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A current challenge in cellular signaling is to decipher the complex intracellular spatiotemporal organization that any given cell type has concocted to discriminate among different external stimuli acting via a common signaling pathway. This obviously applies to cAMP and cGMP signaling in the heart where these cyclic nucleotides determine the regulation of cardiac function by many hormones and neuromediators. Recent studies have identified cyclic nucleotide phosphodiesterases (PDEs) as key actors in limiting the spread of cAMP and cGMP, and in shaping and organizing intracellular signaling microdomains. With this new role, PDEs have been promoted from the rank of a housekeeping attendant to that of an executive officer.

The old and new faces of cyclic nucleotides

The cyclic nucleotides cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP) were identified more than four decades ago. [START_REF] Rall | Formation of a cyclic adenine ribonucleotide by tissue particles[END_REF][START_REF] Ashman | Isolation of adenosine 3', 5'monophosphate and guanosine 3', 5'-monophosphate from rat urine[END_REF] Since then, many studies have appeared on how these two second messengers are synthesized or degraded, what makes their level go up or down, what they do to target effectors by either covalent (phosphorylation) or non-covalent (direct binding to proteins, such as ion channels or guanine-nucleotide-exchange factors) mechanisms, and how they affect a countless number of cellular functions. [START_REF] Fimia | Cyclic AMP signalling[END_REF][START_REF] Beavo | Cyclic nucleotide research -still expanding after half a century[END_REF][START_REF] Pawson | Protein phosphorylation in signaling--50 years and counting[END_REF][START_REF] Hofmann | The biology of cyclic GMP-dependent protein kinases[END_REF] In certain tissues and organs, the cyclic nucleotide pathways have been so fully explored over the years that one can wonder what else is there to be found. This is the case for cAMP in the heart, where it plays a key role in the sympathetic nerve/β-adrenergic receptor/adenylyl cyclase/protein kinase A (PKA) axis that serves to stimulate cardiac rhythm (chronotropy) as well as contractile force (inotropy) and relaxation (lusitropy). [START_REF] Bers | Cardiac excitation-contraction coupling[END_REF] Yet, there are a number of questions which have always haunted our minds but have only lately begun to receive the attention they deserve: how so many different receptors coupled to cAMP or cGMP signaling pathway manage to achieve specific cellular responses? What is the purpose of the different adenylyl and guanylyl cyclases present in the same cell? Why do so many different cyclic nucleotide phosphodiesterases (PDEs) coexist to hydrolyze cAMP and cGMP? Do these cyclic nucleotides and their respective effectors freely diffuse inside the cell or are they localized? Does a cyclic nucleotide compartmentation have any physiological or pathophysiological importance? Some of these questions have received answers in recent studies combining molecular biology, fluorescence imaging and electrophysiological approaches. In particular, compelling evidence is now accumulating about the formation of molecular complexes (signalosomes) in distinct cellular compartments that influence cyclic nucleotide signaling. While this review will summarize some of the recent evidence supporting a localized cyclic nucleotide signaling in cardiomyocytes, the reader is encouraged to read other recent reviews on related issues. [START_REF] Beavo | Cyclic nucleotide research -still expanding after half a century[END_REF][START_REF] Pawson | Protein phosphorylation in signaling--50 years and counting[END_REF][START_REF] Steinberg | Compartmentation of G protein-coupled signaling pathways in cardiac myocytes[END_REF][START_REF] Zaccolo | Compartmentalisation of cAMP and Ca 2+ signals[END_REF][START_REF] Wong | AKAP signalling complexes: focal points in space and time[END_REF][START_REF] Baillie | Arrestin times for compartmentalised cAMP signalling and phosphodiesterase-4 enzymes[END_REF][START_REF] Dodge-Kafka | Compartmentation of cyclic nucleotide signaling in the heart: the role of A-kinase anchoring proteins[END_REF][START_REF] Cooper | Higher-order organization and regulation of adenylyl cyclases[END_REF] cAMP synthesis Cyclic AMP is synthesized from ATP by at least nine closely related isoforms of adenylyl cyclases (ACs). [START_REF] Defer | Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase[END_REF][START_REF] Hanoune | Regulation and role of adenylyl cyclase isoforms[END_REF] In heart, AC5 and AC6 represent the dominant isoforms, [START_REF] Defer | Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase[END_REF] although AC7 and AC9 may be present at the mRNA level, [START_REF] Watson | Molecular cloning and characterization of the type VII isoform of mammalian adenylyl cyclase expressed widely in mouse tissues and in S49 mouse lymphoma cells[END_REF][START_REF] Hacker | Cloning, chromosomal mapping, and regulatory properties of the human type 9 adenylyl cyclase (ADCY9)[END_REF] and AC4 both at the mRNA and protein level. [START_REF] Schulze | Adenylyl cyclase in the heart: an enzymocytochemical and immunocytochemical approach[END_REF][START_REF] Belevych | ACh-induced rebound stimulation of L-type Ca 2+ current in guinea-pig ventricular myocytes, mediated by G-dependent activation of adenylyl cyclase[END_REF] AC5 and AC6 share strong similarities, both in sequence and functional characteristics: both are activated by Gαs subunits and forskolin, and inhibited by Gαi and Gβγ subunits, [START_REF] Sunahara | Complexity and diversity of mammalian adenylyl cyclases[END_REF][START_REF] Bayewitch | Inhibition of adenylyl cyclase isoforms V and VI by various Gbetagamma subunits[END_REF] Ca 2+ ions [START_REF] Colvin | Calcium inhibition of cardiac adenylyl cyclase -Evidence for two distinct sites of inhibition[END_REF][START_REF] Yu | Calcium entry via L-type calcium channels acts as a negative regulator of adenylyl cyclase activity and cyclic AMP levels in cardiac myocytes[END_REF] and PKA phosphorylation. [START_REF] Defer | Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase[END_REF][START_REF] Hanoune | Regulation and role of adenylyl cyclase isoforms[END_REF][START_REF] Sunahara | Complexity and diversity of mammalian adenylyl cyclases[END_REF][START_REF] Iwami | Regulation of adenylyl cyclase by protein kinase A[END_REF][START_REF] Chen | Adenylyl cyclase 6 is selectively regulated by protein kinase A phosphorylation in a region involved in Gs stimulation[END_REF] However, AC5 and AC6 differ in their regulation by PKC: AC5 is activated [START_REF] Kawabe | Regulation of type V adenylyl cyclase by PMA-sensitive and -insensitive protein kinase C isoenzymes in intact cells[END_REF] while AC6 is inhibited [START_REF] Lin | Protein kinase C inhibits type VI adenylyl cyclase by phosphorylating the regulatory N domain and two catalytic C1 and C2 domains[END_REF] by PKC phosphorylation. The lack of specific antibody against each isoform does not allow to examine the specific distribution of AC5 and AC6 at the membrane. However, immunofluorescence staining of isolated adult ventricular myocytes using a common AC5/6 antibody demonstrated a preferential localization of these proteins in T-tubular membranes. [START_REF] Gao | Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes[END_REF][START_REF] Laflamme | Gs and adenylyl cyclase in transverse tubules of heart: implications for cAMP-dependent signaling[END_REF] Do AC5 and AC6 play distinct roles in cardiac myocytes? Although, to our knowledge, a dominant negative approach has never been attempted to address that question specifically, several indirect evidence suggest that this is the