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ABSTRACT

Context. Type-II migration of giant planets has a speed proportional to the disc’s viscosity for values of the α viscosity parameter
larger than 10−4. Previous studies based on two-dimensional simulations, have shown that, at even lower viscosities, migration can be
very chaotic and is often characterised by phases of fast migration. The reason is that vortices appear in low-viscosity discs due to the
Rossby-wave instability at the edges of the gap opened by the planet. Migration is then determined by vortex-planet interactions.
Aims. Our goal is to study giant planet migration in low-viscosity discs with 3D simulations. In 3D, vortices are more complex than
the simple vertical extension of their 2D counterparts; their impact on planet migration is therefore not obvious.
Methods. We performed numerical simulations using two grid-based codes: FARGOCA for three-dimensional simulations and
FARGO-ADSG for the two dimensional case. Two-dimensional simulations were used mainly for preliminary tests to check the impact
of self-gravity on vortex formation and on vortex-disc dynamics. After selecting disc masses for which self-gravity is not important at
the planet location, three-dimensional simulations without self-gravity can be safely used. We have considered an adiabatic equation of
state with exponential damping of temperature perturbations in order to avoid the development of the vertical shear instability. In our
nominal simulation, we set α = 0 so that only numerical viscosity is present. We then performed simulations with non-zero α values
to assess the threshold of prescribed viscosity below which the new migration processes appear.
Results. We show that for α . 10−5 two migration modes are possible, which differ from classical Type-II migration in the sense that
they are not proportional to the disc’s viscosity. The first occurs when the gap opened by the planet is not very deep. This occurs in 3D
simulations and/or when a big vortex forms at the outer edge of the planetary gap, diffusing material into the gap. The de-saturation
of co-orbital and co-rotation resonances keeps the planet’s eccentricity low. Inward planet migration then occurs as long as the disc
can refill the gap left behind by the migrating planet, either due to diffusion caused by the presence of the vortex or to the inward
migration of the vortex itself due to its interaction with the disc. We call this type of migration ‘vortex-driven migration’, which differs
from ‘vortex-induced’ migration described in Lin & Papaloizou (2010, MNRAS, 405, 1473, and 2011a, MNRAS, 415, 1445) . This
migration is very slow and cannot continue indefinitely because eventually the vortex dissolves. The second migration mode occurs
when the gap is deep so that the planet’s eccentricity grows to a value e ∼ 0.2 due to inefficient eccentricity damping by co-rotation
resonances. Once the planet is on an eccentric orbit, gas can pass through the gap and planet migration unlocks from the disc’s viscous
evolution. This second, faster migration mode appears to be typical of two-dimensional models in discs with slower damping of tem-
perature perturbations.
Conclusions. Vortex-driven migration in low-viscosity discs can be very slow and eventually reverses and stops, offering an interest-
ing mechanism to explain the existence of the cold-Jupiter population, even if these planets originally started growing at the disc’s
snowline.

Key words. methods: numerical – planets and satellites: dynamical evolution and stability – protoplanetary disks –
planet-disk interactions

1. Introduction

The origins of giant planets remain elusive. Radial velocity sur-
veys have found giant planets to exist around roughly 10% of
Sun-like stars (Mayor et al. 2011; Cumming et al. 2008). How-
ever, only ∼1% of Sun-like stars have hot Jupiters on very
short-period orbits (Howard et al. 2010). Very few stars have
warm Jupiters with orbital radii as large as 0.5–1 au (Butler et al.
2006; Udry et al. 2007). Instead, when considering the unbiased
distribution, most giant planets are found between 1 and several
au (Butler et al. 2006; Udry et al. 2007; Cumming et al. 2008;
Howard et al. 2010; Mayor et al. 2011), while there are hints
that their number decreases again farther out (Mayor et al. 2011;
Fernandes et al. 2019). In our Solar System, of course, there are

no giant planets within 5 au from the Sun, although Jupiter may
have been at ∼2 au in the past (Walsh et al. 2011). The prefer-
ence for giant planets to orbit relatively far from the parent star,
in contrast to super-Earths for example, is puzzling because giant
planets must have formed in the presence of gas in the protoplan-
etary disc and, consequently, they should have migrated towards
the central star due to planet-disc interactions.

Giant planet migration, also known as Type-II migration, has
been extensively studied in the literature since the pioneering
work by Lin & Papaloizou (1986). In essence, a giant planet
opens a gap in the gas around its orbit. Any migration of the
planet has to occur in concert with the readjustment of the gas in
the disc for the gap to migrate together with the planet. In a vis-
cous accretion disc, this can happen only on a viscous timescale.
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Hence Type-II migration is expected to be inwards, with a radial
speed of the order of vr ∼ 1.5ν/r, where ν is the viscosity, that
is to say, with the same radial speed at which the gas viscously
accretes towards the central star (Ward 1997). Young stars typi-
cally accrete gas at a rate of ∼10−8M� y−1 – with a large, order
of magnitude scatter around this value (Hartmann et al. 1998;
Manara et al. 2016) – for a density of gas in the disc at 1 au
comparable to that of the Minimum Mass Solar Nebula model
(2 × 10−4M� au−2; Weidenschilling 1977; Hayashi 1981); this
implies a radial speed of ∼8 au My−1. This means that, at Type-II
migration speeds in viscous discs, giant planets should move
towards their host stars on timescales much shorter than disc life-
times. If this were true, the presence of giant planets at several au
from the parent star would require these planets to have formed
very far away (i.e. beyond ∼20 au) and/or quite late in the history
of the protoplanetary disc (Coleman & Nelson 2014; Bitsch et al.
2015).

However, this simple solution is not without problems. The
sweet spot for the rapid formation of massive cores capable
of accreting gas and becoming giant planets is the snowline
(Schoonenberg & Ormel 2017; Drążkowska & Alibert 2017). If
the giant planets we observe today orbiting beyond 1 au formed
at distances ≥20 au, where are the planets that should have
formed faster and in larger numbers near the snowline? A pop-
ular idea was that these planets have fallen onto the central star
and the planets that we observe now are the last of the Mohi-
cans (Lin 1997; Laughlin & Adams 1997). Today this idea has
been mostly discarded because of the pile-up of extrasolar plan-
ets on orbits with periods of 3–10 days, and modern models of
interactions between stellar magnetospheres and protoplanetary
discs (Matt & Pudritz 2005; Mohanty & Shu 2008; Adams 2012)
suggest that discs are truncated at a few 10−2 au, which should
prevent planet migration continuing all the way to the stellar
surface.

If the giant planets we observe formed at the snowline, they
must have migrated only a few astronomical units during the
lifetime of the disc. Because the rate of Type-II migration is in
principle proportional to the disc viscosity, this may suggest very
low viscosities in protoplanetary discs. This idea is supported
by modern studies on turbulent viscosity in discs. Turbulence
was originally expected to arise from the magneto-rotational
instability (MRI; Balbus & Hawley 1991). However, it was later
understood that the ionisation of the gas near the midplane of
the disc is too weak to sustain the MRI (Gammie 1996; Stone
et al. 1996), introducing the concept of the dead zone. Even
more recently, the inclusion of non-ideal MHD effects, such
as ambipolar diffusion, led to the conclusion that the coupling
between the magnetic field and the gas should not make the disc
turbulent even at its surface (see Turner et al. (2014) for a review).
Another often considered source of turbulence, the vertical shear
instability (VSI hereafter; Nelson et al. 2013; Stoll & Kley 2014)
should also not be active at the disc midplane within a few astro-
nomical units from the star because the disc’s cooling rates are
too slow (however, see Pfeil & Klahr 2020 for a different view).
Thus, the idea of formation and migration of giant planets in low
viscosity discs may be appealing.

Unfortunately, the dependence of Type-II migration on vis-
cosity in the limit of small viscosity is far from clear. Duffell
et al. (2014) claimed that the paradigm of Type-II migration is
flawed because the gas can pass through the planet’s orbit, from
one side of the gap to the other, so that the planet is not locked
in the viscous evolution of the disc. For this reason, the planet’s
migration speed can be different from −1.5ν/r where ν is the vis-
cosity. Dürmann & Kley (2015) confirmed this result, but Robert

et al. (2018) showed that the passage of gas through the gap
is inhibited at small viscosity because the gap is much larger
than the planet’s horseshoe region; consequently the planet’s
migration rate remains proportional to ν although not necessarily
equal to −1.5ν/r. However, all these studies have been performed
using two-dimensional simulations and, more importantly, have
considered viscosities that were not very small for numerical
reasons. Adopting the usual prescription ν = αh2Ω (Shakura &
Sunyaev 1973), where h is the pressure scale-height of the disc
and Ω is the orbital frequency, the viscosities considered in these
works corresponded to α > 10−4. For these values of α, Type-II
migration, even if proportional to ν, is still too fast to explain the
current location of most giant planets, if these planets formed at
the snowline. At face value, α should be ∼10−5 for Type-II migra-
tion to be slow enough, if the proportionality between migration
speed and α (or ν) holds also for such a low viscosity.

