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Abstract
In the context of experimental modal analysis of non-self adjoint problems, like rotordynamics, vibroacous-

tics or active control applications, the nonsymmetry of the system induces specificities that must be consid-

ered for proper use of identification techniques. In this paper, the particularities of this kind of problem are

addressed in order to be able to efficiently identify the dynamic behaviour. There are many aspects induced

by the non-self adjoint character of the behaviour, some of them have been studied in the past years, while

some remain unclear. This paper addresses some of these points. The first matter which is detailed is related

to the ability of the technique to identify both right and left eigenvectors. The classical LSCF technique is

adapted in order to reach this objective. A few adaptations are required, but the extension is quite natural

and the efficiency of the technique is not degraded in the context of non self-adjoint problems. The second

point is associated to the regularization of inverse problem for matrices identification using the complex

eigenvectors. This inverse procedure, which is one of the ways allowing the damping matrix identification,

is known to be very sensitive to noise. The technique of properness enforcement, already available in the

context of structural dynamics, has been extended to non-self adjoint in order to regularize the problem. The

basic idea is to slightly modify the identified complex vectors, in order that they verify the so-called proper-

ness condition. A low-cost specific iterative procedure is proposed to reach this objective. A numerical

test-case is then presented on a rotordynamics application, and some experimental results are presented on a

structural active control application, in order to show the ability of the approach to identify reduced models

from experimental modal analysis. In particular, some considerations about proper damping identification

are exhibited. Finally, some issues about vibroacoustics applications are considered: in this case, a direct

relationship between left and right eigenvectors is available. The technique has then to be slightly adapted

in order to take into account the dependency of the variables used in a constrained optimization equation.

This leads to a non linear matrix problem, which can be difficult to solve. Some approximate techniques are

exhibited and applied on an experimental test-case in order to illustrate their efficiency.

1 Introduction

Experimental modal analysis is a very common tool in structural dynamics. Using only experimental data,

the dynamic behavior of a structure can be represented in a frequency range of interest using identified modal

parameters (eigen frequencies, eigen shapes, modal damping ratios and modal masses). Using the modal

basis, one can evaluate the response of the structure at measured points to an arbitrary excitation. A more

evolved objective can be the determination of a matrix-based model, which can be seen as an experimental

reduced model. For some specific applications, one can be interested to ask this model to be physical, in

other words to have a topology of the matrices which is the same as that of a physical system. This is for

example of first interest in the context of experimental identification of damping matrices.
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This paper focuses on this particular point. It has been shown [1] that for structural dynamics problems with

symmetric matrices, the existence of a physical experimental reduced model is equivalent to the so-called

properness condition of complex vectors. In the same paper, an efficient methodology has been proposed to

enforce that property when identified modes do not verify the properness condition. This procedure can be

seen as an optimal correction of complex vectors for reduced model identification.

Some particular problems lead to second-order non symmetric formulations, like vibroacoustics [2] or rotor-

dynamics [3]. For those systems, the quadratic eigenvalue problem [4] must be solved to obtain a coherent

modal description of the problem, using left and right complex modes. Section 2 recalls classical modal

properties of non symmetric second-order problems. Section 3 proposes extension of the properness con-

dition to non-self adjoint problems and associated inverse relations for matrices reconstruction. These new

results are almost trivial to obtain but constitute important results for matrices identification from experi-

mental data. Section 4 presents an original technique for optimal correction of left and right eigen shapes in

order that the properness condition is verified. A non-classical Riccati equation is derived from a constrained

minimization problem, and a numerical procedure is proposed to solve it. The corrected eigenvectors can

then be used for optimal reconstruction of matrices. A physical application is then considered in section 5 in

the context of rotordynamics. An experimental test-case is presented in section 6 using a structure with an

active control feedback, an extension to vibroacoustics is finally considered in section 7.

2 Problem description and modal decomposition

This part exhibits the typical problem which is considered in this work, and recalls classical modal properties

of non-self adjoint problems that will be used in the paper.

2.1 Second-order typical problem

The typical second-order problem which is considered in this paper is:

[M ] {q̈(t)} + [C] {q̇(t)} + [K] {q(t)} = {f(t)} , (1)

in which {q(t)} is the vector of the unknown discretized field, [M ] is the mass matrix, [K] is the stiffness

matrix, [C] is the damping matrix, {f(t)} is the force vector. All matrices are also supposed to be real,

but not necessarily symmetric. The notations used here are in accordance with those proposed in [5]. In

particular, brackets are used for matrices and curly braces for vectors.

To this time-domain equation are associated the following direct quadratic eigenvalue problem:

(

[M ]λ2
j + [C]λj + [K]

)

{φRj} = 0, (2)

and the corresponding adjoint eigenvalue problem:

(

[M ]T λ2
j + [C]T λj + [K]T

)

{φLj} = 0, (3)

in which λj is the j-th eigenvalue associated to the j-th right eigenvector {φRj} and j-th left eigenvector

{φLj}.