case. First, AC5 and AC6 show a different pattern of expression during embryonic and postnatal cardiac development, at least at the mRNA level: in rat heart, both isoforms are equally expressed at fetal stage but AC5 mRNA progressively accumulates during ontogenic development while AC6 mRNA remains unchanged. [START_REF] Espinasse | Type V, but not type VI, adenylyl cyclase mRNA accumulates in the rat heart during ontogenic development. Correlation with increased global adenylyl cyclase activity[END_REF] Second, AC6 and AC5 expression follows a different pattern of down-regulation in several models of heart failure. [31][32][33] Finally, studies performed in animal models with a cardiac-directed overexpression of AC5 34,35 or AC6, [36][37][START_REF] Lai | Intracoronary adenovirus encoding adenylyl cyclase VI increases left ventricular function in heart failure[END_REF][START_REF] Tang | Adenylyl cyclase type VI corrects cardiac sarcoplasmic reticulum calcium uptake defects in cardiomyopathy[END_REF] or with AC5 inhibition by gene invalidation [START_REF] Okumura | Type 5 adenylyl cyclase disruption alters not only sympathetic but also parasympathetic and calcium-mediated cardiac regulation[END_REF][START_REF] Okumura | Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload[END_REF] or specific pharmacological inhibition, [START_REF] Onda | Type-specific regulation of adenylyl cyclase. Selective pharmacological stimulation and inhibition of adenylyl cyclase isoforms[END_REF][START_REF] Iwatsubo | Direct inhibition of type 5 adenylyl cyclase prevents myocardial apoptosis without functional deterioration[END_REF] suggest that the two cyclases exert opposite effects, respectively beneficial for AC6 and deleterious for AC5, on cardiac cell survival, 37,[START_REF] Iwatsubo | Direct inhibition of type 5 adenylyl cyclase prevents myocardial apoptosis without functional deterioration[END_REF] intracellular Ca 2+ handling [START_REF] Tang | Adenylyl cyclase type VI corrects cardiac sarcoplasmic reticulum calcium uptake defects in cardiomyopathy[END_REF][START_REF] Okumura | Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload[END_REF] and contractile function. [START_REF] Lai | Intracoronary adenovirus encoding adenylyl cyclase VI increases left ventricular function in heart failure[END_REF][START_REF] Okumura | Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload[END_REF][START_REF] Lai | Intracoronary delivery of adenovirus[END_REF] The finding that AC5 and AC6 may have specific roles suggests that the two enzymes are located in distinct compartments, interacting with distinct receptors or target proteins. For instance, purinergic and β1-adrenergic stimulations differentially activate AC isoforms in rat cardiomyocytes, AC5 being the specific target of the purinergic 45 and AC6 of the β1-adrenergic stimulation. 46,47 Also, co-localization of AC and KATP channels was shown to induce a local regulation of the KATP channel current by PKA phosphorylation 48 or local ATP depletion. 49 cGMP synthesis cGMP synthesis is controlled by two types of guanylyl cyclases (GC) that differ in their cellular location and activation by specific ligands: a particulate GC (pGC) present at the plasma membrane, which is activated by natriuretic peptides (NPs) such as atrial (ANP), brain (BNP) and C-type natriuretic peptide (CNP) [50][51][52] ; and a soluble guanylyl cyclase (sGC) present in the cytosol and activated by nitric oxide (NO). 52,53 NPs exert their effects by three single transmembrane NP receptors: NPR-A, NPR-B and NPR-C. Both NPR-A and NPR-B have intrinsic GC activity in their cytosolic domain and catalyze the synthesis of cGMP from GTP. [START_REF] Wedel | Guanylyl cyclases: Approaching year thirty[END_REF] NPR-C lacks enzymatic activity, but controls local NP concentrations through constitutive receptor-mediated internalization and degradation [START_REF] Potter | Phosphorylation-dependent regulation of the guanylyl cyclase-linked natriuretic peptide receptor B: Dephosphorylation is a mechanism of desensitization[END_REF] and acts via Gi-dependent mechanisms. [START_REF] Murthy | Heterologous desensitization mediated by G proteinspecific binding to caveolin[END_REF] All receptors can be activated by the three NPs but NPR-A has a higher affinity for ANP and BNP while NPR-B is more specific for CNP. [START_REF] Potter | Natriuretic peptides, their receptors and cGMP-dependent signaling functions[END_REF] Do pGC and sGC play distinct roles in cardiac myocytes? A number of studies clearly support this assumption. For instance, in frog ventricular myocytes, sGC activation causes a pronounced inhibition of ICa,L upon cAMP stimulation, [START_REF] Méry | Nitric oxide regulates cardiac Ca 2+ current -Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation[END_REF] while pGC activation has little effect. [START_REF] Gisbert | Atrial natriuretic factor regulates the calcium current in frog isolated cardiac cells[END_REF] In rabbit atria, pGC activation caused a larger cAMP accumulation (via PDE3 inhibition), cGMP efflux and ANP release than activation of sGC. [START_REF] Wen | High and low gain switches for regulation of cAMP efflux concentration: distinct roles for particulate GC-and soluble GC-cGMP-PDE3 signaling in rabbit atria[END_REF] In mouse ventricular myocytes, both pGC and sGC activation exerted similar negative inotropic effects. These effects on cell contraction were mediated by cGMP dependent pathway involving PKG and PDEs. However, pGC activation decreased Ca 2+ transients, whereas sGC activation had marginal effects, [START_REF] Su | Differential effects of cGMP produced by soluble and particulate guanylyl cyclase on mouse ventricular myocytes[END_REF] similarly to what was found in pig airway smooth muscle. [START_REF] Rho | Differential effects of soluble and particulate guanylyl cyclase on Ca 2+ sensitivity in airway smooth muscle[END_REF] These data suggest that pGC signaling works mainly to decrease intracellular Ca 2+ level, whereas sGCsignaling mainly decreases Ca 2+ sensitivity. Evidence for different functional effects of cGMP produced by either sGC or pGC also come from studies in non-cardiac cell types. For instance, in human endothelial cells from umbilical vein, activation of sGC induces a more efficient relaxation than does pGC activation. [START_REF] Rivero-Vilches | Differential relaxing responses to particulate or soluble guanylyl cyclase activation on endothelial cells: a mechanism dependent on PKG-I alpha activation by NO/cGMP[END_REF] In airway smooth muscle cells from pig, stimulation of pGC induces relaxation exclusively by decreasing intracellular Ca 2+ concentration, whereas sGC stimulation decreases both Ca 2+ concentration and sensitivity of the myofilaments. [START_REF] Rho | Differential effects of soluble and particulate guanylyl cyclase on Ca 2+ sensitivity in airway smooth muscle[END_REF] In human embryonic kidney, ANP, but not SNAP (an NO-donor) induces a recruitment of PKG to plasma membrane and amplifies GC-A activity. [START_REF] Airhart | Atrial natriuretic peptide induces natriuretic peptide receptor-cGMP-dependent protein kinase interaction[END_REF] 

Cyclic nucleotide hydrolysis

The level of intracellular cAMP and cGMP is not only regulated by their synthesis but also by their degradation (Fig. 1). This is achieved by cyclic nucleotide phosphodiesterases (PDEs), a superfamily of metallophosphohydrolases that specifically cleave the 3',5'-cyclic phosphate moiety of cAMP and/or cGMP to produce the corresponding 5'-nucleotide. In this way, cGMP is converted into 5'-GMP and cAMP into 5'-AMP, hence producing inert molecules, destroying the second messenger activity of cyclic nucleotides, and controlling or limiting these molecules' activity on their substrates such as PKA, cGMP-dependent protein kinase (PKG), etc.