Attempts to simulate planet migration in inviscid discs have
led to very chaotic and erratic planetary evolutions, often charac-
terized by phases of very fast migration (Lin & Papaloizou 2010,
2011a; McNally et al. 2019). The reason is that in low viscos-
ity discs with embedded giant planets large scale vortices can
appear due to edge instabilities of planetary gaps and Rossby
wave instabilities at pressure bumps (Lovelace et al. 1999; Koller
et al. 2003; Lin & Papaloizou 2010). The interaction of the planet
with a vortex can lead to several effects. For instance, the pas-
sage of the vortex from one side of the gap to the other can
accelerate the planet’s migration in the opposite direction (called
‘vortex-induced’ migration in Lin & Papaloizou 2010). A further
complication is that gap-opening planets in inviscid discs may
undergo eccentricity growth because of (i) their interaction with
the vortices and (ii) the saturation of co-rotation resonances that
are normally responsible for damping eccentricity (Goldreich
& Tremaine 1980; Goldreich & Sari 2003); in turn the planet
eccentricity can have a strong feedback on planet migration.

However, it has been shown that the formation and evolu-
tion of vortices depends sensitively on the simulation set-up. In
2D simulations, Zhu & Baruteau (2016) showed that vortices
generated by the Rossby wave instability are less pronounced
if the self-gravity of the disc is taken into account. Using two-
dimensional (2D hereafter) models Lin & Papaloizou (2011a,b)
showed that, when considering self-gravity in discs with suit-
able mass, the vortex-induced migration observed in Lin &
Papaloizou (2010) is considerably delayed. In three-dimensional
(3D hereafter) models, vortices are more complex than the ver-
tical extension of their 2D counterparts (Barranco & Marcus
2005; Meheut et al. 2010). Thus the interplay between planets
and vortices and the effects of this interplay on migration are far
from clear.

In this context, the goal of this paper is to provide a compre-
hensive exploration of giant planet migration in low-viscosity
discs. We approach this problem with a suite of 2D simulations
with and without disc self-gravity and 3D simulations without
self-gravity. More specifically, after a brief presentation of our
physical models (Sect. 2) and of the simulation set-ups (Sect. 3),
we present in Sect. 4 the structure of an inviscid disc under the
effect of a Jupiter-mass planet kept on a fixed circular orbit at
5.2 au, with emphasis on the generation of vortices and their
evolution. Then, in Sect. 5 we investigate the planet migration in
inviscid discs using both 2D and 3D simulations. We also pro-
vide the range of validity of our results by finding the transition
to classical type II migration. We show in Sect. 6 that results
depend on the planet formation site. Numerical tests such as:
convergence with respect to resolution and gravitational smooth-
ing of the potential in the planet vicinity as well as a discussion
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of dependence of results on the choice of the equation of state
are discussed in the appendix. The conclusions and a global
discussion of the results are reported in Sect. 7.

In a subsequent paper, we will continue investigating giant
planet migration in low-viscosity 3D discs in two directions:
(i) taking into account self-gravity in 3D discs for the study of
migration of giant planets forming at large distances from the
star (∼20 au) (ii) modeling the effect of the radial advection of
gas in the disc due to angular momentum removal by magne-
tised disc winds (Bai & Stone 2013; Turner et al. 2014; Gressel
et al. 2015; Béthune et al. 2017). Advection is required in a real-
istic model of low viscosity discs to provide a mass flux to the
star comparable to the observed stellar accretion rates. The effect
of advection on giant planets migration will be the object of a
forthcoming paper. Nevertheless, a deep understanding of planet
migration in low-viscosity discs with no advection, as that devel-
oped in this paper, is required in order to understand giant planet
migration in a more realistic scenario.

2. Physical models

We briefly describe our 2D and 3D models in this section.

2.1. The 3D model

The protoplanetary disc is treated as a non self-gravitating gas
whose motion is described by the Navier-Stokes equations. We
use spherical coordinates (r, ϕ, θ) where r is the radial distance
from the star (which is at the origin of the coordinate system),
ϕ is the azimuthal coordinate measured from the x-axis and θ
the polar angle measured from the z-axis (the colatitude). The
midplane of the disc is located at the equator θ = π

2 . We work in
a coordinate system which rotates with angular velocity:

Ω0 =

√
GM?

rp(0)3

where M? is the mass of the central star, G is the gravitational
constant, and rp(0) is the initial distance to the star from a planet
of mass mp, assumed to be on a circular orbit. The gravitational
influence of the planet on the disk is modelled as in Kley et al.
(2009) using the full gravitational potential for disc elements
having distance d from the planet larger than a fraction ε of
the Hill radius, and a smoothed potential for disc elements with
d < ε.

We integrate the Navier-Stokes equations taking into account
indirect forces that account for the acceleration of the star by the
disc and planet (Masset 2002). As shown in Zhu & Baruteau
(2016), indirect forces have an impact on shaping vortices that is
proportional to the disc mass. We add an equation for the internal
energy e = ρcvT to the Navier-Stokes equations, where ρ and T
are the volume density and the temperature of the disc gas and
cvv is the specific heat at constant volume:

∂e
∂t

+ ∇ · (eu) = −p∇ · u − cvρ
T − T0

τc
, (1)

where τc is the cooling time and T0 is the initial tempera-
ture, defined as T0(r) = GM∗µh2

0/(Rgasr), with h0 being the disc
aspect ratio, µ the mean molecular weight (µ = 2.3 g mol−1 for a
standard solar mixture) and Rgas is the ideal-gas constant.

In short, we use an adiabatic EoS, on top of which we exert
an exponential damping of the temperature perturbations. We do

not use the simpler locally isothermal EoS in order to avoid disc
instabilities like the VSI. In the quoted paper it is shown that a
disc with an equation of state taking into account thermal relax-
ation like in Eq. (1) with suitable values of τc is not prone to
develop such an instability. According to the same paper we will
consider τc equal to 1 orbital period at the planet location. A self-
consistent simulation of the disc’s evolution indeed shows that
no significant VSI should develop at Jupiter’s distance (Ziampras
et al., in prep., but see Pfeil & Klahr 2020 for results with a dif-
ferent simulation set-up.). The results for different cooling times
are reported in Appendix A.2.

2.2. The 2D model

Two-dimensional models have been commonly used in the lit-
erature for studies of planetary migration. Evolution over long
timescales (up to hundreds of thousands of planetary orbits) is
possible at reasonable computational cost using 2D simulations,
which makes them useful for exploring long term behaviour. The
obvious disadvantage is that possible genuine 3D effects cannot
be observed.

In the two-dimensional model we solve the vertically-
integrated Navier-Stokes equations using polar coordinates (r, ϕ)
and, similar to the 3D model described above, we also solve
Eq. (1) with thermal relaxation, where in 2D the internal energy
density is defined by e = ΣcvT , and Σ is the surface density. We
also consider a cooling time equal to 1 orbital period at the planet
position, and we will discuss in Appendix A.1 the sensitivity of
results to the choice of the cooling time.

We undertake 2D simulations that either include or neglect
the effects of the disc self-gravity. Vortices are an inevitable con-
sequence of gap opening by planets in inviscid discs, and their
evolution is expected to depend on the relative influences of the
indirect term and self-gravity (Zhu & Baruteau 2016). Hence, it
is important to test the effects of self-gravity and to determine
under which conditions it is important or can be neglected.

The 2D simulations are performed in a frame of reference
in which the star is located at the origin, and which rotates at
a rate that corresponds to the instantaneous angular velocity of
the planet (i.e. co-rotating with the planet even when the planet
migrates).

3. Setup of numerical simulations

Our 3D simulations are done with the code FARGOCA (FARGO
with Colatitude Added; Lega et al. 2014)1. The code is based
on the FARGO code (Masset 2000) extended to three dimen-
sions. The fluid equations are solved using a second order
upwind scheme with a time-explicit-implicit multi-step proce-
dure. The code is parallelised using a hybrid combination of
MPI between the nodes and OpenMP on shared memory multi-
core processors. The two dimensional simulations are done with
FARGO-ADSG, a version of the FARGO code which imple-
ments an energy equation and disc self-gravity as explained in
Baruteau and Masset (2008).

The code units are G = M∗ = 1, and the unit of distance
r1 = 1 is arbitrary when expressed in au. The unit of time
is therefore r1(au)3/2/(2π) yr. For the simulations in this paper
we adopt the Sun-Jupiter distance as the unit of length in au:
r1 = 5.2. When presenting simulation results distances are
expressed in au and time in years.

1 The simulations presented in this paper have been obtained with
a recently re-factorized version of the code that can be found at:
https://disc.pages.oca.eu/fargOCA/public/
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3.1. Disc parameters

Unless otherwise stated, all models have a radial domain defined
by rmin ≤ r ≤ rmax with rmin = 1.04 au and rmax = 46.8 au. Such
a wide radial extension is quite unusual in these kind of stud-
ies. The paper focuses on the case of a planet initially at 5.2 au
but, in order to test the dependence of the results on the planet-
star distance, we also considered the case of a planet initially at
13 au (see Sect. 6), and in this case we found that an extended
radial domain is required to ensure that results are not affected
by the outer boundary. In the radial direction we use the classical
prescription (de Val-Borro et al. 2006) of evanescent boundary
condition.

