M (n) log 3 n)-approximation algorithms for the integrals.

A i;m;j 1 = Z C i ' i;j ( i ) K k i ;k i+1 (m) ( i ; a i+1 ) d i ; A i;m;j 2 = Z a i b i ' ^i;j ( i ) K k i ;k i+1 (m) ( i ; a i+1 ) d i ; A i;m;j 3 = Z b i e i i 1 ' ^i;j ( i ) K k i ;k i+1 (m) ( i ; a i+1 ) d i :
Indeed, the first two integrals can be approximated using the algorithm from [START_REF] Hoeven | Fast evaluation of holonomic functions[END_REF], applied to the operators @ i;m and @ ^i;m . The last one is computed using the algorithm integral_approx. Notice that the path in the second integral consists of a circular arc composed with a straight-line segment of constant argument. We regard the numbers

A i;m;j = A i;m;j 1 + A i;m;j 2 + A i;m;j 3 = Z C i ' i;j ( i ) K k i ;k i+1 (m) ( i ; a i+1 ) d i + Z H i + ' ^i;j ( i ) K k i ;k i+1 (m) ( i ; a i+1 ) d i
as the entries of a matrix

A i = 0 B B @ A i;0;0 A i;0;r i ¡1 A i;r i+1 ¡1;0 A i;r i+1 ¡1;r i ¡1 1 C C A:
By construction, we thus have

A k i ;k i+1 i ¡ ' i;0 ' i;r i ¡1 = ¡ ' i+1;0 ' i+1;r i+1 ¡1 A i : (7.2)
Similarly, if i = p, then there exist O(M (n) log 3 n)-approximation algorithms for

m;j = Z C p ' i;j ( i ) (e ¡ p /z p ) (m) d p + Z H p + ' ^i;j ( i ) (e ¡ p /z p ) (m) d i ;
and these numbers again form the entries of a matrix . By construction, we have

L p ¡ ' p;0 ' p;r p ¡1 = ( ' 0 ' r ¡1 ) : (7.3)
Now we already observed in section 7.2 that we have O(M (n) log 3 n)-approximation algorithms for the entries of the vector

1 = 0 B B B B @ f 1 (a 1 ) f 1 (r 1 ¡1) (a 1 ) 1 C C C C A :
From (7.2) and ( 7.3), it follows that

A p¡1 A 1 1 = 0 B B B B @ f p (z p ) f p (r ¡1) (z p ) 1 C C C C A
and the entries of this vector admit O(M (n) log 3 n)-approximation algorithms.

Main results

Summarizing the results from the previous sections, we have proved: The theorem 7.1 in particular applies to the fast approximation of singular transition matrices from section 4.3.2. Indeed, let f i = ' i z i e i with ' i 2 O, i 2 K and e i 2 E be one of the canonical solutions to Lf = 0 at the origin. Then ' i may be accelero-summed by theorem 7.1 and z i e i may be evaluated at points above K using fast exponentiation and logarithms. We thus obtain: Corollary 7.3. There exists an algorithm which takes the following data on input:

An operator L 2 K[z][].
A singular broken-line path .

A precision " 2 Q > .
The algorithm computes a matrix ~with entries in K and k ~¡ L k < ". Moreover, setting n = ¡log ", the algorithm takes a time O(M (n) log 3 n).

We have summarized the complexities of efficient evaluation algorithms for holonomic functions in table 7.1 below. In the rightmost column, the complexity bound for divergent series follows from corollary 7.3, when composing the transition matrix between zero and a point z ~2 K close to z with the non singular transition matrix from z ~to z.

series of type evaluation in z 2 K evaluation in general z

P n=0 1 f n (n!) z n O(M(n) log n) O(M (n) log 2 n log log n) P n=0 1 f n z n O(M (n) log 2 n) O(M (n) log 2 n log log n) P n=0 1 f n (n!) z n O(M (n) log 3 n) O(M (n) log 3 n) Table 7
.1. Summary of the complexities of evaluation of different types of holonomic series. We assume that 2 Q > and that the f n satisfy jf n j 6 K n for certain K ; > 0. For the series in the last row, we assume that evaluation is done using an appropriate accelero-summation scheme.

For the rightmost column, we do not count the cost of the approximation of the constant z itself.

Remark 7.4. A mistake slipped into the present remark in the published version of this paper. In the meantime, Marc Mezzarobba has improved the upper two entries of the rightmost column in Table 7.1, which can now be replaced by O(M (n) log 2 n); see [START_REF] Mezzarobba | Autour de l'évaluation numérique des fonctions d-finies[END_REF].

Remark 7.5. In [START_REF] Hoeven | Fast evaluation of holonomic functions[END_REF], we assumed that K is an algebraic number field (i.e. a finite dimensional field extension of Q) rather than the field Q alg of all algebraic numbers over Q. Of course, both point of views are equivalent, since given a finite number of algebraic numbers x 1 ; : : : ; x k 2 Q alg , there exists an algebraic number field K with x 1 ; : : : ;

x k 2 K.