PDEs vary in their substrate specificity, mechanism of action and subcellular location. [START_REF] Lugnier | Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents[END_REF][START_REF] Bender | Cyclic nucleotide phosphodiesterases: from molecular regulation to clinical use[END_REF] Cardiac PDEs fall into at least five families (Fig. 1): PDE1, which hydrolyzes both cAMP and cGMP, is activated by Ca 2+ -calmodulin and is essentially expressed in a nonmyocyte fraction of cardiac tissue [START_REF] Bode | Cellular distribution of phosphodiesterase isoforms in rat cardiac tissue[END_REF] ; PDE2, which also can hydrolyze both cAMP and cGMP and is stimulated by cGMP binding to amino terminal allosteric regulatory sites known as GAF domains [START_REF] Martinez | The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding[END_REF] ; PDE3, which has a similar affinity for cAMP and cGMP, but a higher Vmax for the former, making it a cGMP-inhibited cAMP-PDE; PDE4 which is specific for cAMP; and PDE5 which is specific for cGMP. Within these PDE families, multiple isoforms are expressed either as products of different genes or as products of the same gene through alternative splicing and/or by differential use of translation starting sites. Thus, till now, at least a dozen of different PDE isoforms have been found in heart: PDE1C, 69,70 PDE2A 71 , PDE3A-136, PDE3A-118 and PDE3A-94, 72 PDE3B, 73 PDE4B, 74 PDE4D3, PDE4D5, PDE4D8 and PDE4D9, [START_REF] Richter | Splice variants of the cyclic nucleotide phosphodiesterase PDE4D are differentially expressed and regulated in rat tissue[END_REF] and PDE5A. [START_REF] Senzaki | Cardiac phosphodiesterase 5 (cGMP-specific) modulates ßadrenergic signaling in vivo and is down-regulated in heart failure[END_REF][START_REF] Takimoto | cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism[END_REF] A last isoform (PDE9A), highly specific of cGMP, has been shown to be expressed at the mRNA level in human [START_REF] Fisher | Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase[END_REF] but not mouse heart. [START_REF] Soderling | Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases[END_REF] All PDE isoforms but PDE9A [START_REF] Fisher | Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase[END_REF][START_REF] Soderling | Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases[END_REF] are inhibited by xanthine derivatives such as 3-isobutyl-1methylxanthine (IBMX), and a number of drugs have been developed as selective PDE inhibitors [START_REF] Lugnier | Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents[END_REF][START_REF] Bender | Cyclic nucleotide phosphodiesterases: from molecular regulation to clinical use[END_REF] : EHNA [START_REF] Méry | Erythro-9-(2-hydroxy-3nonyl)adenine inhibits cyclic GMP-stimulated phosphodiesterase in isolated cardiac myocytes[END_REF] and Bay 60-7550 [START_REF] Boess | Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance[END_REF] for PDE2; milrinone, cilostamide and other bipyridines for PDE3 [START_REF] Bender | Cyclic nucleotide phosphodiesterases: from molecular regulation to clinical use[END_REF] ; rolipram and Ro 20-1724 for PDE4 [START_REF] Bender | Cyclic nucleotide phosphodiesterases: from molecular regulation to clinical use[END_REF] ; sildenafil, tadalafil and vardenafil for PDE5. [START_REF] Bender | Cyclic nucleotide phosphodiesterases: from molecular regulation to clinical use[END_REF][START_REF] Rybalkin | Cyclic GMP phosphodiesterases and regulation of smooth muscle function[END_REF] These drugs provide valuable pharmacological tools for exploring the functional role of each PDE family in cyclic nucleotide signaling and targeting.

(Figure 1 near here)

cAMP and cGMP effectors

The cardiac effects of cAMP are classically attributed to PKA-mediated phosphorylation of a myriad of proteins, some of which are critically involved in excitation-contraction coupling.

These include LTCCs (which underlies the L-type Ca 2+ current, ICa,L), [START_REF] Tsien | Cyclic AMP mediates the effects of adrenaline on cardiac Purkinje fibres[END_REF][START_REF] Keef | Regulation of cardiac and smooth muscle Ca 2+ channels (CaV1.2a,b) by protein kinases[END_REF] phospholamban, [START_REF] Kirchberger | Cyclic adenosine 3',5'monophosphate-dependent protein kinase stimulation of calcium uptake by canine cardiac microsomes[END_REF][START_REF] Lennan | Phospholamban: A crucial regulator of cardiac contractility[END_REF] RyR2, [START_REF] Takasago | Phosphorylation of the cardiac ryanodine receptor by cAMP-dependent protein kinase[END_REF] the phosphatase 1 inhibitor, [START_REF] Ahmad | Autonomic regulation of type 1 protein phosphatase in cardiac muscle[END_REF][START_REF] El-Armouche | Evidence for protein phosphatase inhibitor-1 playing an amplifier role in beta-adrenergic signaling in cardiac myocytes[END_REF] and a number of contractile proteins, such as troponin I and myosin binding protein C. [START_REF] Bers | Cardiac excitation-contraction coupling[END_REF][START_REF] Rapundalo | Cardiac protein phosphorylation: functional and pathophysiological correlates[END_REF] PKA also controls gene expression through the activation of the cAMP response element-binding protein (CREB) family of transcription factors. [START_REF] Muller | Activation and inactivation of cAMP-response element-mediated gene transcription in cardiac myocytes[END_REF] Cyclic AMP regulates other targets in a PKA-independent manner, like the exchange protein directly activated by cAMP (Epac) [START_REF] De Rooij | Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP[END_REF][START_REF] Morel | The cAMP-binding protein Epac induces cardiomyocyte hypertrophy[END_REF] and HCN cyclic nucleotide gated ion channels. [START_REF] Difrancesco | Direct activation of cardiac pacemaker channels by intracellular cyclic AMP[END_REF][START_REF] Baruscotti | Physiology and pharmacology of the cardiac pacemaker ("funny") current[END_REF] The consequence of an acute rise in intracellular cAMP concentration is in most cases either a positive chronotropic, inotropic or lusitropic effect, or a combination of two or more of these. These effects are counteracted by acetylcholine (ACh) released from sympathetic nerves. ACh binds to muscarinic M2 receptors which inhibit cAMP synthesis through pertussis toxin sensitive Gi proteins. [START_REF] Fleming | Muscarinic receptor regulation of cardiac adenylate cyclase[END_REF] Cyclic GMP is often represented as the mirror of cAMP. In the short term, cGMP usually exerts negative metabolic as well as inotropic effects, [START_REF] Shah | Paracrine and autocrine effects of nitric oxide on myocardial function[END_REF][START_REF] Semigran | Type 5 phosphodiesterase inhibition: the focus shifts to the heart[END_REF] and opposes most of the positive effects of cAMP on cardiac function. [START_REF] Fischmeister | Species-and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels[END_REF] Upon NO or NP action, cGMP accumulates and interacts with several targets, such as PKG and PDEs (Fig. 1), which attenuate the βadrenergic response. [START_REF] Fischmeister | Species-and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels[END_REF]100 In the long term, e.g. during chronic cGMP pathway stimulation by NO 101,102 or NPs, 103,104 or in transgenic mice with cardiac overexpression of endothelial or inducible NO-synthases, 105 cGMP possesses anti-hypertrophic effects. [106][107][108] 