Importantly, in our nominal simulations, we set α = 0,
namely we consider inviscid discs. Of course, there will still
be some resolution-dependent numerical diffusivity in the code.
This issue will be discussed in Sect. 5.4, but we anticipate here
that, for our nominal resolution, the numerical viscosity will not
be larger than the one in a viscous disc with α = 10−5. Moreover,
in all the simulations (2D and 3D) we consider artificial viscos-
ity to stabilize shocks (precisely we use von Neumann-Richtmyer
viscosity and corresponding heating terms as described by Stone
& Normann 1992).

In the 3D models, the meridional domain extends from the
midplane to 12◦ above the midplane (θ = 78◦–90◦), about four
disc scale-heights. We do not study inclined planets and therefore
we do not need to extend the domain below the midplane. Mirror
boundary conditions are applied at the midplane as in Kley et al.
(2009) and reflecting boundaries are applied at the disc surface.
The initial temperature profile is the same for all the 3D discs:
isothermal in the vertical direction, while in the radial direction
the temperature scales as 1/r. This gives rise to a model in which
the disc aspect ratio, h, is constant with radius, and we adopt the
value h = h0 = 0.05.

In the 2D models we adopt a radial profile for the disc
aspect ratio given by Chiang & Goldreich (1997) for a pas-
sively heated disc: h = h0(r/r1)2/7 with h0 = 0.05. This choice
was made because in earlier test calculations undertaken with
h = 0.05 throughout the disc, the value of the Toomre Q param-
eter approaches unity at the edge of the disc models, such that the
effects of self-gravity on global disc evolution became very obvi-
ous in the form of global spiral waves being excited. Adopting a
variable h removed this problem.

We remark that the aspect ratio is the same in 2D and 3D
models at the planet’s location, 5.2 au, and is slowly diverging
away from this radius. The aspect ratio does not change during
the simulations2. This is true also for simulations with non zero
viscosity (see Sect. 5.4). Precisely, we do not include the term
corresponding to the viscous heating in Eq. (1) in order to have
the same vertical structure for all the simulations and make them
comparable.

The disc surface density in 2D and 3D models is given by
Σ = Σ0(r/r1)−1/2, with Σ0 = 6.76 × 10−4 in code units for our
nominal disc (corresponding to 222 g cm−2 at 5.2 au). We will
call the corresponding simulations ’nominal’ or M simulations
(see Table 1). Classic Type-II migration is not dependent on
the disc mass, except in the inertial limit where the local disc
mass is much smaller than the planet mass and migration slows
down (Quillen et al. 2004). However, in a low viscosity disc, in
which vortices can form at the edge of the planet-induced gap,
the mass of the disc may play an important role. In particular,

2 The nominal cooling time τc = 1 orbital period effectively damps
temperature perturbations.

Table 1. Simulation parameters for 3D and 2D discs.

Simulation Viscosity Disc Planet–Star
name α dim. initial distance (au)

M3D 0 3D 5.2
M3Dα5 10−5 3D 5.2
M3Dα4 10−4 3D 5.2
M3Dα3 10−3 3D 5.2

M3D−13au 0 3D 13
M2D 0 2D 5.2

M2D−13au 0 2D 13
M2Dsg 0 2D 5.2

M2D−13ausg 0 2D 13

Notes. The simulation names capture the main parameters to help the
readability of results. In the 2 dimensional cases the index sg is added
to simulations taking into account self-gravity. The index 13 au indi-
cates the case of a distant planets, for all the others simulations the
planet is initially set at 5.2 au. We have also run control simulations
for smaller-mass discs, we do not list them in the table, we will call
these simulations M/n or Nominal/n with n = 2, 4, 10.

Zhu & Baruteau (2016) showed that the strength and evolution
of vortices depends on both the gravitational acceleration that
they exert on the central star (as expressed through the indirect
term) and the self-gravity of the disc. Therefore, we also run sim-
ulations with the nominal disc mass divided by some integer n,
we will call these simulations M/n or Nominal/n.

Achieving long run times for 3D simulations is challenging
in terms of computational cost, therefore we have used a mod-
erate resolution of (Nr,Nθ,Nϕ) = (568, 16, 360) with uniform
radial grid spacing. At this resolution we consider a smoothing
length ε = 0.8RH, that is four grid-cells in the smoothing length.
Although this value is quite large, it has been shown in Fung
et al. (2017) that convergence in the torque measurements in
non viscous disks requires at least three grid cells per smoothing
length. We provide a test in the Appendix with smoothing length
ε = 0.4 RH at the same resolution and show that results are con-
verged, and we further reduce the smoothing length (ε = 0.2 RH)
in the case where we double the resolution (see Appendix B).
We note that in our comparison between 2D self-gravitating
and non-self-gravitating discs, we adopt the same number of
cells in the radial and azimuthal directions as in the 3D runs,
but the radial grid spacing is logarithmic, as is required by the
self-gravity solver in FARGO-ADSG. Table 1 lists the princi-
pal parameters and simulation names to which we will refer in
the following. We notice that viscosity is labeled with the α
parameter. Since the vertical structure remains constant in the
simulations α gives directly the kinematic viscosity ν through
the relation ν = αh2Ω.

3.2. Planet growth on fixed orbits

In the 2D simulations the planet grows to its final mass over 800
orbits while being held on a fixed circular orbit. In the migration
runs, the planet is released after the system has been evolved for
a further 400 orbits. In the 3D runs the planet grows to its final
mass over about 200 orbits, and the system is evolved for a fur-
ther 600 orbits before the planet is released in the migration runs.
In this way we avoid the excitation of instabilities that would
arise if the planet were initialised with its final mass (see also
Hammer, Kratter, & Lin 2017; Hallam & Paardekooper 2020).
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Fig. 1. Toomre Q values for 2D self-gravitating disc models. We focus
on the nominal or M disc, but we also run control simulations with the
mass of the disc divided by 2, 4 and 10. The Q = 1 value is indicated
by the dot-dashed line, and the locations of the planets at r = 5.2 and
r = 13 au are indicated by the filled red circles.

4. Planets on fixed orbits: comparing disc
structures for simulations in 2D (with and
without self-gravity) and in 3D

As discussed in Sect. 1, Zhu & Baruteau (2016) have shown
that the evolution of a protoplanetary disc with a vortex at a
pressure bump depends on whether the indirect term and self-
gravity are accounted for. Neglecting both of them is appropriate
only for a disc with very low mass and results in a single vor-
tex that remains at the location of the pressure bump. For more
massive discs, the inclusion of the indirect term, without self-
gravity, results in a large, radially-extended vortex that migrates
inwards because of the excitation of strong spiral density waves.
This leads to significant global restructuring of the disc. Includ-
ing also self-gravity results in a more stable evolution, with one
or more vortices forming at the pressure bump and remaining
there for the duration of the simulation.

The formation of a gap-forming planet in an inviscid proto-
planetary disc inevitably leads to the formation of a vortex at the
pressure bump located at the outer edge of the gap, and the sub-
sequent evolution is expected to depend on the disc mass because
of the influence of the indirect term and self-gravity. In this sec-
tion, we first present results from a suite of 2D simulations that
specifically address the question: under which conditions does
self-gravity become unimportant? Then, for the conditions for
which self-gravity is not important we present 3D simulations
without self-gravity. We note that all simulations include the
indirect term.

Zhu & Baruteau (2016) suggested that a controlling factor is
the value of the Toomre Q parameter at the vortex location. The
radial profile of Q is shown in Fig. 1 for different disc models: M,
M/2, M/4 and M/10, where the disc mass is nominal or divided
by 2, 4 and 10 respectively. Because Q depends on radius, we
consider models in which the giant planet is located at either
rp = 5.2 or rp = 13 au. We discuss in the following the case of a
planet at rp = 5.2 and we dedicate Sect. 6 to a discussion about
planets forming farther out from the star (rp = 13 au). Our main
suite of 2D and 3D simulations adopt a local cooling time of
τc = 1 orbital period. We have found, however, that qualitative
changes in the results (especially in 2D) arise when the cooling

time changes, and hence we present a brief analysis of how the
cooling time affects the results in Appendix A.

4.1. Planet at rp = 5.2 au, 2D model

We consider the disc evolution with the planet orbiting at rp =
5.2 au using the nominal parameters described in Sect. 3.1. We
note the local Toomre parameter Q(r = 5.2 au) = 23.5, the
aspect ratio h(r = 5.2 au) = 0.05 and the local cooling time
τc = 1 orbital period.

Our discussion will focus on the part of the disc that orbits
exterior to the planet. During the early stages, the simulations
show the formation of a gap and of three or four vortices that
quickly merge into a single vortex at the outer edge of the gap.