It is convenient to work w.r.t. a fixed algebraic number field K in order to have an algorithm for fast multiplication. For instance, given a basis x 1 ;:::; x k of K, we may assume without loss of generality that

x i x j = a 1 i;j x 1 + + a k i;j x k ; (a l i;j 2 Z) (7.4)
after multiplication of the x i by suitable integers. Then we represent elements of K as non-simplified fractions (p 1 x 1 + + p k x k )/ q, where p 1 ; : : : ; p k 2 Z and q 2 N > . In this representation, and using (7.4), we see that two fractions of size n can be multiplied in time O(M (n)).

Remark 7.6. In the case when K is a subfield of C eff which is not contained in the field Q alg of algebraic numbers, the algorithms from this paper and [START_REF] Hoeven | Fast evaluation of holonomic functions[END_REF]Hoeven, 2001b] still apply, except that the complexity bounds have to be adjusted. Let us make this more precise, by using the idea from [START_REF] Chudnovsky | Computer algebra in the service of mathematical physics and number theory[END_REF] for the computation of Taylor series coefficients of holonomic functions. We first observe that the efficient evaluation of holonomic functions essentially boils down to the efficient evaluation of matrix products

M m¡1 M 0 ;
where M k is a matrix with entries in K[k] (in the regular singular case, one also has a finite number of exceptional values of k for which M k is explicitly given and with entries in K).

Even if K Q alg , then we may still compute the matrix products (l). This requires a time O(M (n l) log l), when working with a precision of n digits. Assuming for simplicity that m is a perfect square, and taking l = m p , we next use an efficient evaluation algorithm [START_REF] Borodin] Moenck | Fast modular transforms via division[END_REF][START_REF] Borodin | Fast modular transforms[END_REF] for the substitution of k = f0; l;:::; m ¡ lg in M k;l . This requires a time O(M (n m p ) log (m)). We finally compute

M k;l = M k+l¡1 M k using dichotomy M k;l 1 +l 2 = M k+l 1 ;l 2 M k;l 1 as polynomials in K[k] of degree O
M 0;m = M m¡l;l M 0;l in time O(M (n) m p ).
Assuming that log n log m, this yields an algorithm for the n-digit evaluation of M 0;m of complexity O(M (n m p log m)). In table 7.1, the complexities in the three different rows should therefore be replaced by O(M (n 3/2 ) log n p ), O(M (n 3/2 ) log n) resp. O(M (n 3/2 ) log 2 n). Indeed, for the first two cases, we have m = O(n / log n) resp. m = O(n). In the last case, we have the usual O(log n) overhead. Notice that there is no need to distinguish between the columns.

Conclusion

This last paper in a series [START_REF] Hoeven | Fast evaluation of holonomic functions[END_REF]Hoeven, 2001b] on the efficient evaluation of holonomic functions deals with the most difficult case of limit computations in irregular singularities, where the formal solutions are generally divergent. We have not only shown how to compute such limits and so called singular transition matrices in terms of the equation and broken-line paths, but we have also shown that the resulting constants are comprised in the very special class C fast of complex numbers whose digits can be computed extremely fast.

Since it is quite remarkable for a number to belong to C fast , an interesting question is whether there are any other interesting constants in C fast which cannot be obtained using the currently available systematic techniques: the resolution of implicit equations using Newton's method and the evaluation of holonomic functions, including their evaluation in singular points.

Because of the emphasis in this paper on fast approximation algorithms, we have not yet investigated in detail the most efficient algorithms for obtaining approximations with limited precision. Indeed, given an initial operator L 2 K[z][] of order r and degree d in z, ramification, the Borel transform and the multiplication with the acceleration kernel lead to vanishing operators of far larger (although polynomial) size O((d r) 3 ). If only limited precision is required, one may prefer to use a naive O(n 2 )-algorithm for computing the integral transforms, but which avoids the computation of large vanishing operators. In some cases, one may also use summation up to the least term, as sketched in the appendix below.

In this paper, we have restricted ourselves to the very special context of holonomic functions, even though Écalle's accelero-summation process has a far larger scope. Of course, the results in our paper are easily generalized to the case of more general algebraically closed subfields K of C, except that we only get O(n 2 log O(1) n)-approximation algorithms; using improvements from [START_REF] Chudnovsky | Computer algebra in the service of mathematical physics and number theory[END_REF], this can be reduced to O(n 3/2 log O(1) n). Following [START_REF] Écalle | L'accélération des fonctions résurgentes[END_REF][START_REF] Braaksma | Multisummability and Stokes multipliers of linear meromorphic differential equations[END_REF][START_REF] Braaksma | Multisummability of formal power series solutions to nonlinear meromorphic differential equations[END_REF], it should also be possible to give algorithms for the accelero-summation of solutions to nonlinear differential equations.