Compartmentation of cyclic nucleotide signaling

Several observations have suggested that some components within the cyclic nucleotidesignaling pathway are colocalized to discrete regions of the plasma membrane such as caveolae [109][110][111][112] and transverse tubules, [START_REF] Gao | Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes[END_REF][START_REF] Laflamme | Gs and adenylyl cyclase in transverse tubules of heart: implications for cAMP-dependent signaling[END_REF] thereby allowing rapid and preferential modulation of cAMP and cGMP production within a defined microenvironment (Fig. 2). With the discovery of AKAP (A Kinase Anchoring Protein), 113,114 it has become apparent that intracellular targeting of PKA as well as the preassembly of components of signaling pathways in clusters or on scaffolds are important for the speed and organization of cAMP signal transduction events. [START_REF] Dodge-Kafka | Compartmentation of cyclic nucleotide signaling in the heart: the role of A-kinase anchoring proteins[END_REF] However, one would wonder how specificity is maintained when small diffusible molecules such as cAMP and cGMP are generated during signaling cascade.

Localized cyclic nucleotide signals may be generated by interplay between discrete production sites and restricted diffusion within the cytoplasm. In addition to specialized membrane structures that may circumvent cAMP and cGMP spreading, [START_REF] Steinberg | Compartmentation of G protein-coupled signaling pathways in cardiac myocytes[END_REF]115 degradation of these cyclic nucleotides by PDEs appears critical for the formation of dynamic microdomains that confer specificity of the response (Fig. 2). [116][117][118][119] The first evidence for a compartmentation of cAMP signaling in heart comes from experiments made almost 30 years ago in isolated perfused hearts. 120-122 Important differences were observed when comparing hearts perfused with different agonists activating the cAMP cascade, particularly via β1-AR and prostaglandin E1 receptor (PGE1-R): with isoproterenol (ISO), cAMP is elevated, the force of contraction is enhanced, soluble and particulate PKA are activated, and the activity of phosphorylase kinase and glycogen phosphorylase is increased; with PGE1, cAMP content and soluble PKA activity are also increased, but there is no change in contractile activity or in the activities of PKA substrates that regulate glycogen metabolism. 122,123 Similar results were reproduced in isolated myocytes. 124 The situation is even more complex if one considers that a given cardiac myocyte expresses many other Gscoupled receptors, besides β1-ARs and PGE1-Rs, that increase cAMP but produce different effects. For instance, adult rat ventricular myocytes also express β2-ARs, glucagon receptors (Glu-Rs) and glucagon-like peptide-1 receptors (GLP1-Rs). β2-AR stimulation increases contractile force but does not activate glycogen phosphorylase 125 and does not accelerate relaxation 126,127 (but see ref. 125 ); Glu-R stimulation activates phosphorylase and exerts positive inotropic and lusitropic effects, but the contractile effects fade with time 128 ; GLP1-R stimulation exerts a modest negative inotropic effect despite an increase in total cAMP comparable to that elicited by a β1-adrenergic stimulation. 129 These results clearly show that the cell is able to distinguish between different stimuli acting on a common signaling cascade. One possible way to achieve that distinction is to confine the cyclic nucleotide signaling cascade to distinct intracellular compartments which may differ depending on the stimulus used.

Methods to study cyclic nucleotide compartmentation in intact cardiomyocytes

During twenty years, most of the evidence supporting a compartmentation of cyclic nucleotide signaling in cardiac preparations was gathered using biochemical assays in fractionated dead tissues or cells. However, during the last decade, a number of sophisticated methods have been developed which now allow to evaluate the role of cyclic nucleotide compartmentation in intact living cells.

The first such method combines a classical whole-cell patch-clamp recording of ICa,L (as a probe for cAMP/PKA activity) with a double-barreled microperfusion system. 116 This allows to test the effect of a local application of a receptor agonist on ICa,L in the part of the cell exposed to the agonist and compare it with the response of the Ca 2+ channels located on the non-exposed part. This method provided the first evidence for a local elevation of cAMP in response to a β2-adrenergic stimulation in frog ventricular cells as compared to a uniform elevation of cAMP in response to forskolin, a direct AC activator. 116 A similar conclusion was reached using the cell-attached configuration of the patch-clamp technique in mammalian cardiomyocytes 130 and neurons 131 by applying a β2-adrenergic agonist either inside or outside the patch-pipette while recording single LTCC activity in the patch of membrane delimited by the pipette.

More direct methods have been developed to monitor cyclic nucleotide changes using fluorescent probes and imaging microscopy. The first such probe was FlCRhR, a fluorescent indicator for cAMP which consists of PKA in which the catalytic (C) and regulatory (R) subunits are each labeled with a different fluorescent dye, respectively fluorescein and rhodamine. 132 Fluorescence resonance energy transfer (FRET) occurs in the holoenzyme complex R2C2 but when cAMP binds to the R subunits, C subunits dissociate and the FRET signal is impaired. The change in shape of the fluorescence emission spectrum allows cAMP concentrations to be visualized in real-time in single living cells, as long as it is possible to microinject the cells with the labeled holoenzyme. 132 This in itself represents a major technical challenge, particularly in cardiomyocytes, 133 and has prompted the search for genetically encoded probes. A cAMP probe has been generated using the same principle as FlCRhR, but by fusing a YFP and a CFP protein to R and C subunits, respectively. 134 On a similar principle, through genetic modifications of other target effectors, a number of different probes are now available for real time measurements of cAMP [135][136][137][138] and cGMP 139,140 in living cells, including cardiac myocytes. [START_REF] Mongillo | Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases[END_REF][START_REF] Takimoto | cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism[END_REF]119,141,142 A third type of approach is based on the use of recombinant cyclic nucleotide-gated channel (CNG) channels as cyclic nucleotide biosensors. The methodology was developed in a series of elegant studies in model cell lines for the measurement of intracellular cAMP. 115,143,143,144 This method uses wild-type or genetically modified  subunits of rat olfactory CNG channel (CNGA2) which form a cationic channel directly opened by cyclic nucleotides. Adult cardiac myocytes infected with an adenovirus encoding the native or modified channels elicit a non-selective cation current when, respectively, cGMP 145 or cAMP concentration 146,147 rises beneath the sarcolemmal membrane.