Results for the nominal M2Dsg and M2D simulations are
shown in Fig. 2. The self-gravitating simulation produces a vor-
tex at the gap outer edge, which digs a shallow secondary gap
at about 10 au by the emission of spiral waves, and weakens
over time. Figure 3 shows that the size of the pressure bump
slowly decreases over time. The non-self-gravitating simulation
produces a stronger vortex and a deeper secondary gap than in
M2Dsg, but the vortex is also observed to weaken over time and
in the rightmost panels in Fig. 2 we see that the final discs have
very similar structures. Comparing self-gravitating and non-
self-gravitating models, the radial profiles of the azimuthally
averaged surface densities are seen to differ in detail in Fig. 3,
mostly concerning the depth of the secondary gap at ∼10 au,
but are qualitatively similar. In both the self-gravitating and the
non-self-gravitating simulations, the outer edge of the main gap
is found to become Rayleigh unstable after approximately 800
planet orbits (∼9500 yr) and this coincides with the dissipation
of the vortex, suggesting a causal link.

We have checked (Fig. 3, middle and right panels) that, when
we reduce the disc mass by factors of 2 and 4, the self-gravitating
and non-self-gravitating models show rapid convergence in their
behaviour even concerning small details, such as the depth of
the secondary gap. We conclude that for the chosen parame-
ters, these models all show good convergence in their behaviour
regardless of whether self-gravity is included or not.

4.2. Planet at rp = 5.2 au, 3D model

The 2D approximation is commonly used since protoplanetary
discs are vertically thin and very often 2D results are shown to
be consistent with results obtained with 3D models. If this is
true in viscous discs, caution has to be taken for inviscid discs.
Results for the M3D simulation are presented in Fig. 2, bottom
panels. We notice that a vortex forms at the outer edge of the gap
also in 3D, and that it is radially larger and more massive than
the vortex formed in the 2D models. Vortex exchange of angu-
lar momentum with the disc results in the evolution of the gap’s
outer edge. On the timescale of Fig. 2, the vortex appears to be
persistent over time, though slightly smoothing out. The vortex
exerts a pressure wave on the disc which superposes and inter-
feres (sometimes non linearly) with the wake launched by the
planet, which explains why the wave pattern observed in Fig. 2
(bottom panels) is more complex than that observed in 2D sim-
ulations. Through the wave the vortex exerts a torque on the disc
which is effective enough to open a secondary gap (Fig. 2, bot-
tom right panel) that is more pronounced than in the equivalent
2D simulation.

When looking at the radial surface density profiles in Fig. 4,
we see that the planet-induced gaps appear very different. In 2D
the gap becomes deeper and wider with time. In 3D the gap looks
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Fig. 2. Top panels: contours of surface density for the M2Dsg simulation of the nominal disc, for times shown (in years) at the top of each panel.
Middle panels: same as top panels but for the M2D simulation (i.e. without self-gravity). Bottom panels: same as top panels but for the M3D
simulation. The planet is located at r = 5.2 au.

almost stationary over time; the gap is even partially refilled and,
at time t = 23 720 yr, contains three orders of magnitude more
gas than in the 2D simulations. This difference between 2D and
3D gaps in low viscosity discs was already shown in Morbidelli
et al. (2014). In 3D the gap’s depth is regulated by the gas merid-
ional circulation which continuously refills the gap, so that the
gap depth saturates at a much larger value than in 2D simula-
tions. Consequently the disc does not satisfy Rayleigh’s criterion
for instability and the vortex is not smoothed out by the diffusion
that this instability generates. In turn, the vortex exerts a negative
torque on the outer edge of the gap, which contributes signifi-
cantly to limiting the gap’s depth. The difference between 2D and
3D simulations persists also for smaller disk masses. However,

Appendix A will show that the results of 2D simulations will
approach those of 3D simulations when shorter cooling times
are assumed, e.g. τc = 0.01 orbit.

5. Planet migration

We investigate the migration of the planet initially at r = 5.2 au,
for which we have shown that self-gravity has essentially no
impact even for the nominal disc mass and τc = 1 orbit. We
have shown that 2D and 3D discs behave very differently for
these model parameters; it is therefore instructive to study planet
migration in both cases in order to assess the range of behaviours
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Fig. 3. Azimuthally-averaged radial surface density profiles versus time for 2D runs with and without self-gravity, and a Jupiter-mass planet at
5.2 au. Moving from left to right: simulations M, M/2 and M/4 (i.e. decreasing disc masses). Note that the curves corresponding to different times
have been vertically offset for clarity.

Fig. 4. Azimuthally-averaged radial surface density profiles at different times for nominal disc mass (M) simulations with a Jupiter-mass planet at
5.2 au. Left panel: same as the left panel of Fig. 3 for simulation M2D, except that the scale on the y-axis is logarithmic, to appreciate the gap’s
depth and its evolution with time. Right panel: same for the M3D simulation. The gaps in 2D and 3D inviscid discs (with adiabatic EoS and a
cooling timescale equal to one planet’s orbital period) appear very different; see text for discussion.

that can occur in inviscid disc models even though, in principle,
the 3D case should be more realistic than the 2D one.

In order to better understand what follows, remember that a
giant planet opening a gap in the disc can migrate only at the
speed at which the disc can readjust itself in order for planet and
gap to migrate together (Ward 1997). In viscous discs, the gas can
displace radially on the viscous timescale, which sets the planet
migration speed to be proportional to ν/r. In the inviscid case,
the gap can move radially only in two ways. One possibility is
that the planet displaces gas from the inner edge to the outer edge
of the gap (Duffell et al. 2014; Dürmann & Kley 2015). Robert
et al. (2018) showed that this is not possible in the limit of low
viscosity if the planet is on a circular orbit, because the gap is
too wide with respect to the location of the separatrices of the
planet’s horseshoe-shaped co-orbital region. But, if the planet
acquires a sufficiently eccentric orbit, it can transfer gas from the
inner to the outer disc. Then it can migrate inwards, irrespective
of the viscous timescale. The other possibility is that the vortex
forming at the outer edge of the gap pushes gas into the gap or
migrates itself inwards due to the pressure waves that it generates
in the disc (Paardekooper et al. 2010; Zhu & Baruteau 2016). In
this case the outer disc can spread inwards on a timescale that is
not related to viscous relaxation but is that of vortex-disc interac-
tions (unrelated to viscosity). Thus, the planet can migrate on the
same timescale, while pushing the inner disc inward. As we show
below, 2D and 3D simulations display these two mechanisms.

Fig. 5. Left panels: evolution of semi-major axes and eccentricities for
planets in the simulations M2Dsg, M2D/2sg and M2D/4sg. Right panels:
same as left panels except for the corresponding non-self-gravitating
disc models.

5.1. 2D model

The evolution of the semi-major axes and the eccentricities are
shown in Fig. 5 for the self-gravitating and non-self-gravitating
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Fig. 6. Surface density profile at the times shown in the legend for the
run M2D. Also shown are the semi-major axes of the planet (filled cir-
cles), and the locations of the 2:1 co-rotation resonances and of the 3:1
external Lindblad resonances at the times indicated.

M, M/2 and M/4 models. We begin by noting that the evolution
of these quantities is similar in the self-gravitating and non-self-
gravitating runs, which supports the conclusion of Sect. 4.1 that
self-gravity is unimportant in this disc model. From now on
we just discuss in detail the results of the non-self-gravitating
nominal model in this section.

Figure 5 shows that after an initial adjustment phase
when the planet is released from its fixed circular orbit, the
planet migrates inwards at an approximately steady rate of
∼5.55 au Myr−1. During this time the eccentricity rises steadily
up to ep ∼ 0.25. As discussed in Sect. 4.1, a vortex forms at the
outer gap edge as the planet grows and opens a gap, but the
vortex is short lived and dissipates shortly before the planet is
released. Hence, the planet is embedded in a disc in which there
is essentially no internal angular momentum transport, except
due to the density waves excited by the planet itself.

A gap-forming planet in a viscous disc can experience eccen-
tricity growth when the gap becomes deep enough that eccentric-
ity driving by external Lindblad resonances (ELRs) dominates
the combined eccentricity damping due to co-orbital Lindblad
resonances (CLRs, which sit at the location of the planets emi-
major axis, ap) and co-rotation resonances (CORs; Goldreich &
Tremaine 1980). Diagrams showing the locations of the various
competing resonances are shown in Goldreich & Sari (2003).
To first order in the planet eccentricity, ep, and considering the
outer disc only, we note that the 1:3 ELR (located at r = 2.08 ap)
is the outermost eccentricity driving resonance, and the 1:2 COR
(located at 1.58 ap) is the outermost damping resonance. Growth
from an initially very small (formally infinitesimal) eccentricity
can occur when the gap is wide enough that it extends beyond
the 1:2 COR, such that the 1:3 ELR can drive up the eccentricity
without competition from CORs (Papaloizou et al. 2001). Alter-
natively, eccentricity growth can occur when the initial eccen-
tricity has a significant finite amplitude, because the CORs can
then become partially saturated, and hence unable to dominate
the ELRs (Goldreich & Sari 2003; Duffel & Chiang 2015).