Appendix A. Summation up to the least term

Let L 2 K(z)[] and let f be a solution to Lf = 0 with a formal power series expansion f ~= f ~0 + f ~1 z + . It is well known [START_REF] Poincaré | Sur les intégrales irrégulières des équations linéaires[END_REF] that the truncated sum

(sum N f ~)(z) = f ~0 + + f ~N z N
up to the term f ~N z N for which jf ~N z N j is minimal usually provides an exponentially good approximation for f(z). Even though such truncations do not allow for the computation of an arbitrarily good approximation of the value f (z) for fixed z, it is well adapted to the situation in which only a limited precision is required. Indeed, for any N 2 N, in order to compute (sum N f ~)(z), we may directly apply the binary splitting algorithm from [START_REF] Chudnovsky | Computer algebra in the service of mathematical physics and number theory[END_REF][START_REF] Hoeven | Fast evaluation of holonomic functions[END_REF].

In this appendix, we will sketch how summation up to the least term can be made more precise using the accelero-summation process. We start from a formal solution f ~=

f 0 ~+ + f ~l log l z 2 O to Lf = 0. Given N 2 N, we define g ~(z) = (sum N f ~)(z) = X 06i6l X 06n6N (f ~i) n z n log i z:
Our aim is to compute an explicit bound for g ~(z) ¡ (sum k; f ~)(z) for a suitable non singular multi-direction . Modulo a change of variables z ! ! z, we may take = 0. Consider a critical time z i . If i = 1, then B ~z1 f ~is convergent at the origin, so we may compute a bound of the form

j(g ^1 ¡ f ^1)( 1 )j 6 B 1 C 1 N 1 k 1 N ¡1 (A.1)
on an interval (0; c 1 ] at the origin, using [Hoeven, 2001b]. For i > p, we assume by induction that we have a bound

j(g ^i ¡ f ^i)( i )j 6 B i C i N ¡(k 1 N ) ¡(k i N ) i k i N ¡1 + exp (¡D i i ¡ k i k i¡1 ¡k i ) (A.2)
on a sector (0; c i ] at the origin and for sufficiently large N > N i . Using [Hoeven, 2001b] a second time, we may also compute bounds for the coefficients of f ^1 as a polynomial in log 1 . At each critical time z i , this leads to further bounds

jg ^i( i )j 6 B i 0 (C i 0 ) N i k i N ¡1 ¡(k 1 N ) ¡(k i N ) ; (A.3) for i 2 [c i ; 1). Assuming that i < p, we now have j(g ^i+1 ¡ f ^i+1 )( i+1 )j 6 I 1 + I 2 + I 3 ; I 1 = Z c i 1 g ^i( i ) K ^ki ;k i+1 ( i ; i+1 ) d i ; I 2 = Z 0 c i (g ^( i ) ¡ f ^( i )) K ^ki ;k i+1 ( i ; i+1 ) d i ; I 3 = Z c i 1 f ^i( i ) K ^ki ;k i+1 ( i ; i+1 ) d i :
holds for any z 2 S k p p ;;R and N > N geom . In particular, for some computable constant n 0 and precisions " = e ¡n with n 6 (C jz j) ¡1/k 1 ¡ n 0 (A.8)

we may compute an "-approximation of (sum

k; f ~)(z) for z 2 K \ S k p p ;;R in time O(M (n) log 2 n),
where the complexity bound is uniform in z, provided that the bit-size of z is bounded by O(log n).

Remark A.2. In the published version of the paper, we forgot to mention the restriction that the bit-size of z should remain bounded by O(log n). In fact, this restriction can be removed using a bit more work: see [START_REF] Hoeven | Uniformly fast evaluation of holonomic functions[END_REF] This proposition also allows us to consider initial conditions in K hol instead of K in many circumstances. For instance, by definition, the value of a function f 2 F hol at a point in D 0;1 \ K lies in K hol . Thanks to the proposition, this even holds for solutions f 2 K hol ffz gg to an equation Lf = 0 with f 2 L hol . Indeed, given z 2 K, we have F (z) = 0!z F (0); since 0!z and F (0) both have coefficients in K hol , the same holds for F (z).

B.3. Regular singular transition matrices

Lemma B.2. Let L 2 L hola , 2 K, and consider a solution

f 2 z i Kffz gg[log z] of the equation Lf = 0. Then f 2 z i F hola [log z].
Proof. Without loss of generality, we may assume that = 0. Now write

f = f d (log z) d + + f 0 with f 0 ;:::; f d 2 Kffz gg. Then f (z e 2pi ) = f d (log z + 2 p i) d + + f 0 2 Kffz gg[log z][2 p i]
is also annihilated by L. Since 2 p i is transcendental, each of the coefficients of f (z e 2pi ) as a polynomial in 2 p i is again annihilated by L; these coefficients are

f d ; d f d log z + f d¡1 ; : : : ; f d (log z) d + + f 0 : It follows that f d 2 F hola ; f d¡1 2 F hola + F hola log z; : : : ; f 0 2 F hola + + F hola (log z) d ; whence f 2 F hola [log z].
Proposition B.3. Let L be a linear differential operator of order n in K(z)[@]. Then 2 Mat n (K hola ) for any regular singular broken-line path as in section 4.3.2.