Role of PDEs in cyclic nucleotide compartmentation

Probably the first evidence for a contribution of PDEs to intracellular cyclic nucleotide compartmentation comes from a study in guinea pig perfused hearts. 148 In that study, ISO was shown to significantly increase intracellular cAMP, cardiac contraction and relaxation, as well as phosphorylation of PLB and TnI, while the non-selective PDE inhibitor IBMX or the PDE3 inhibitor, milrinone, enhanced contraction and relaxation but had little or no effect on phosphorylation of PLB and TnI, despite a relatively large increase in tissue cAMP level. 148 These results were attributed to a functional cellular compartmentation of cAMP and PKA substrates due to a different expression of PDEs at the membrane and in the cytosol. 149 Many subsequent studies have examined the degree of accumulation of cAMP or activation of cAMP dependent phosphorylation in particulate and soluble fractions of cardiac myocytes. In an elegant such study performed in canine ventricular myocytes, Hohl and Li (1991) demonstrated that cytosolic and particulate pools of cAMP are differently affected by various treatments designed to raise intracellular cAMP. 150 These authors have demonstrated that about 45% of the total cAMP is found in the particulate fraction in response to ISO but this fraction declined to <20% when IBMX was added to ISO, although total cAMP still increased approximately 3-fold. This suggests that cAMP-specific PDE activity resides predominantly in the cytosolic compartment and is responsible for the particulate cAMP microdomains generation that cause Ca 2+ mobilization and cardiac inotropic state through particulate PKA activation and phosphorylation of membrane and contractile proteins. Even if the cell is able to generate and accumulate cAMP that exceeds what is needed for a maximal physiologic response under PDE inhibition and forskolin stimulation, only particulate cAMP content determines the physiological response. These results show that PDEs maintain the specificity of the β-adrenergic response by limiting the amount of cAMP diffusing from membrane to cytosol.

These biochemical data are in full agreement with functional studies in frog ventricular myocytes where the effect of a local application of ISO on ICa,L was tested in the presence or absence of IBMX. 116 While the ICa,L response to ISO was much higher at the side of ISO application than in the non-exposed part of the cell, complete PDE inhibition in the presence of ISO released the cAMP signal to activate LTCCs in the remote part of the cell.

Thus, these results suggest that PDE activity contributes to generate cAMP microdomains involved in the β-adrenergic stimulation of Ca 2+ channels. A recent study using recombinant CNG channels demonstrates that this also applies to other Gs-coupled receptors (1-AR, 2-AR, PGE1-R, Glu-R), with a specific pattern of PDE activity determining the specificity of the cAMP signals generated by each receptor (Fig. 3). 147 For instance, cAMP elicited by 1-AR is regulated by PDE3 and by PDE4 while cAMP signal generated by Glu-R is exclusively regulated by PDE4. In mouse neonatal cardiomyocytes, PDE4D was shown to selectively impact cAMP signaling by β2-AR, while having little or no effect on β1-AR signaling. 151 Indeed, while β2-AR activation leads to an increase in cAMP production, the cAMP generated does not have access to the PKA-dependent signaling pathways by which the β1-AR regulates the contraction rate, unless PDE4D is inhibited or its gene has been invalidated. 151 (Figure 3 

PDE2

Cyclic GMP stimulated PDE (PDE2) hydrolyses both cAMP and cGMP with low affinity. A single PDE2 variant, PDE2A, is expressed in cardiac tissues and in isolated cardiomyocytes of several species, including rat, bovine and human. [152][153][154] PDE2 is found both in the cytosol and associated to functional membrane structures (plasma membrane, SR, Golgi, nuclear envelope). [START_REF] Lugnier | Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents[END_REF] Although PDE2 activity is relatively small compared to other cardiac PDEs, such as PDE3 and PDE4, its presence at the plasma membrane contributes to regulate the activity of cardiac LTCCs when cGMP level is increased. [START_REF] Fischmeister | Species-and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels[END_REF] This was first demonstrated in frog ventricular myocytes dialyzed with cAMP and cGMP, where PDE2 is able to hydrolyze cAMP and hence reduce ICa,L upon application of cGMP, even when >5 µM cAMP is continuously dialyzed inside the cell via the patch pipette. 155,156 Increased knowledge of the contribution of PDE2 to cardiac function has accumulated after the demonstration that the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) behaves as a selective PDE2 inhibitor. [START_REF] Méry | Erythro-9-(2-hydroxy-3nonyl)adenine inhibits cyclic GMP-stimulated phosphodiesterase in isolated cardiac myocytes[END_REF]157 EHNA reverses the inhibitory effect of high concentrations of cGMP or NO-donors on ICa,L in frog ventricular [START_REF] Méry | Erythro-9-(2-hydroxy-3nonyl)adenine inhibits cyclic GMP-stimulated phosphodiesterase in isolated cardiac myocytes[END_REF]158 and human atrial myocytes. 159,160 EHNA alone stimulates basal ICa,L in isolated human atrial myocytes, 161 indicating a possible role of basal guanylyl cyclase activity in these cells.

The role of PDE2 in cyclic nucleotide compartmentation was first examined in frog cardiac myocytes, using the double-barreled microperfusion technique and local applications of NO-donors and/or EHNA on ICa,L stimulated by ISO. 158 The results of that study demonstrated that local stimulation of soluble guanylyl cyclase by NO leads to a strong local depletion of cAMP near the LTCCs due to activation of PDE2, but only to a modest reduction of cAMP in the rest of the cell. This may be explained by the existence of a tight microdomain between β-ARs, LTCC and PDE2 (Fig. 2). 158 A similar conclusion was reached recently in rat neonatal cardiomyocytes, using the FRET-based imaging technique. 142 PDE2 is not only involved in the control of subsarcolemmal cAMP concentration, but also controls the concentration of cGMP in that compartment. Indeed, a recent study performed in adult rat ventricular myocytes using the CNG technique compared the effects of activators of pGC (using ANP or BNP) and sGC (using NO-donors) on subsarcolemmal cGMP signals, and the contribution of PDE isoforms to these signals. 145 The main result of that study is that the 'particulate' cGMP pool is readily accessible at the plasma membrane, while the 'soluble' pool is not, and that the 'particulate' pool is under the exclusive control of PDE2 (Fig. 2). 145 Therefore, differential spatiotemporal distributions of cGMP may contribute to the specific effects of natriuretic peptides and NO-donors on cardiac function.