In an inviscid disc, with no internal transport of angular
momentum, CORs saturate completely and the formation of a
deep gap renders the CLRs ineffective. Thus eccentricity growth
should be expected, as shown in the simulations. Figure 6 depicts
the surface density profile in the disc at two different times;
also indicated are the planet semi-major axes and the locations

Fig. 7. Evolution of semi-major axis and eccentricity for a migrating
planet in simulation M3D. Notice the outward migration after 45 000 yr.
The colored dots give the values of (a, e) at times corresponding to the
panels of Fig. 8.

of the 1:2 COR and the 1:3 ELR. At t = 39138 yr, when the
eccentricity has already undergone significant growth, the gap
is insufficiently wide to deplete the gas at the 1:2 resonance,
suggesting this resonance is saturated due to the absence of vis-
cosity or any other source of angular momentum transport such
as Reynolds stress caused by a vortex.

The growth of the eccentricity gives rise to the high-
eccentricity mode of migration discussed above. It is clear from
comparing Figs. 6 and 4 that the gap structure evolves very dif-
ferently when the planet’s orbit is free to change versus when
it is kept fixed and circular. In particular, the gap becomes less
deep but wider as the planet moves away from the original
outer edge of the gap while at the same time becoming eccen-
tric. The eccentric orbit induces a flow of gas from the inner
to the outer disc, and this appears to be sufficient to allow the
planet to migrate inwards at the rate indicated by Fig. 5 (meaning
∼6.7 au per Myr) over large radial scales and long time scales.
It is noteworthy that the maximum eccentricity of e ∼ 0.25
obtained by the planet is much larger than that reported by Duffel
& Chiang (2015), who demonstrated that a Jovian-mass planet
in a viscous disc with initial eccentricity e = 0.04 could expe-
rience growth only up e = 0.07 before interaction with the gap
edges stalls the eccentricity growth. Here, it appears that a Jovian
mass planet in an inviscid disc can open a wider gap because
torques exerted on the disc at ELRs as the eccentricity grows
operate unopposed by viscosity. Hence, a larger eccentricity can
develop.

5.2. 3D model

The planet is released after 800 orbits at r = 5.2 au, i.e. at the
time corresponding approximately to the middle bottom panel in
Fig. 2. The planet remains on an orbit with small eccentricity
(e ∼ 0.01) because (i) the gap is not very deep and (ii) the CORs
remain unsaturated because of the meridional circulation and the
presence of the vortex, which generates an effective viscosity by
exciting Reynolds stresses. Because of the small planet eccen-
tricity, the passage of gas through the gap is virtually null. Thus,
the migration mode observed in the previous 2D simulations is
not observed. Nevertheless, the planet migrates inwards during
the first ∼40 000 yr (Fig. 7). Migration is possible because the
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Fig. 8. Contours of surface density for the M3D simulation and a migrating Jupiter-mass planet. The panels correspond to different times, reported
on top of each panel, corresponding to the dots in Fig. 7. It appears clearly that a secondary gap is carved by vortex-disc interaction (second and
third panels) and that the vortex weakens by spreading radially, leaving the outer disc partially depleted (fourth and fifth panels).

vortex itself tends to migrate inwards, thus refilling the gap as
the planet moves away. Vortex migration is due to its ability to
exchange angular momentum with the disc, via the generation of
spiral density waves (Paardekooper et al. 2010). Vortex migration
is inwards because the vortex is located at the outer edge of the
gap, so that the disc inside the vortex’s orbit is strongly depleted
and the interaction with the outer disc dominates. By the action-
reaction principle, the vortex transfers angular momentum to the
disc beyond its orbit, carving a secondary gap (Fig. 8). Once
this gap is formed, the vortex slows down, spreads radially and
eventually dissipates completely, leaving the outer disc partially
depleted near the planet’s orbit.

The depletion of the outer disc relative to the inner disc cre-
ates an imbalance in the torques exerted on the planet, with the
positive torque exerted by the inner disc becoming the (slightly)
dominant one (Fig. 9, top panel). As a consequence, the direction
of migration is reversed and the planet slowly migrates outwards
(Fig. 7, top). However, the process of outward migration cannot
continue indefinitely. The torque contribution from the inner disc
decreases when the planet moves outwards (because its distance
from the inner disc increases), eventually balancing out with the
negative torque exerted by the outer disc. Consequently, migra-
tion slowly stops and the planet remains on a quasi-circular orbit
embedded in a gap that is much wider than the initial one, result-
ing from the merging of the planet’s main gap with the secondary
gap carved by the now-disappeared vortex (Fig. 8, rightmost
panel). Incidentally, this breaks the relationship usually used to
deduce the planet’s mass from the gap’s width in observed disks.
Figure 9, central panel shows that when the planet is at rest
the gap becomes much deeper than the one during the migra-
tion phase. Nevertheless, enough gas remains in the gap and the
CORs are sufficiently desaturated by the meridional circulation
to damp the eccentricity of the planet once it stops migrating
(Fig. 7, bottom).

In order to study more precisely the contributions of different
regions of the disc – and of the vortex in particular – to planet
migration, we show in Fig. 9 (bottom panel) the specific torque
γ(r) exerted on the planet by a ring of the disc placed at r with
width dr which is:

γ(r)dr =

∫ π/2

−π/2

∫ 2π

0

(
Gρ(r, θ, φ)r2sin(θ)(r − rp)

(r − rp)3 ∧ rdr
)

z
dθdφ ,

(2)

where the subscript z indicates the vertical component of the vec-
tor enclosed in the brackets. The integral of γ(r) over the radial
coordinate provides the total specific torque Γ, plotted in the top

Fig. 9. Top panel: evolution of specific torques from the inner (blue
curve) and outer disc (red curve) and of the total specific torque (cyan)
in simulation M3D. A running average has been applied over 500 orbits
to smooth out the oscillations of the torque exerted by the outer disc.
Such oscillations are due the synodic period of the vortex with respect
to the planet. At times corresponding to the dots in the top panel (the
same times selected in Figs. 7 and 8) we plot: (middle panel) surface
density profiles; (bottom panel) specific radial torque density γ(r) (see
Eq. (2) in the text).

panel of Fig. 9:

Γ =

∫ rmax

rmin

γ(r)dr . (3)

The vortex provides periodically positive to negative contribu-
tions to γ depending on the planet-vortex azimuthal distance that
average to zero over a planet-vortex synodic period. To highlight
the vortex location, its radial migration and its fading over time,
it is convenient to select snapshots at which the planet and the
vortex have the same relative shift in azimuth. We did this by
sampling the hydro-dynamical quantities every 1/10 of orbit and
choosing snapshots with the vortex always ahead of the planet’s
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Fig. 10. Migration speed as a function of time, for discs with differ-
ent masses in 3D simulations. The planet always starts at 5.2 au. The
migration speed decreases, as expected, with the disc mass. The direc-
tion of migration is reversed at t ' 45 000 yr in the nominal mass disc
case (simulation M3D).

location as shown in Fig. 8, corresponding to the maximal value
of γ at the vortex radial location during the vortex’s synodic
period. The fact that γ is positive in these snapshots does not
imply that the vortex exerts a net positive torque on the planet
(remember that averaged over a synodic period the torque is
zero). With this procedure, the bottom panel of Fig. 9 reveals
that the position of the maximum in γ, corresponding to the vor-
tex’s radial position, is located at the gap’s outer edge (middle
panel). Both vortex and gap’s edge shift inwards with time, until
t = 35 557 yr. Moreover the maximum value of γ decreases with
time, revealing the weakening of the vortex. For times larger
than t = 88 000 yr the vortex has been completely dissipated
(2 rightmost panels of Fig. 8) and accordingly there is no positive
contribution to γ.

In summary, after an initial short (∼40 000 yr) phase of rel-
atively fast inward migration, during which the planet migrates
less than 0.5 au (Fig. 10), the migration of the planet slows down,
then reverses direction, leading to an outward migration that nat-
urally damps out at 4.85 au. A test of convergence with respect
to the resolution of the simulation is provided in the Appendix.

When we decrease the mass of the disc, the vortex is
less massive, roughly proportionally to the disc surface den-
sity. However, the indirect term also scales with the disc mass
and therefore we cannot expect a simple linear decrease of the
migration speed with the disc mass. In the M3D/2 and M3D/4
simulations the planet migrates slowly inward at a speed of about
1 au Myr−1 (slightly faster for M3D/2 than for M3D/4). In both
cases we observe the vortex spreading radially and dissipating
with time while opening a small dip beyond the vortex orbit. The
torque imbalance between inner and outer disc appears to be not
enough for the reversal of the migration direction.

5.3. Definition of vortex-driven migration

The result illustrated above shows that, in inviscid disks, migra-
tion of giant planets on quasi-circular orbit is sustained because
the migration of the vortex allows to refill the gap left-behind
by the migrating planet. We call this process ‘vortex-driven’
migration, to distinguish it from the ‘vortex-induced’ migration

of Lin & Papaloizou (2010, 2011a) which was due to the pas-
sage of the vortex through the planet’s co-orbital region. As we
mentioned in the introduction, vortex migration is much less
prominent if self-gravity is taken into account (Zhu & Baruteau
2016). Indeed, in Appendix A.1 we will show a 2D simulation
with self-gravity and fast disc cooling that will behave simi-
larly to our M3D simulation, i.e. with a pronounced vortex and
a slowly migrating planet on a quasi-circular orbit, but showing
no vortex migration. In these cases, planet migration is possi-
ble because the vortex, although not moving, is able to push gas
inwards, refilling the gap left-behind by the planet. We include
also this case in the ‘vortex-driven’ migration category. In both
cases, the migration of the planet occurs on the timescale charac-
terising the vortex-disc interaction (either manifested by vortex
migration or vortex-driven disc spreading), which is unrelated
to the disc viscosity. Thus vortex-driven migration is conceptu-
ally different from Type-II migration. Vortex-driven migration
is dominated by Type-II migration if the disc viscosity is large
enough (as quantified in the next section) or superseded by the
eccentric migration mode (as seen in Sect. 5.1) if the planet’s
eccentricity becomes large enough to allow the passage of gas
across the gap, unlocking the planet from the disc evolution.