Proof. In view of (4.6), it suffices to prove the result for paths of the form ! + z and for paths of the form + z ! . Without loss of generality we may assume that = 0. By what precedes, the entries of 0 !z as functions in z are all in F hola [z K ][log z]. Now values of functions z (log z) k with 2 K and k 2 N at points z 2 K = / are in K hol . Consequently, values of entries of 0 !z at z 2 K = / are in K hola . Let h 1 ; : : : ; h r be the canonical basis of solutions of Lf = 0 at the origin. Then we recall that

0 !z = 0 B B B B @ h 1 (z) h r (z) h 1 (r¡1) (z) h r (r ¡1) (z) 1 C C C C A :
The determinant W = W h 1 ; : : : ;h r of this matrix satisfies the equation

W 0 + L r¡1 W = 0 and its inverse W ¡1 satisfies (W ¡1 ) 0 ¡ L r ¡1 W ¡1 = 0. Since L is at worst regular singular at z = 0, we have L r ¡1 = z + Q, where 2 K and Q 2 K(z) is analytic at z = 0. It follows that W = c ¡1 z ¡ e ¡ R Q and W ¡1 = c z e R Q for some c 2 K, where ( R Q)(0)
= 0 (here c 2 K follows from the fact that the coefficients of all h i (j) are in K as oscillatory transseries).

Given z 2 K = / where W ¡1 is defined, it follows that W ¡1 (z) 2 K hol . Since K hola is a ring, it follows that the coefficients of

z!0 = 0 !z ¡1 = W ¡1 (z) adj( 0 !z ) are in K hola .
Corollary B.4. We have K rhol K hola .

Proof. Given c 2 K rhol , let L 2 L rhol and f 2 F rhol such that Lf = 0 and c = lim z!1 f(z).

Let 1 ; : : : ; r 2 K hola be the entries of 0!1 F (0). Then f = 1 h 1 + + r h r , where h 1 ; : : : ; h r is the canonical fundamental system of solutions of Lf = 0. Since lim z!1 f(z) exists, we must have h i = O(1) whenever i = / 0 and f (1) = P i; i = / 0 i h i (0) 2 K hola .

B.4. Alien operators

Given an analytic function f defined on a neighbourhood of the origin on the Riemann surface of the logarithm, we define (r f)(z) = f(z) ¡ f (z e ¡2pi ). Setting = (2 p i) ¡1 log z, the operator f(z) 7 ! f(z e ¡2pi ) acts on Cffz gg[] by sending to ¡ 1, whence r = 1 ¡ e ¡@ = @ ¡ / 1 2 @ + . Given d 2 N, let Cffz gg[] <d be the set of f 2 Cffz gg[] of degree <d in . For 0 6 i 6 j, we note that the operator Z i;j := (i ¡ r) (j ¡ 1 ¡ r) sends Cffz gg[] <j into Cffz gg[] <i . We also note that Z i;j ( i¡1 ) (i ¡ j)! i¡1 .

For each 2 K, let r := z r z ¡ and L := z Cffz gg[log z]. Then r L L for all and r acts like multiplication by 1 ¡ e ¡2pi( ¡) on z Cffz gg. Moreover, given ' 2 L of degree <d in log z, we have r d ' = 0. We define X to be the monoid of power products (1 ¡ e ¡2pi 1 ) k 1 (e 1¡2pi `)k `with 1 ; : : : ; `2 (K \ R) n Q and k 1 ; : : : ; k `2 N. For 0 6 i 6 j, we also define

Z i;j = z Z i;j z ¡ = (i ¡ r ) (j ¡ 1 ¡ r ):
We note that Z i;j sends z Cffz gg[] <j into z Cffz gg[] <i .

Let H be the space of holonomic functions f on D 0;1 n f0g that are regular singular at the origin and such that F (1) = (f (1); : : : ; f (r¡1) (1)) 2 (K hol ) r . Such a function f satisfies an equation Lf = 0 with L 2 L hola . We regard F (1) as a column vector, as usual, and recall that f(z e ¡2pi ) is another solution of Lf = 0 with F (e ¡2pi ) = 11 F (1) 2 (K hol ) r . Indeed, the monodromy matrix 11 of L around z = 0 with end-points at z = 1 has coefficients in K hol . It follows that r f 2 H. Moreover, H is a ring with z K H and log z 2 H. It follows that r f 2 H and Z i;j f 2 H for all 2 K and 0 6 i 6 j. Note that r f always satisfies the same equation as f , contrary to Z i;j f .