PDE3

Cyclic GMP inhibition of PDE3 can lead to cAMP increase and to activation of cardiac function. 162 This mechanism accounts for the stimulatory effect of low concentrations of NOdonors or cGMP on ICa,L un human atrial myocytes. 159,160 However, a recent study performed in perfused beating rabbit atria demonstrated that, depending on whether cGMP is produced by pGC or sGC, the effects on cAMP levels, atrial dynamics, and myocyte ANP release are different, although in both cases the effects are due to PDE3 inhibition. [START_REF] Wen | High and low gain switches for regulation of cAMP efflux concentration: distinct roles for particulate GC-and soluble GC-cGMP-PDE3 signaling in rabbit atria[END_REF] These results suggest that cGMP-PDE3-cAMP signaling produced by pGC and sGC is compartmentalized. [START_REF] Wen | High and low gain switches for regulation of cAMP efflux concentration: distinct roles for particulate GC-and soluble GC-cGMP-PDE3 signaling in rabbit atria[END_REF] The role of PDE3 in cyclic nucleotide compartmentation likely depends on its intracellular distribution. PDE3 is present in both cytosolic and membrane fractions of cardiac myocytes, with important species and tissue differences. [START_REF] Lugnier | Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents[END_REF]163 For instance, in dog heart, all PDE3 activity revealed in the membrane fraction appears to be associated with the SR membrane. 164 Inhibition of PDE3 under such condition could lead to localized increases in cAMP and PKA pools leading to increased PLB phosphorylation (Fig. 2).

Three isoforms of PDE3 have been identified in human myocardium. [START_REF] Wechsler | Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes[END_REF] They appear to be generated from PDE3A gene and localize to different intracellular compartments: PDE3A-136 is present exclusively in microsomal fractions while PDE3A-118 and PDE3A-94 are both present in microsomal and cytosolic fractions. 165 The presence of different PDE3A isoforms in cytosolic and microsomal fractions of cardiac myocytes is especially interesting in view of the facts that cAMP metabolism in these compartments can be regulated in an independent manner and that changes in cAMP content in these compartments correlate with changes of different physiologic parameters, such as intracellular Ca 2+ homeostasis and contractility. 110,166 These observations are relevant in a physiological context since competitive inhibitors of PDE3 confer short term haemodynamic benefits but adversely affect long term survival in dilated cardiomyopathy. 167,168 This biphasic response is likely to result from an increase in the phosphorylation of a large number of PKA substrates, some of which may contribute to the beneficial effects (phosphorylation of PLB) whereas others contribute to the adverse effects (phosphorylation of LTCC, RyR2 and CREB). If one would suppose that different isoforms regulate different proteins in response to different signals, logically agents capable of selectively activating or inhibiting individual PDE3A isoforms may have advantages over currently available nonselective PDE3 inhibitors in therapeutic applications.

For instance, an agent that selectively inhibits SR-associated PDE3A-136 might preserve intracellular Ca 2+ cycling and contractility in patients taking β-AR antagonists, without concomitant arrhythmogenic effects. [START_REF] Wechsler | Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes[END_REF]168 Another mechanism that may participate in the detrimental effect of PDE3 inhibitors on cardiac function is apoptosis. 169 PDE3A is down-regulated in heart failure, 170 and this leads to the induction of the pro-apoptotic transcriptional repressor ICER in a CREB-dependent manner (Fig. 2). 169 Elevated ICER represses antiapoptotic proteins such as Bcl-2 and the PDE3A gene itself, thus creating a positive feedback loop that maintains reduced PDE3A levels and elevated ICER levels. 171 Interestingly, PDE4 inhibition does not modulate CREB and ICER, and is not proapoptotic, thus providing another example of cAMP compartmentation in cardiomyocytes. 169 In addition to PDE3A, cardiac myocytes also express a PDE3B isoform, at least in mouse. [START_REF] Patrucco | PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects[END_REF] Of particular interest is the finding that this isoform forms a complex at the cardiac sarcolemmal membrane with the G protein-coupled, receptor-activated phosphoinositide 3kinase γ (PI3Kγ) (Fig. 2). [START_REF] Patrucco | PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects[END_REF] Ablation of PI3Kγ in mice (PI3Kγ -/-) induces an exacerbated heart failure in response to aortic constriction which appears to be due to a PDE3B inhibition and to an excess of cAMP. But mice carrying a targeted mutation in the PI3Kγ gene causing loss of kinase activity (PI3Kγ KD/KD ) exhibit normal cardiac contractility associated with normal cAMP levels after aortic stenosis compared to PI3Kγ -/-. Therefore, PI3Kγ does not activate PDE3B via its kinase activity, but rather serves as an anchoring protein, which recruits PDE3B into a membrane compartment where cAMP homeostasis shapes the chronic sympathetic drive. 73