In summary, vortex-driven migration is a slow, inward and
smooth migration due to the presence of a vortex beyond the
orbit of the planet. It is very different from vortex-induced
migration, which is a violent process inducing a phase of fast
migration. Importantly, vortex-driven migration does not seem
to be indefinite. By modifying the disk around it (i.e. spreading
the disk inwards, opening a secondary gap) the vortex eventually
fades away and its effect stops. When this happens, a transient
phase of outward migration is even possible if the disappear-
ance of the vortex leaves a gap that is asymmetric relative to
the position of the planet.

Vortex-driven migration, being slow and transient, offers a
new and interesting explanation of the existence of the cold-
Jupiters, without requiring (as in Coleman & Nelson 2014;
Bitsch et al. 2015) that these planets formed much beyond the
snowline.

5.4. Migration in viscous discs

This section addresses the question: how low does the viscos-
ity need to be for the vortex-driven migration to be dominant?
For this purpose we ran 3D simulations with values of the α vis-
cosity parameter in the range [10−5, 10−3]. In viscous discs the
equation of state should consistently include a term correspond-
ing to viscous heating. However, the viscous heating would also
change the vertical disc structure (Kley et al. 2009) making the
comparison less clear. In order to compare equivalent discs we
null the viscous heating contribution.

Figure 11 shows the migration speed as a function of the
planet-star distance. Planets monotonically migrate towards the
star for α down to 10−4, with a speed which scales with the vis-
cosity, as expected in the Type-II migration regime. For α = 10−5

a vortex forms very similarly to the non-viscous case and vortex-
driven migration is observed with speed slightly larger than in
the non-viscous case and persisting for a longer time, thus driv-
ing the planet closer to the star (to ∼4.55 au instead of ∼4.75 au
at the moment of migration reversal). Therefore, we conclude
that the transition between Type-II migration and vortex-driven
migration occurs for values of α in the interval [10−5, 10−4]. This
makes vortex-driven migration an interesting process acting at
viscosities that are not exceedingly small, but could be typical of
realistic discs (Turner et al. 2014).

A166, page 10 of 18

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039520&pdf_id=0


E. Lega et al.: Giant planet migration in low-viscosity discs

Fig. 11. Migration speed as a function of planet’s distance from the star
in 3D simulations of discs with different viscosities (i.e. simulations
M3D, M3Dα5, M3Dα4 and M3Dα3; see Table 1). A running average proce-
dure has been used to reduce fluctuations, with the consequence that all
but the green curve start at about 5.1 au instead of the released distance
of 5.2 au. In the α = 10−3 and 10−4 cases migration is always inwards
(negative radial speed). Notice that we have divided by 10 the migration
speed of M3Dα3 in order to scale it proportionally to viscosity relatively
to the α = 10−4 case. The migration pattern in the inviscid case does
not respect this scaling and turns positive after a short phase of inward
migration. The same happens in the M3Dα5 simulation.

When considering non-viscous discs in numerical simula-
tions there is always a non-zero numerical viscosity. The fact
that we see a different evolution for decreasing values of α down
to 10−5 (Fig. 11) and that the simulation with α = 10−5 is dif-
ferent from the inviscid simulation suggests that the numerical
viscosity for our inviscid 3D simulation M3D is not larger than
the one modeled assuming α = 10−5.

6. Distant planets

In some planet-evolution models, giant planets are postulated
to start forming at large distances from the parent star. From
the results of this paper, one could be tempted to conclude that
in low-viscosity discs these planets remain at large distances
throughout the disc’s lifetime and may correspond to the giant
planets observed by direct imaging surveys. Here, we warn that
the results are not invariant with the distance of the planet from
the central star. This is because the role of self-gravity becomes
more prominent farther out.

6.1. Fixed planet at rp = 13 au, 2D model

We start this discussion by considering the M2D−13au and
M2D−13ausg simulations. The local Toomre parameter Q(r =
13 au) = 7.74 and the aspect ratio h(r = 13 au) = 0.065 for this
model (see Fig. 1). We plot in Fig. 12 contours of the surface
density.

As a consequence of the relatively low Q value at the planet’s
location, a behaviour similar to that described in Zhu & Baruteau
(2016) is replicated in our simulations. The self-gravitating disc
(M2D−13ausg) forms a single vortex that remains stably orbiting
at the planet-induced pressure bump throughout the simula-
tion and, although a detailed inspection of the surface density

evolution shows some intermittency in the structure of the vor-
tex and the pressure bump, the evolution is in general smooth
and involves the vortex weakening with time. On longer time
scales, however, the disc develops a strong m = 1 eccentric
mode, that eventually becomes so strong that it destroys the
disc (remember that the planet is kept on a circular orbit, so
that the disc’s eccentricity cannot be limited by transferring the
disc’s angular momentum deficit to the planet). The non-self-
gravitating run M2D−13au displays very different behaviour. A
large vortex forms and migrates into the gap region and dis-
perses, smoothing the profile of the gap outer edge. Over long
run times (i.e. >200 000 yr, not shown in Fig. 12), we observe
that non-axisymmetric structures form again in the disc.

To reach genuine convergence between self-gravitating and
non-self-gravitating disc in the case of distant planets we need
to reduce the disc mass by a factor 10 (see Fig. 13), which
brings Q to ∼70, comparable to the value in the M/2 simula-
tions for rp = 5.2 au. In this case the disc forms a single vortex
at the outer edge of the gap that remains there over the sim-
ulation run time. The vortex weakens over time, and the only
significant difference between the self-gravitating and the non-
self-gravitating runs is the length of time required for vortex
weakening to occur. Because of the lack of convergence in the
disc behaviour for self-gravity and no-self-gravity runs we do not
report a detailed analysis of migration, but it is worth mention-
ing that in the M2D−13ausg simulation the planet becomes very
eccentric (unsurprisingly, given the eccentricity acquired by the
disc), which makes the planet go out of the gap at perihelion and
aphelion, triggering very fast inward migration.

6.2. Fixed Planet at rp = 13 au, 3D model

We remind the reader that our 3D code does not feature self-
gravity. Thus, it is not a surprise that the disc surface density
(Fig. 12, bottom panels) appears more similar to the 2D non-self-
gravitating model (middle panels) than to the self-gravitating
case (top panels). The vortex interacts with the disc and weakens
while forming a secondary gap. At the outer edge of the sec-
ondary gap a second vortex forms while the inner vortex gets
weaker. Reducing the disc mass by a factor 10, we have obtained
results quite similar to the 2D models, with a weak vortex that
appears to evolve very slowly over time.

It is then clear that in order to study giant planet migra-
tion realistically at large distances in nominal discs one needs
to use a 3D code with self-gravity, which to our knowledge has
never be done before. Without self-gravity, only migration in
low-density discs can be studied and we find a similar behavior
as that discussed in Sect. 5.2.

7. Discussion and conclusions

In this paper we have examined giant planet migration in low
viscosity discs with 2D and 3D numerical simulations. First,
we have considered a Jupiter-mass planet at 5.2 au in a nomi-
nal disc with density at 5.2 au of 220 g cm−2 or smaller. The
presence of a giant planet in a low viscosity disc opens a gap
and triggers vortex formation at the outer edge of the gap. The
presence of the vortex raises the question of the importance of
the self-gravity in the disc (Zhu & Baruteau 2016). Thus, we
compared 2D simulations with and without disc self-gravity to
conclude that, apart for minor and temporary differences, the
evolution observed with a disc cooling time τc = 1 orbit are
equivalent to each other. Then we moved to 3D simulations of
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Fig. 12. Same as Fig. 2, but for a planet located at rp = 13 au.

Fig. 13. Azimuthally-averaged radial surface density profiles versus time for 2D runs with and without self-gravity, and a Jupiter-mass planet at
13 au. Moving from left to right: simulations M/2, M/4 and M/10. Note that the curves corresponding to different times have been vertically offset
for clarity.
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the planet-disc interaction. 3D simulations are in principle more
realistic than 2D simulations because they can capture genuine
3D effects such as the meridional circulation of gas in the vicin-
ity of gaps (Morbidelli et al. 2014), but our code FARGOCA
does not allow to take self-gravity into account, so that its use
is valid only where self-gravity is not relevant, as shown by the
aforementioned 2D simulations.