B.5. Eschewing regular singularities

Theorem B.5. We have K hol K rhol K hola X ¡1 K hol :

Proof. The inclusion K hol K rhol is trivial and we already proved that K rhol K hola , so we focus on the remaining inclusion K hola X ¡1 K hol . Consider a monic L 2 L hola of order r. Then Lh = 0 has a canonical fundamental system of solutions h i;j 2 z i Kffz gg[log z] 6j ; h i;j z i (log z) j ; i = 1; : : : ; `; j = 0; : : : ; i ¡ 1:

In particular, we have r = 1 + + `. For each i 2 f1; : : : ; `g, let i := r 1 1 r i¡1 i¡1 r i+1 i+1 r `; so that i f 2 L i for any solution f of Lf = 0. We also define

u i := Y i 0 = / i
(1 ¡ e ¡2pi( i 0¡i) ) i 0 ; so that i f = u i f whenever f 2 z i Cffz gg.

Let f be a solution of Lf = 0 with F (1) = (f(1); : : : ; f (r ¡1) (1)) 2 K hol and let i;j 2 C be such that f = P i;j i;j h i;j . We need to show that i;j 2 X ¡1 K hol for all i and j. Given i 2 f1; : : : ; `g, let us show by induction on j that i;j 2 u i ¡1 K hol . To this effect, given j 2 f0; : : : ; i ¡ 1g, assume that i;j+1 ; : : : ; i; i ¡1 2 u i ¡1 K hol , and let us show that i;j 2 u i ¡1 K hol . Let g := Z j+1; i f and let f = i;0 h i;0 + + i; i ¡1 h i; i ¡1 and g = Z j+1; i f be the components of f and g in z Cffz gg[log z]. By construction, g has degree at most j in log z and the coefficient (g ) j of degree j is of the form (g ) j = ( i ¡ j ¡ 1)! i;j + c j +1 i;j +1 + + c i ¡1 i; i ¡1 + o(1)

for constants c j +1 ; : : : ; c i ¡1 2 K[(2 p i) ¡1 ] that can be computed explicitly.

We next consider the function ' = z ¡ i i r j g. By construction, ' 2 Cffz gg and ' = j! u i (( i ¡ j ¡ 1 )! i;j + c j +1 i;j +1 + + c i ¡1 i; i ¡1 + o(1)):

Moreover, both g and ' belong to H, so the value of the contour integral

'(0) = 1 2 p i I jz j=1 '(z)
z dz actually lies in K hol . By our assumption that i;j +1 ; : : : ; i; i ¡1 2 u i ¡1 K hol , it follows that '(0) ¡ j! u i (c j+1 i;j +1 + + c i ¡1 i; i ¡1 ) 2 K hol ; whence u i i;j 2 K hol . By induction on j, this shows that i;j 2 u i ¡1 K hol , for all j.

Remark B.6. In the special case when `= 1 or when i ¡ j 2 Q for all i; j, we note that the numbers u i are all in K. It follows that 0 !z and z!0 have coefficients in K hol .

B.6. Irregular singularities

Proposition B.7. Let L be a linear differential operator of order n in K(z)[@]. Then 2 Mat n (K shola ) for any singular broken-line path as in section 4.3.2.

Proof. In view of (4.6), it suffices to prove the result for paths of the form k; ! + z or + z ! k; . In fact, it suffices to consider paths of the form k; ! + z, by using a similar argument as in the regular singular case, based on the Wronskian. Without loss of generality we may assume that = 0. Now, as shown in detail in section 7.3, the matrix 0 k; !z can be expressed as a product of matrices whose entries are either in K shola , or of the form where a i+1 ; b i ; z p 2 K, m 2 N and ' ^i is holonomic with initial conditions in K shola . Moreover, b i and b p may be chosen as large as desired. By the results from section 4.2, the kernels

Z b i e i i 1 ' ^i( i ) K k i ;k i+1 (m
K k i ;k i+1
(m) ( i ; a i+1 ), (e ¡ p /z p ) (m) and the integrands are all holonomic, with initial conditions in K shola at b i . Note that the m-th derivatives are taken with respect to a i+1 and z p , so they amount to multiplying the integrands with a polynomial in i or p of degree m.

Apart from the invertible elements that directly follow from the above list of examples, the author is not aware of any other invertible holonomic constants. In particular, the precise status of X is unclear. From sin (p (K n Z)) K shol , it follows that X ¡1 K shol , whence

K shol = K shola :
In combination with proposition B.7, this actually provides a correct proof of [Hoeven, 2007b, proposition 4.7 (d)]. If X ¡1 K hol , then this would also imply K hol = K rhol = K hola = K rhola . It seems plausible though that X \ K hol = f1g and K hol = K rhol = K hola = K rhola both hold.

B.8. Further comments

For simplicity, we have assumed that K = Q alg is the field of algebraic numbers, throughout our exposition. Most results go through without much change for arbitrary algebraically closed fields K. Only in the proof of Lemma B.2, we used the assumption that 2 p i 2 / K; if 2 p i 2 K, then the same conclusion can be obtained by induction on d, by applying the induction hypothesis on f (z e 2pi ) ¡ f (z), when d > 0.