PDE4

The PDE4 family is encoded by 4 genes (A, B, C and D) that generate approximately 20 different isoforms, each of which is characterized by a unique N-terminal region. 172,173 Transcripts for PDE4A, PDE4B and PDE4D isoforms were found in rat heart. [START_REF] Kostic | Altered expression of PDE1 and PDE4 cyclic nucleotide phosphodiesterase isoforms in 7-oxo-prostacyclin-preconditioned rat heart[END_REF][START_REF] Mongillo | Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases[END_REF][START_REF] Richter | Splice variants of the cyclic nucleotide phosphodiesterase PDE4D are differentially expressed and regulated in rat tissue[END_REF]154 In the PDE4D family, mRNA for PDE4D1, PDE4D2, PDE4D3, PDE4D5, PDE4D7, PDE4D8 and PDE4D9 is present in rat heart [START_REF] Kostic | Altered expression of PDE1 and PDE4 cyclic nucleotide phosphodiesterase isoforms in 7-oxo-prostacyclin-preconditioned rat heart[END_REF][START_REF] Richter | Splice variants of the cyclic nucleotide phosphodiesterase PDE4D are differentially expressed and regulated in rat tissue[END_REF] but only PDE4D3, PDE4D5, PDE4D8 and PDE4D9 are expressed as proteins and active enzymes. [START_REF] Richter | Splice variants of the cyclic nucleotide phosphodiesterase PDE4D are differentially expressed and regulated in rat tissue[END_REF] An emerging theme in PDE4 action is that individual isoforms appear to be restricted to defined intracellular microenvironments thus regulating particular sets of intracellular processes (Fig. 2). [START_REF] Dodge-Kafka | Compartmentation of cyclic nucleotide signaling in the heart: the role of A-kinase anchoring proteins[END_REF][173][174][175] Compartmentation of PDE4 isoforms is mediated by their unique N terminal domains which provide the 'postcode' for cellular localization. [START_REF] Baillie | Arrestin times for compartmentalised cAMP signalling and phosphodiesterase-4 enzymes[END_REF] For instance, PDE4A1 contains a lipid binding domain, TAPAS, with specificity for phosphatidic acid that serves to target this PDE to specific cellular membranes. 176 In the heart, PDE4D3 is targeted to sarcomeric region of cardiomyocytes through binding to an anchor protein called myomegalin, 177 and to the perinuclear region through binding to muscle AKAP (mAKAP). 178 This latter complex is interesting because mAKAP not only binds PKA and PDE4D3, but also Epac1 and ERK5 kinase. 179 The three functionally distinct cAMP-dependent enzymes contained in this macromolecular complex (PKA, PDE4D3 and Epac1) respond to cAMP in different ranges of concentrations: PKA responds to nanomolar concentrations and would become activated early; PDE4D3 (Km 1-4 µM) and Epac1 (Kd 4 µM) would become activated once cAMP concentrations reached micromolar levels. Conversely, inactivation of PDE4D3 and Epac1 would precede PKA holoenzyme reformation as cAMP levels decline. 179 Besides, phosphorylation of PDE4D3 by PKA on Ser54 enhances its activity [START_REF] Richter | Splice variants of the cyclic nucleotide phosphodiesterase PDE4D are differentially expressed and regulated in rat tissue[END_REF]173 and on Ser13 increases its affinity to mAKAP, 180 while phosphorylation by ERK5 on Ser579 suppresses its activity. 179 Therefore, when Epac1 is activated by cAMP, it mobilizes Rap1 which suppresses ERK5 activation and relieves the inhibition of PDE4D3. With such fine tuning, this complex provides spatial control of PKA signaling by mAKAP anchoring and temporal control and termination of the cAMP signaling event by PDE activity in the immediate vicinity. 174,178 This compartment of cAMP signaling in the perinuclear region may control the release of C subunit into the nucleus 178,181 and hence gene regulation. 174 The same PDE4D3 was also found recently to be an integral component of the RyR2/Ca 2+ -release channel complex at the SR membrane (Fig. 2). 182 In addition to RyR2 and PDE4D3, this complex is composed of mAKAP, PKA, FKBP12.6 (calstabin2, a negative modulator or channel-stabilizing subunit of RyR2), and the protein phosphatases PP1 and PP2A. 183,184 PKA phosphorylation of Ser2809 on RyR2 increases the open probability of the Ca 2+ -release channel and decreases the binding affinity for the channel-stabilizing subunit calstabin2, contributing to SR Ca 2+ store depletion. 184 Of particular interest is the observation that heart failure in patients and animal models is accompanied by PKA hyperphosphorylation of RyR2 which makes RyR2 channels "leaky", hence promoting cardiac dysfunction and arrhythmias. 184 Two sets of evidence indicate that this is due to a reduction in PDE4D3 activity in the RyR2 complex: 182 first, PDE4D3 levels in the RyR2 complex appear reduced in failing human hearts 182 ; second, genetic inactivation of PDE4D in mice is associated with a cardiac phenotype comprised of a progressive, age-related cardiomyopathy and exerciseinduced arrhythmias, despite normal global cAMP signaling. 182 These results emphasize the importance of cAMP signaling microdomains and point to the intriguing possibility that deregulation of specific compartments may lead to a disease state.

A final example of a complex around a PDE4 isoform in heart is the one formed by PDE4D5 and β-arrestins (Fig. 2). 185 β-arrestins are scaffold proteins that initiate desensitization of β2-AR (as well as several other G-protein-coupled receptors) by translocating from the cytosol to the plasma membrane where they directly bind the activated receptors. Recent studies have shown that β-arrestins can form stable complexes with all four PDE4 subfamilies in cytosol 185 but that PDE4D5 possesses a unique amino-terminal region that confers preferential interaction with β-arrestins. [START_REF] Baillie | Arrestin times for compartmentalised cAMP signalling and phosphodiesterase-4 enzymes[END_REF]175,186,187 The specific role of this PD4D5/β-arrestin interaction in the β2-AR signaling cascade comes from a unique feature of this particular receptor which can couple to both Gs and Gi. 188 Upon agonist challenge, β2-AR couples to Gs that activates AC, thereby elevating local cAMP concentration and activating membrane PKA anchored to AKAP-79. 187 PKA in turn phosphorylates the β2-AR which triggers a shift in its coupling from Gs to Gi, hence activating ERK through a Src-regulated pathway. 189 Therefore, recruitment by the activated β2-AR of the PD4D5/β-arrestin puts a brake in the PKA phosphorylation of the receptor, and prevents its shift to Gi-signaling cascade; conversely, disruption of this complex enhances PKA phosphorylation of the β2-AR, leading to a dramatic change in its function. 189,190 

PDE5

PDE5 is highly expressed in vascular smooth muscle, and its inhibition is a primary target for the treatment of erectile dysfunction and pulmonary hypertension. [START_REF] Rybalkin | Cyclic GMP phosphodiesterases and regulation of smooth muscle function[END_REF]191 Although the contribution of PDE5 to the regulation of cardiac function is a matter of debate, [START_REF] Maurice | Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system[END_REF][START_REF] Semigran | Type 5 phosphodiesterase inhibition: the focus shifts to the heart[END_REF]192 there is evidence for PDE5 expression in cardiac myocytes, both at the mRNA 193 and protein level. [START_REF] Senzaki | Cardiac phosphodiesterase 5 (cGMP-specific) modulates ßadrenergic signaling in vivo and is down-regulated in heart failure[END_REF][START_REF] Takimoto | cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism[END_REF] Recently, PDE5 inhibition using sildenafil (Viagra®) was shown to decrease the βadrenergic-stimulation of cardiac systolic and diastolic function in dog, [START_REF] Senzaki | Cardiac phosphodiesterase 5 (cGMP-specific) modulates ßadrenergic signaling in vivo and is down-regulated in heart failure[END_REF] mouse, [START_REF] Takimoto | cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism[END_REF] and human [START_REF] Semigran | Type 5 phosphodiesterase inhibition: the focus shifts to the heart[END_REF]194 as well as the β-stimulation of ICa,L in guinea pig ventricular myocytes. 195 In mouse ventricular myocytes, sildenafil was shown to inhibit apoptosis 196 and to reduce infarct size following ischemia/reperfusion in the myocardium. 197 Moreover, chronic exposure to sildenafil was found to prevent and reverse cardiac hypertrophy in mouse hearts exposed to sustained pressure overload. 198 Most recently, PDE5 was also shown to contribute to intracellular cGMP compartmentation in cardiac myocytes (Fig. 2). 145 Indeed, using the recombinant CNG channel approach to measure subsarcolemmal cGMP concentration in adult rat ventricular myocytes, sildenafil produced a dose-dependent increase of the CNG current activated by NO-donors but had no effect on the current elicited by ANP. Therefore, PDE5 exerts a specific spatiotemporal control on the pool of intracellular cGMP synthesized by sGC, but not that generated by pGC which, as discussed above, is under the exclusive control of PDE2. 145 This could be either because PDE5 is more closely compartmentalized with sGC than pGC (Fig. 2), or because PKG, which activates PDE5, [START_REF] Rybalkin | Cyclic GMP phosphodiesterases and regulation of smooth muscle function[END_REF] is compartmentalized with sGC but not pGC. Therefore, differential spatiotemporal distributions of cGMP may contribute to the specific effects of NPs and NO-donors on cardiac function. [START_REF] Méry | Nitric oxide regulates cardiac Ca 2+ current -Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation[END_REF] Inasmuch as these results apply to vascular smooth muscle, they may help to explain why sildenafil and other PDE5 inhibitors are contraindicated in men who use nitrate medications. [START_REF] Gisbert | Atrial natriuretic factor regulates the calcium current in frog isolated cardiac cells[END_REF][START_REF] Wen | High and low gain switches for regulation of cAMP efflux concentration: distinct roles for particulate GC-and soluble GC-cGMP-PDE3 signaling in rabbit atria[END_REF][START_REF] Su | Differential effects of cGMP produced by soluble and particulate guanylyl cyclase on mouse ventricular myocytes[END_REF]199,200 