For the nominal model with τc = 1 orbit, the results of 3D
simulations are quite different from those of 2D simulations:
the gap is shallower and the vortex at its outer edge is much
larger and persistent. The two aspects are linked in a positive
feedback. Because the gap is shallower, the disc never becomes
Rayleigh unstable, unlike in 2D simulations. Thus the vortex is
not eroded by the diffusivity generated by this instability; in turn
the presence of the vortex exerts a torque on the disc which helps
to push gas into the gap. This effect, together with the merid-
ional circulation of gas that exists only in 3D, makes the 3D gap
shallower.

As a consequence of the sharp differences in the gap’s depth
and vortex properties, we observe a big difference in the orbital
evolution of the planet when the latter is free to migrate. In 2D
simulations the planet rapidly acquires a significantly eccentric
orbit with e ∼ 0.25, apparently because the depth of the gap
and the lack of effective viscosity operating in the disc allows
co-orbital and co-rotation resonances, that usually damp the
eccentricity, to saturate (Goldreich & Tremaine 1980; Goldreich
& Sari 2003). In their paper, Goldreich and Sari conjectured
that this mechanism can explain the large orbital eccentrici-
ties observed for extrasolar cold-Jupiters. We find that this is
unlikely. In fact, as soon as the planet’s orbit becomes eccentric,
the planet undergoes a relatively fast migration (∼6.7 au Myr−1

which, although slower than Type-II migration in an α = 10−3

disk, implies full orbital decay in less than a Myr relative to
the planet’s initial position at 5.2 au). Thus, we suggest it is
unlikely that an eccentric giant planet could remain in the cold-
Jupiter region at the end of the disc’s lifetime, given the speed of
migration. Moreover, we do not see such an eccentricity excita-
tion in the 3D simulations, as discussed below. Thus, dynamical
instabilities after the removal of the protoplanetary disc (Ford &
Rasio 2008; Chatterjee et al. 2008; Jurić & Tremaine 2008) seem
to provide a much more robust mechanism for the eccentricity
excitation of giant planets.

In 3D simulations the planet remains on a quasi-circular
orbit, probably because there is still enough gas in the gap to
damp continuously its eccentricity. The meridional circulation
may also play a role in unsaturating co-rotation resonances. The
vortex tends to migrate inwards by exerting a torque on the outer
disc and therefore can accompany the planet in its inward migra-
tion. Thus, initially planet migration is inward and occurs at the
speed of vortex migration, which is unrelated to the viscosity of
the disc (Paardekooper et al. 2010). We call this ’vortex-driven’
migration (see Sect. 5.3). However, because the disc is invis-
cid, the torque exerted by the vortex opens a secondary gap just
beyond the vortex orbit. The vortex then spreads radially and
becomes less pronounced. These processes partially deplete the
disc just beyond the planet’s gap and, consequently, the planet
starts to feel a positive torque from the inner disc that exceeds
the negative torque from the outer disc: its migration is reversed.
By being pushed out, eventually the planet adjusts its position
relative to the inner and outer discs to balance the two torques
and its migration stops. If the mass of the disc is reduced, the
relative strength of the vortex is also reduced. Consequently, no
significant secondary gap is opened; migration is not reversed,

but it slows down to a rate smaller than 1 au My−1; it should
eventually stop on the long-term.

In both cases, these results can potentially explain the lack
of large-scale migration of giant planets. If inward migration is
short-ranged and eventually slows down, or reverses and stops,
the presence of numerous giant planets beyond 1 au from the
central star (i.e. cold-Jupiters) becomes consistent with the idea
that the sweet-spot for giant planet formation is the disc’s snow-
line, which typically is in the same region or only slightly
beyond. This result is very promising to solve the giant planet
migration problem, but it needs to be confirmed using more
realistic discs. In fact, the disc we have adopted with very
low viscosity and therefore negligible radial transport would be
incompatible with the mass accretion rates that are typically
observed for young stars. If the protoplanetary discs have low
viscosities because of the lack of magneto-rotational instability,
most likely the accretion of gas towards the star occurs due to
laminar stresses where angular momentum is removed in disc
winds (see Turner et al. 2014 for a review). In a future work we
will study giant planet migration in these discs. Nevertheless, the
results presented in this paper open a new perspective and will
serve as a basis for comparison.

In the final part of the paper we have also stressed that
the result of slow, or reversed, giant-planet migration for low
viscosities holds only in the inner part of the disc. The outer
part of the disc is closer to the gravitationally instability limit
and therefore can respond very differently to the presence of
a giant planet. Unfortunately, our 3D code cannot account for
self-gravity in its present form. A future work will be devoted
to performing 3D self-gravitating simulations. Here, by using
2D self-gravitating simulations we observed that the disc may
develop a strong m = 1 eccentric mode, which in turn excites
the eccentricity of the planet, triggering fast inward migration.
This result suggests that giant planet migration may be fast in
the outer disc and slow in the inner disc, so that giant plan-
ets, wherever they form, should all pile-up in the cold-Jupiter
region. If this is true, we would then predict a strong drop-off in
the giant planet radial distribution, with only the most massive
planets – itive to planet-disc interactions – remaining at large dis-
tances where they can be probed by direct imaging surveys. The
stakes are high, so it is important to confirm or improve on these
preliminary conclusions with 3D self-gravitating simulations.
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Appendix A: Sensitivity of results to the cooling
time

Fig. A.1. Left panels: evolution of semi-major axes and eccentrici-
ties for planets in simulations M2D, M2D/2 and M2D/4 with cooling
time τc = 0.01 orbit. Right panels: same as left panels except for the
corresponding non-self-gravitating disc models.

A.1. 2D simulations

In addition to running simulations for cooling time τc = 1 orbit,
we also ran simulation suites for self-gravitating and non-self-
gravitating models with τc = 0.01 and τc = 10 orbits. We
considered the disc masses of the M, M/2 and M/4 simulations.
Our results indicate that for 2D simulations, the detailed outcome
depends on the cooling time in a rather complicated manner.

A.1.1. τc = 0.01 orbits

Figure A.2 shows the surface density evolution for the M2D sim-
ulation with cooling time of 0.01 orbits. The top panels are for

the self-gravitating run and the bottom panels are for the non-
self-gravitating disc. This figure should be compared with Fig. 3
in the main text, which shows the results for τc = 1 orbit. The
shorter cooling time gives rise to different qualitative behaviour
of the disc and the embedded planet, which is released from
a fixed orbit at the time corresponding to the left-most panels
in Fig. A.2. The self-gravitating run shows the formation of a
strong vortex at the outer edge of the gap, and this remains
relatively narrow in its radial extent and stays at the gap edge
without migrating. Over time the vortex weakens and dissi-
pates, and appears to have almost completely dispersed in the
right-most panel of Fig. A.2. Analysis of the disc at late times,
extending beyond the time of the right-most panel of Fig. A.2 to
∼500 000 yr, indicates that a vortex remains at the pressure bump
at the outer edge, but with a strength that waxes and wanes inter-
mittently throughout the run. The non-self-gravitating run results
in the formation of a more radially extended vortex, and the evo-
lution here is much more similar to the 3D results described
in Sect. 5.2. The radial width of the vortex is large enough for
the excitation of spiral waves to drive its migration into the gap,
while at the same time the vortex creates a secondary gap (lower
panels, second from left). The third panel shows that the forma-
tion of a secondary gap also leads to the formation of a secondary
pressure bump, and this forms a second vortex via the Rossby
wave instability. Eventually, the primary vortex disperses, leav-
ing the weaker secondary vortex orbiting at the gap edge (fourth
panel). This vortex persists for the whole simulation. Hence, we
see that in these self-gravitating and non-self-gravitating runs,
the initial evolution of the system is quite different because of
the formation of a large, migrating vortex in the latter simulation,
but the long term behaviour is actually very similar.

We do not show figures for the M2D/2 and M2D/4 runs, but
instead comment that the qualitative differences between self-
gravitating and non-self-gravitating models are much smaller
than shown in Fig. A.2. Reducing the disc mass reduces the
importance of the indirect term, and hence the radial width
of the vortex that forms is smaller in these cases. Hence, the

Fig. A.2. Contours of surface density for simulation M2D with τc = 0.01 orbits and a migrating Jupiter-mass planet. The panels correspond to
different times, reported on top of each panel. Top panels: self-gravitating discs. Bottom panels: non-self-gravitating discs.
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Fig. A.3. Contours of surface density for simulations M2D with τc = 10 orbits and a migrating Jupiter-mass planet. The panels correspond to
different times, reported on top of each panel. Top panels: self-gravitating discs. Bottom panels: non-self-gravitating discs.

outer gap-edge vortex does not migrate quickly into the gap, but
remains at the gap edge and slowly dissipates while generating a
shallow secondary gap. The main difference between the self-
gravitating and non-self-gravitating models is that the vortex
weakens more quickly in the self-gravitating models. The vor-
tex in the non-self-gravitating models is persistent until the ends
of the simulations, providing a source of weak effective viscos-
ity via the generation of Reynolds stresses, whereas the vortex in
the self-gravitating discs appears to be more intermittent in its
behaviour.