Another interesting direction of generalization would be to consider holonomic functions that are completely defined over Q alg , but to consider values at points in larger fields K. Such classes of constants contain numbers like e e p , sin ¡( 2 p ), etc. In [START_REF] Fischler | On the values of G-functions[END_REF], the authors consider values of so-called Siegel G-functions, which are a particular type of Fuchsian holonomic functions. They prove an analogue of theorem B.5 in this setting. Their proof is significantly simpler, thanks to special properties of G-functions [Fischler and Rivoal, 2011, theorem 3], and based on similar arguments as our proof of proposition B.3. The paper [START_REF] Fischler | On the values of G-functions[END_REF]] also contains several results about fraction fields of fields of values of G-functions. It would be interesting to investigate analogues of these results in our setting.

Still in [START_REF] Fischler | On the values of G-functions[END_REF], the authors study the case when K Q alg is an algebraic number field that is strictly contained in Q alg . They showed that any real algebraic number can be obtained as the value at z = 1 of a G-function over Q that is defined on D 0;1 . In our setting, this immediately implies that Q alg Q hol [i], whence (Q alg ) hol = Q hol [i]. More generally, for any algebraic number field K, we obtain (Q alg ) hol = K hol [i] if K R and (Q alg ) hol = K hol if K R.
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 31 Figure 3.1. Illustration of the Newton polygons at infinity and zero of the operator L= 4 + 2 z 2 3 ¡ z 3 2 + (7 z ¡ 3 z 3 ) + 11 z 2 .
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 32 Figure 3.2. Illustration of the Newton polygons at infinity of L from figure 3.1 and M 2 M =4 + (2 z 2 + 8) 3 + (12 z 2 ¡ z 3 + 24) 2 + (24 z 2 ¡ 7 z 3 + 7 z + 32) + 27 z 2 ¡ 10 z 3 + 14 z + 16.
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 33 Figure 3.3. Illustration of the Newton polygons at infinity of L from figure 3.1 and P 1/2 L = 16 4 + 16 z 3 ¡ 4 z 3/2 2 + (14 z 1/2 ¡ 6 z 3/2 ) + 11 z.
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 34 Figure 3.4. The left hand column shows the Newton polygons at infinity of the operators L = 4 ¡ 6 z 3 ¡ 1 z 2 ¡ 7 z 2 and P 2 L = 1 16 4 ¡ 3 4 z 2 3 ¡ 1 2 z 4 ¡ 7 z 4 . At the right hand side, we have drawn the Newton polygons of their Borel transforms BL = 1 ¡ 6

  yield an isomorphism ': A = K[F ; : : : ; F (r ¡1) ; G; : : : ; G (s¡1) ] ! B = K[C 1 ; : : : ; C r ; D 1 ; : : : ; D s ]: Now consider a monic operator N 2 K(z)[@] of smaller order than M . Using the relations KF = LG = 0, we may rewrite N (F G) as a non-zero element of V A. It follows that '(N (F G)) = / 0. Consequently, there exist constants c 1 ; : : : ; c r ; d 1 ; : : : ; d s 2 K with '(N (F G))(c 1 ; : : : ; c r ; d 1 ; : : :; d s ) = / 0. Setting f = c 1 f 1 + + c r f r and g = d 1 g 1 + + d s g s ,

Corollary 4. 4 .

 4 If the coefficients of K and L are analytic on an open or closed subset U of C, then the same thing holds for the coefficients of K L, K L and L .
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 61 Figure 6.1. The sector S ;;R 1 and the associated constants R, , and .

  exists an algorithm which takes L 2 K[z][] with an irregular singularity at z = 0 on input and which computes the critical times z 1 = z together with the sets of singular directions D 1 ; : : : ; D p modulo 2 p. In addition, given < k p p/2, 1 2 R n D 1 ;:::; p 2 R n D p with e i ; e i 1 ;:::; e i p 2 K, the algorithm computes a sector S k p p ;; 0 with 2 Q > to be used below. b) There exists an algorithm which takes the following data on input: L, , 1 ; : : : ; p and as above ;A formal solution f ~2 O to L f ~= 0 (determined by initial conditions in K) ; z 2 S k p p ;; 0 above K, m 2 N and " 2 Q > . Setting f = sum k; f ~, the algorithm computes v ~2 K with jf (m) (z) ¡ v ~j < ". Moreover, setting n = ¡log ", this computation takes a time O(M (n) log 3 n).Corollary 7.2. Singular holonomic constants in K shol admit O(M (n) log 3 n)-approximation algorithms.

  with 2 f= / ; >; >g D c;r ; D c;r Open and closed disks with center c and radius r

	S ;;R 0 S ;;R	Closed sector fz 2 C _ : jarg z ¡ j 6 ; jz j 6 Rg at the origin

1 Closed sector fz 2 C _ : jarg z ¡ j 6 ; jz j > Rg at infinity B ~z Formal Borel transform w.r.t. z L ^z ; L z Analytic Laplace transform w.r.t. z (for minors and majors) A ^k;k 0 ; A k;k 0 Acceleration operators (for minors and majors)

  In our case, f ^i is an analytic function which admits only a finite number of singularities above C. In general, the singularities of a resurgent function are usually located on a finitely generated grid. Let us describe the transformations B ~, A ^zi !z i+1The Borel transform We start by applying the formal Borel transform to the series

i and L ^zp p in more detail.