Cooperative role of PDE isoforms

In many examples, more than one PDE isoform is involved in controlling the cAMP or cGMP concentration at any given intracellular location inside a cardiomyocyte. For instance, in the case of cGMP, both PDE2 and PDE5 were found to control the subsarcolemmal concentration of cGMP upon activation of sGC by NO-donors in rat cardiomyocytes as demonstrated by selective inhibition of each PDE isoform. Indeed, EHNA or sildenafil used alone raised subsarcolemmal cGMP to a lower level as when the two inhibitors were applied together or when both PDEs were blocked by IBMX. 145 Similarly, the activity of cardiac LTCCs or the force of contraction is affected by the hydrolytic activity of several PDEs, since inhibition of a single PDE isoform is insufficient to raise cAMP level enough to activate these parameters. 154,201,202 Real time measurements of cAMP in isolated cardiomyocytes using either the FRET-based or the recombinant CNG channel method have shown that PDE4 and to a lesser extent PDE3 regulate the amplitude of cAMP response upon a β-adrenergic stimulation. [START_REF] Mongillo | Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases[END_REF]146 The more prominent role of PDE4 vs. PDE3 families may partly result from a larger stimulatory effect of PKA phosphorylation on the former providing a faster negative feedback regulation on cAMP concentration (Fig. 1). [START_REF] Lugnier | Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents[END_REF][START_REF] Maurice | Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system[END_REF][START_REF] Mongillo | Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases[END_REF]146,203,204 Indeed, blockade of PKA strongly increased the cAMP signal at the membrane upon β-AR stimulation of adult rat ventricular myocytes. 146

Restore cyclic nucleotide compartments in heart failure? Act locally, think globally

While an acute stimulation of the cAMP pathway is beneficial for the heart, a sustained activation, as occurs for instance in transgenic mice with cardiac overexpression of β1-ARs 205 , Gs 206 or PKA, 207 leads to hypertrophic growth, ventricular dysfunction and, ultimately, to heart failure. 168,208 A similar situation is found in different forms of human chronic heart failure, which are all associated with elevated catecholamines. 184,209,210 A possible explanation for the 'good' acute and 'bad' chronic effects of cAMP may reside in the capacity of the cell to maintain proper cAMP signaling microdomains. That capacity may be overwhelmed in a chronic setting, resulting in a global and deleterious rise in cAMP.

Can we thus imagine restoring cAMP compartments and rescuing or preventing the 'bad' outcomes of cAMP elevation, for instance via local and isoform-specific PDE activation?

Recent studies performed on a transgenic mouse line (AC8TG) provide some support for this paradigm. In this animal model, the human neuronal type 8 adenylyl cyclase (AC8) protein was specifically expressed in cardiomyocytes, leading to a 7-and 4-fold increase in total AC and PKA activity, respectively. 211 Unlike the endogenous cardiac AC5 and AC6 isoforms which are inhibited by Ca 2+ , AC8 is activated by Ca 2+ /calmodulin. 212 Therefore, one would expect that at each heart beat, Ca 2+ influx through LTCCs or Ca 2+ release via RyR2 would activate AC8, hence creating a positive feedback via PKA on both ICa,L and RyR2 which might cause a detrimental Ca 2+ overload. Yet, AC8TG mice show no sign of hypertrophy or cardiomyopathy at up to 3-months of age. 211,213 When examined at the organ level, isolated perfused hearts from AC8TG mice show an increased heart rate, larger amplitude of contraction, faster kinetics of contraction and relaxation as compared to non-transgenic (NTG) mice. 213 At the single cell level, myocytes from AC8TG hearts contract faster and stronger, develop larger and faster Ca 2+ -transients, which represent the hallmarks of an improved SR function. 213 Therefore, cardiomyocytes from AC8TG mice respond positively to the enhanced cAMP synthesis by an improved SR function, similarly to an acute β-adrenergic stimulation. But why do the myocytes not develop Ca 2+ overload as would be expected from the continuous stimulation of the cAMP/PKA pathway? Patch-clamp experiments revealed that basal ICa,L amplitude was not different in ventricular myocytes isolated from AC8TG and NTG hearts, indicating that LTCCs in AC8TG mice were protected from the large amount of cAMP generated by AC8. 213 Surprisingly, upon PDE inhibition by IBMX, a 2-fold larger increase in ICa,L was observed in AC8TG vs. NTG hearts, indicating that cardiac expression of AC8 is accompanied by a strong compartmentation of the cAMP signal due to PDE activity that shields LTCCs and protects the cardiomyocytes from Ca 2+ overload. 213 Additional biochemical experiments confirmed an increase in cAMP-PDE activity and a rearrangement of PDE isoforms in AC8TG vs. NTG hearts. 214 Therefore, through enhanced PDE activity and compartmentation, the AC8TG mouse model provides a nice example where chronic activation of cAMP pathway only makes the good, not the evil. As discussed above, another such example can be found in animal models with a cardiac-directed overexpression of AC6. [36][37][START_REF] Lai | Intracoronary adenovirus encoding adenylyl cyclase VI increases left ventricular function in heart failure[END_REF][START_REF] Tang | Adenylyl cyclase type VI corrects cardiac sarcoplasmic reticulum calcium uptake defects in cardiomyopathy[END_REF] The concept that cardiac cAMP signaling can produce both 'good' and 'bad' effects depending on where within the cell it is being activated is certainly relevant to all forms of heart failure (HF), where major alterations in cAMP signaling occur. The evidences reviewed here demonstrate that physiologic cAMP and cGMP signaling is confined in specific subcellular domains due to local activities of specific PDEs. We believe that the 'good' outcomes, at least for cAMP, require a strict localized control of the cyclic nucleotide signaling, leading to activation of only a limited number of substrates; the 'bad' outcomes occur when compartments are disorganized, a situation likely to exist during the morphological rearrangements that accompany hypertrophy and HF. Therefore, an in-depth analysis of cyclic nucleotide signaling in pathologic hypertrophy and heart failure may 

  near here) The use of selective inhibitors of the dominant cardiac PDE isoforms has allowed to evaluate the contribution of four different PDE families in the compartmentation of cAMP and cGMP pathways in cardiac myocytes: PDE2, PDE3, PDE4 and PDE5. Coimmunoprecipitation experiments have further demonstrated that macromolecular complexes exist at different locations within a cardiac myocyte that include PDE3 and PDE4 isoforms, forming local signaling microdomains (Figs. 2 & 3). The role of each individual PDE family in these microdomains is reviewed below.
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