Figure A.1 shows the evolution of semi-major axes and
eccentricities for the M2D, M2D/2 and M2D/4 runs with τc =
0.01. The self-gravitating models show the planet initially
adjusts its orbital location in the gap due to an imbalance of
torques, and experiences a phase of eccentricity growth due to
direct interaction with the vortex. The eccentricity, however,
is eventually damped by interaction with the disc as the vor-
tex weakens, and remains at a very low value (∼5 × 10−3) for
the remainder of the run. During this low eccentricity phase,
we see that the migration rate is very slow, corresponding to
migration over a distance of 1 au in 4 × 106 yr (i.e. a migra-
tion speed of 0.25 au per Myr) for the nominal model. The
orbital evolution during the M2D simulation is initially more
extreme because of the strong interaction with the migrating
vortex, whereas the evolution in the M2D/2 and M2D/4 sim-
ulations are similar to the self-gravitating models. Over the
long term, however, we see that in these models the planet
also exhibits low eccentricities and very slow migration rates.
Hence, the τc = 0.01 self-gravitating and non-self-gravitating
models during long-term evolution exhibit the low eccentricity
mode of migration observed in the M3D simulations described
in Sect. 5.2. This maintenance of low eccentricity in an invis-
cid disc is not expected, since the co-rotation resonances that
are responsible for damping eccentricity are expected to saturate
and switch off. The persistence of vortices at the outer gap edge,
however, seems to provide a source of effective viscosity that
allows these resonances to actively damp the eccentricity.

Fig. A.4. Left panels: evolution of semi-major axes and eccentricities
for planets in self-gravitating disc simulations M2D, M2D/2 and M2D/4
where τc = 10 orbit. Right panels: same as left panels except for the
corresponding non-self-gravitating disc models.

A.1.2. τc = 10 orbits

Figure A.3 shows the surface density evolution for the M2Dsg
(top panels) and M2D models (bottom panels). The self-
gravitating disc shows similar behaviour to that seen previously
for both τc = 0.01 and τc = 1, namely the formation of a radially-
narrow vortex that remains at the gap edge while weakening and
eventually dissipating due to the onset of the Rayleigh instabil-
ity. For τc = 1 and 10 the vortex dissipates much more quickly
than in the τc = 0.01 run. The non-self-gravitating run shows
the formation of a radially-extended vortex which forms a sig-
nificant secondary gap and migrates into the planet-induced gap
before dispersing. This occurs relatively quickly in the simula-
tion, and leaves behind a smooth outer disc without any evidence
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Fig. A.5. Contours of surface density for the M3D simulations with the locally isothermal equation of state and for increasing values of τc (in
orbits). All the panels correspond to t = 8296 yr (the same time as for the middle panels of Fig. 2, for comparison).

for additional vortices being present (unlike in the τc = 0.01
run). The evolution of the discs for the M2D/2 and M2D/4 models
show much stronger convergence with respect to whether self-
gravity is included or not. Here the vortex at the outer edge is
radially narrow and does not migrate into the gap and strongly
interacts with the planet. Instead it sits at the gap edge in all
cases, weakening with time and eventually dissipating.

Figure A.4 shows the evolution of semi-major axes and
eccentricities for all runs with τc = 10. Apart from the initial
phase of evolution of the M2Dsg case, where the planet interacts
strongly with the vortex, we see that these models all display
the high-eccentricity mode of migration described in the main
text for the models with τc = 1. The mean migration rates vary
somewhat between the runs, but correspond to migration over
a distance of 1 au in 150 000–400 000 yr. Hence, Jovian mass
planets in these models can migrate to the star within typical
disc lifetimes.

A.2. 3D simulations

In addition to the Nominal 3D case with τc = 1 we ran simula-
tions with fixed planet only for the locally isothermal equation
of state and for τc = 10 and τc = 50 orbits.

We can consider the locally isothermal case equivalent to
having an extremely short cooling time, so that in Fig. A.5 we
show results (from left to right panels) from short cooling times
to high values such as τc = 50 orbits.

In all cases a big vortex forms at the outer edge of the gap and
qualitatively all the panels are very similar. It appears that 3D
models are much less sensitive to cooling times than 2D ones.
We remark that for large values of the cooling time, the vertical
temperature profile is not damped efficiently toward the initial
condition: h0 = 0.05. Actually, for τc = 50 orbital periods the
aspect ratio fluctuates around a mean value of 0.057 at the time
snapshot of Fig. A.5. Qualitatively there is no influence on vortex
formation but a more detailed study of the role of the thermal
structure on vortex formation and planet migration goes beyond
the scope of the present paper.

Due to the expensive computation required for 3D migra-
tion, we decided to limit our analysis of the sensitivity to the
cooling time to fixed planets. However, the similarity in vortex
formation indicates that the migration histories would probably
be very similar to the case τc = 1 orbit described in Sect. 5.

Appendix B: Numerics

We have seen above that vortex-driven migration occurs if
gaps are only moderately deep, so it is important to check the

dependence of results with respect to the choice of the smooth-
ing of the planetary potential. Moreover, vortex formation and
evolution may depend on numerical resolution. It is therefore
important to check also the validity of results with respect to
the grid step-size. We present these tests below.

In all the simulations we smooth the potential of the planets
for disc elements with distance d from the planet: d < ε. We have
considered ε = 0.8 RH in our nominal M3D simulations. In order
to check the sensitivity to the smoothing length we have run a
simulation at nominal resolution with ε = 0.4 RH for 800 orbits.

Figure B.1 shows that the surface density profiles for the
nominal simulation (blue curve) and the new one with reduced
smoothing length (red curve) at the time of planet release. As
one can see, the two curves are essentially identical. Thus, we
can conclude that the limited depth of the gap is not due to an
excessive smoothing but corresponds to the real dynamic of the
gas.

When the planet is released (Fig. B.2, red curve) the migra-
tion is very similar, although slightly faster than the nominal
simulation. Importantly, we see the same reversal of migration
direction, although this happens slightly earlier with the planet
being slightly closer to the Sun.

Testing the effect of resolution is hard because of the long
integration times. Thus we have restarted the simulation with
ε = 0.4 RH with double resolution at t = 104 yr when the planet
is still on a fixed orbit. We recall that the nominal M3D simulation
had a resolution (Nr,Nθ,Nϕ) = (568, 16, 360). In the high resolu-
tion simulations we reduced further the smoothing length to ε =
0.2 RH. The surface density profile obtained after 100 orbits is
shown by the green curve in Fig. B.1 and is extremely similar to
those of the two other simulations. We then released the planet.
On a timescale of about 800 orbits the migration rate is indistin-
guishable from that of the previous simulations (Fig. B.2). Then,
at time ∼19 000 yr we observe an episode of rapid inward migra-
tion (and eccentricity increase up to 0.07), before turning to slow
outward migration as in the nominal resolution case. The out-
ward migration phase starts at t = ∼23 000 yr when the vortex
is weakened by radial spreading and the eccentricity is damped
to ∼0.001. Finally, planet’s migration stops at a position in which
the torques from the inner and outer discs balance. From this test
we conclude that in the non viscous case the dynamics described
in the main paper is not an artefact of resolution, although the
evolution of the planet can change at the quantitative level using
different resolutions. To obtain a quantitative convergence of
results with respect to resolution and smoothing length a low
prescribed viscosity may be required.

To do this we have also run the double resolution test by con-
sidering the low viscosity α = 10−5 simulation M3Dα5 for which
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Fig. B.1. Surface density profiles at t = 10000 yr for standard resolution
non viscous 3D simulations with different smoothing length and for an
additional run with double resolution and smoothing length ε = 0.2 Hill
radii. We call “SR” the standard resolution simulations and we use the
label “HR” for the high resolution one. The "HR" simulation is a restart
of the “SR” case with ε = 0.4 RH (red curve) at t = 104 yr. The green
curve corresponds to 100 orbits after the restart.

we have observed vortex-driven migration (see Fig. 11). We have
restarted the simulation with α = 10−5 by doubling the resolu-
tion at t ∼ 16 000 yr when the planet is already in the migration
phase. This choice is motivated on the one hand by computa-
tional cost (about 1 orbit at 5.2 au per hour using 240 cores with
Hybrid OpenMP+MPI parallelization), on the other hand by the
results obtained with double resolution in the inviscid case. In
fact, as stated above, up to t ∼ 19 000 yr migration doesn’t show
any dependency on resolution (Fig. B.2).

Figure B.3 shows that the migration rate is not affected by
the change in the resolution (we did not observe any increase
in eccentricity either). We have integrated this case up to t ∼
23 000 yr. We consider this integration time (corresponding to
the end of the fast inward migration phase observed for the non
viscous case) long enough to prove quantitative robustness of
results with respect to resolution and smoothing length.

We conclude that a small prescribed viscosity (α = 10−5) is
necessary to show convergence of results with numerical reso-
lution also at the quantitative level, confirming the results of the
paper.

Fig. B.2. Evolution of the planet semi-major axis for the SR M3D sim-
ulation with different smoothing lengths and for the additional HR
simulation with smoothing length ε = 0.2 Hill radii.

Fig. B.3. Evolution of the planet semi-major axis for the SR M3D sim-
ulation with viscosity α = 10−5 and for the additional HR simulation
with smoothing length ε = 0.2 Hill radii.
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