  The set D i R of directions such f ^i admits a singularity on e i R > is called the set of Stokes directions at the i-th critical time. Accelerations are morphisms of differential C-algebras which preserve the convolution product. Intuitively speaking, one has A ^zi !z i+1

i = B z i+1 L ^zi i ,

where the Laplace transform

k;R = T 2R O k; , O k =

  we say that a formal power series f ~2 O is accelero-summable in the multi-direction if the above scheme yields an analytic function f := sum k; f ~. For any < k p p/2, this function is defined in a sufficiently small sector near 0 _ of the form S k p p ;;R . We denote the set of accelero-summable power series of this kind by O k; .The set O k; forms a differential subring of O and the map f ~7 ! f for f ~2 O k; is injective. If k 0 and 0 are obtained from k and by inserting a new critical time and an arbitrary direction, then we haveO k; O k 0 ; 0. In particular, O k; contains O cv = Cffz Q > gg[log z],where Cffz Q > gg denotes the ring of convergent infinitesimal Puiseux series. Assuming that each D i is finite modulo 2 p, and setting R := R 1 R p , we also denote O

	S Let E be the group of elements e P with P 2 K[z Q < R O k;R and O as = S k O k . ] and denote by S = O z K [E] the ring of all polynomials of the form f ~= P e2E f ~ee with f e 2 O z K . The notion of accelero-summa-tion extends to elements in S instead of O. Indeed, given g ~2 O k; , 2 C, e = e P (1/ z p p ) 2 E, we may simply take (sum k; g ~z e)(z) = (sum k; g ~)(z) z e. It can be checked that this
	definition is coherent when replacing g ~z by (z k g ~) z ¡k for some k 2 Q. By linearity, we thus obtain a natural differential subalgebra S k; S of accelero-summable transseries with
	critical times k and in the multi-direction . We also have natural analogues S

k and S as of O k and O as .

  

  section 3]. Another afterthought: if size(z) = O(log n), then the bound can actually be reduced to O(M(n) log n) through a careful analysis of the binary splitting algorithm in this specific context.
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Equations for the integrands We finally need equations for the integrands of (2.14) and (2.15). If i < p, then we have shown above how to construct a vanishing operator A i for K k i ;k i+1 at infinity. In section 4.2.3, we have also shown how to construct a vanishing operator (A i ) m for each K k i ;k i+1 (m) . It follows that i;m = (A i ) m L i and ^i;m = (A i ) m L ^i are vanishing operators for the first and second integrands in (2.14). Moreover, the operator (A i ) m L ^i has growth rate k i /(k i ¡ k i+1 ) at infinity, by lemma 4.3. Similarly, p;m = ( + z p

¡1

) m L p and ^p;m = ( + z p

¡1

) m L ^p are vanishing operators for the first and second integrands in (2.15), and ( + z p

¡1

) m L ^p has growth rate 1 at infinity.

Calibration

Assume now that 1 2 R 1 ;:::; p 2 R p are fixed non singular directions with e i 1 ;:::; e i p 2 K. In order to approximate f (z) for z close to 0 _ , we first have to precompute a certain number of parameters for the acceleration process, which do not depend on the precision of the desired approximation for f(z). In particular, we will compute a suitable sector S geom near the origin, such that the effective accelero-summation procedure will work for every z 2 S geom . Besides S geom , for each critical time z i , we precompute The operators L ^i, L i , ^i;m and i;m from the previous section, for m < r i := order(L i ) if i < p and m < r := order(L) if i = p.

The starting point a

Let us show more precisely how to do this. Computing a 1 If ! is the smallest non-zero singularity of L 1 , then we may take a 1 arbitrarily with ja 1 j < !. By construction, L ^1 is (at worst) regular singular at 0, whence so is L 1 , as we see from (4.1). Using the algorithms from [Hoeven, 2001b], it follows that the entries of the transition matrices for L ^1 and L 1 between 0 and a 1 can be approximated in time O(M (n) log 2 n); these entries belong to K hola using the terminology from Appendix B. From (2.2), we also see that f ^1 is a K[ (N) (K)]-linear combination of the canonical solutions of L ^1 at the origin, where K[ (N) (K)] is the smallest K-algebra that contains all constants of the form (m) () with (z) = 1/¡(z), m 2 N, and 2 K. Similarly, using (2.7), we deduce

Computing S i , a i+1 and u i+1 Given i < p, and setting

and constants K, with

for all straight-line paths ! i in S i pre

. By lemmas 2.7 and 2.3, we may compute a subsector

pre and small a i+1 and u i+1 with arg

such that we have a bound

We may further decompose

By lemmas 2.6 and 2.5, we may compute c i+1 0 , N i+1 , A i;1 , A i;2 and A i;3 with

for i+1 2 (0; c i+1 0 ] and N > N i+1 . Using (A.3), we thus get

Using the techniques from section 7, we may also compute a bound

; for i 2 [c i ; 1). Using lemma 2.6 and (A.5), we may thus compute c i+1 , A i;6 , A i;7 and A i;8 with

for i+1 2 (0; c i+1 ] and N > N i+1 . Combining (A.4) and (A.6), we may therefore compute B i+1 and C i+1 such that (A.2) recursively holds at stage i + 1.

In the case when i = p, similar computations yield constants B, C, D, N geom and a small sector S = S 0;;R with aperture < p/(2 k p ), such that

for all z 2 S and all N > N geom . The optimal N = N opt for which this bound is minimal satisfies

for some explicitly computable B 0 . This completes the proof of the following:

Theorem A.1. There exists an algorithm which takes on input A differential operator L 2 K(z)[] with an irregular singularity at z = 0 ;

The critical times k and non singular directions with k i i = k i+1 i+1 for all i, and which computes B; C ; R; > 0 and N geom 2 N, such that the bound

Appendix B. Errata: notes on holonomic constants

There were several problems with the proofs of proposition 4.7(c) and (d). In this appendix, we present corrected proofs (in the case of proposition 4.7(c), we slightly modified the statement), as well as a theorem that the class K rhol regular singular holonomic constants is essentially the same as the class of K hol of ordinary holonomic constants. Until subsection B.8, we will assume that K = Q alg is the field of algebraic numbers. In subsection B.8, we also discuss a few related questions and results from [START_REF] Fischler | On the values of G-functions[END_REF]; we are grateful to Marc Mezzarobba for this reference.

B.1. Notations

Let L hol and L shol denote for the sets of monic L 2 K(z)[@] whose coefficients are respectively defined on D 0;1 and D 0;1 . Let L rhol be the set of L 2 L shol such that L is at worst regular singular at z = 1. We define F hol , F rhol , and F shol to be the sets of solutions f 2 Kffz gg to an equation Lf = 0, where L 2 L hol , L 2 L rhol , or L 2 L shol , respectively, and such that lim z!1 f (z) exists. We recall that K hol = ff (1) :

It will be convenient to also introduce the variants L hola , L rhola , and L shola of L hol , L rhol , and L shol for which we allow L to be at most regular singular at z = 0. For instance, L hola consists of monic operators L 2 K(z)[@] whose coefficients are defined on D 0;1 n f0g and such that L is at worst regular singular at z = 0. The counterparts F hola , F rhola , and F shola are defined in a similar way as before; we still require analytic solutions f 2 Kffz gg of Lf = 0 at z = 0. We again set

B.2. Ring structure

Proposition B.1. K hol , K rhol , K shol , K hola , K rhola , and K shola are all subrings of C.

Proof. This is proved in a similar way as proposition 4.6(a). For instance, in order to see that K rhol is closed under multiplication, consider solutions f and g of K f = 0 and L g = 0 with initial conditions in K m resp. K n , where the coefficients of K and L are defined on D 0;1 , where K and L are regular singular at z = 1, and such that the limits of f and g at z = 1 exist. Then corollary 4.4 implies that K L is defined on D 0;1 and corollary 4.5 implies that K L is regular singular at z = 1.

Let us focus on the integrals of type (B.1); the integrals of type (B.2) are treated similarly. The function ' ^i satisfies a holonomic equation (i.e. a monic linear differential equation with coefficients in K( i )) of which all solutions have a growth bounded by B e C j i j k i /(k i ¡k i+1 )

, for some fixed constant C > 0 and a constant B that depends on the solution. Likewise, as shown in section 7.1, K k i ;k i+1 (m) ( i ; a i+1 ) satisfies a holonomic equation of which all solutions are bounded by B e ¡C j i j k i /(k i ¡k i+1 ) for a fixed constant C > 0 that can be made arbitrarily large (by taking b i large). By Lemma 4.3(b), it follows that the same holds for the integrand I() := ' ^i( i ) K

Given such a holonomic equation satisfied by I, consider the canonical fundamental basis h 1 ;:::; h s of solutions to this equation at i = b i . For each j, the function h j has initial conditions in K at b i and the integral

converges. Taking b i sufficiently large and applying a change of variables of the form ( i / b i ) c = (1 ¡ ) ¡1 , we see that the value of the integral lies in K shol . Since I can be rewritten as a K shola -linear combination of h 1 ; : : : ; h s , we conclude that (B.1) also takes a value in K shola .

B.7. Invertible elements

Given an integral domain R, let R be its subgroup of invertible elements. An interesting question is to determine the sets (K hol ) , (K rhol ) , etc. Obviously, K = / (K hol ) and e K (K hol ) . We also know that p Z (K hol ) , since we also deduce that sin (p (K n Z)) (K shol ) . This is noteworthy, since sin z is a well known example of a holonomic function whose inverse 1 sin z is not holonomic.

[van Hoeij] van Hoeij, M., 1997. Formal solutions and factorization of differential operators with power series coefficients. JSC 24, 130.