Since the matrices are not necessarily symmetric, the eigenvalues of the problem are real or come in pairs

(λj , λ
∗
j ). If {φj} is a (right or left) eigenvector associated to λj , then

{

φ∗
j

}

is a (right or left) eigenvector

associated to λ∗
j . A very complete review of this kind of problem is addressed in [4].
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2.2 Modal decomposition of the permanent harmonic response

The eigenmodes of the system can be efficiently used in particular for the modal decomposition of the

permanent harmonic response. This can be done considering the state-space representation of the system:

[U ]
{

Q̇(t)
}

− [A] {Q(t)} = {F (t)} , (4)

in which:

[U ] =

[

C M
M 0

]

, [A] =

[

−K 0
0 M

]

, {Q(t)} =

{

q(t)
q̇(t)

}

, {F (t)} =

{

f(t)
0

}

. (5)

The eigenvalues of this problem can be stored in the spectral matrix Λ:

[Λ] =
[
\λj\

]

. (6)

The j − th eigenvalue is associated to:

• a right eigenvector {θRj} such as (Uλj − A) {θRj} = 0, in which {θRj} =

{

φRj

φRjλj

}

. Storing

the eigenvectors (in the same order as the eigenvalues) in the modal matrix [θR] =

[

φR

φRΛ

]

, the

following relationship is verified:

[U ] [θR] [Λ] = [A] [θR] . (7)

• a left eigenvector {θLj} such as {θLj}T (Uλj − A) = 0, in which {θLj} =

{

φLj

φLjλj

}

. Storing the

eigenvectors (in the same order as the eigenvalues) in the modal matrix [θL] =

[

φL

φLΛ

]

, the following

relationships are verified:

[U ]T [θL] [Λ] = [A]T [θL] or [Λ] [θL]T [U ] = [θL]T [A] . (8)

The orthogonality relationships can be written using 2n arbitrary values to build the diagonal matrix [ξ] =
[
\ξj\

]

:

[θL]T [U ] [θR] = [ξ] or [θL]T [A] [θR] = [ξ] [Λ] . (9)

The modal decomposition of the permanent harmonic response at frequency ω is finally:

{Q(t)} = [θR] ([ξ] (jω[E2n] − [Λ]))−1 [θL]T {F (ω)}eiωt, (10)

in which E2n is the 2n × 2n identity matrix and F (ω) is the complex amplitude of the harmonic excitation.

This relationship can also be written using the n degrees of freedom notations in the frequency domain:

{q(ω)} = [φR]

[

\ 1

ξj(iω − λj)\

]

[φL]T {f(ω)}, (11)

A classical way to use these modes is to perform the calculation of the harmonic response according to

previous equations, using a limited number of modes, depending on the maximum frequency value that

should be obtained. In the field of experimental modal analysis, an experimental reduced model is built from

complex modes, which are identified using FRFs (Frequency Response Functions) using techniques like the

ones described in [6, 7] for symmetric problems.

In the following, for practical reasons, without loss of generality, one will assume that the eigenshapes are

normalized such as [ξ] = [E2n].
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3 Properness condition

The properness condition for complex modes is well detailed in reference [1], in the context of symmetrical

systems. Starting from a given set of 2n identified complex modes, this condition is related to the fact that the

system can be exactly represented in the frequency range of interest, by a n degrees of freedom equivalent

physical model, built from identified modes. If a set of vectors does not verify the properness condition, it

means either that the system can not be represented by this reduced set of modes, or that the experimental

identification has introduced some errors in the eigenshapes, in particular because the properness condition is

very sensitive to noise. In this case, Balmès has proposed a methodology to enforce the properness condition

in structural dynamics [1]. In the same paper, it is also shown that the properness condition is equivalent

to the completeness of the basis, which is discussed for example in references [8] and [9]. In this section,

the properness condition and associated matrices reconstruction relationships are extended to the case of non

symmetric systems.

The properness condition is associated to the inverse problem. The orthogonality relationships (9) can be

inverted:

[U ]−1 = [θR] [θL]T (12)

or
[

C M
M 0

]−1

=

[

0 M−1

M−1 −M−1CM−1

]

=

[

φRφT
L φRΛφT

L

φRΛφT
L φRΛ2φT

L

]

, (13)

and

[A]−1 = [θR] [Λ] [θL]T (14)

or
[

−K 0
0 M

]−1

=

[

−K−1 0
0 M−1

]

=

[

φRΛ−1φT
L φRφT

L

φRφT
L φRΛφT

L

]

. (15)

It is then clear that the properness condition for nonsymmetric second order systems can be written as:
[

φRφT
L

]

= 0. (16)

Once this relationship is verified, the matrices can be found using the inverse relations:

M =
[

φRΛφT
L

]−1
, K = −

[

φRΛ−1φT
L

]−1
, C = −

[

MφRΛ2φT
LM

]

. (17)

In the context of symmetric systems, this is one of the most popular ways to identify damping matrices from

experimental measurements. An important remark is that these relationships require the knowledge of n
modes to build a n-degrees of freedom physical equivalent system.

4 Enforcement of the properness condition

It is assumed in this part that a modal identification has been done: the eigenvalues, the left and right eigen-

vectors have been identified from the measured FRFs (a discussion about that point will be presented in the

part related to the experimental test-case). The objective is to perform an optimal correction of eigenvec-

tors in order that the properness condition (16) is verified. In a practical point of view, the experimental

eigenshapes identification is generally quite sensitive to measurement errors, and a small shift on vectors can

induce some large changes not only in the properness relation but also on the values of matrices after the

inversion process. This will be illustrated later on the test-cases.

One then wants to find the matrices [φ̃R] and [φ̃L], that verify the properness relation (16) and that minimize

the norm of [φ̃R − φR] and [φ̃L − φL]. This problem can be written:

Find [φ̃R] and [φ̃L] minimizing
∥
∥
∥φ̃R − φR

∥
∥
∥ and

∥
∥
∥φ̃L − φL

∥
∥
∥ with [φ̃Rφ̃T

L] = 0, (18)
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in which [φR] and [φL] are two given matrices n × 2n and ‖· ‖ is a matrix norm.

A solution of this constrained minimization problem can be found using a Lagrange cost function H to be

minimized, including a Lagrange multiplier matrix [δ]. In a symbolic point of view, the cost function can be

written as:

H =
1

2

∥
∥
∥φ̃R − φR

∥
∥
∥ +

∥
∥
∥φ̃L − φL

∥
∥
∥ + [δ] ⊗ [φ̃Rφ̃T

L], (19)

where ⊗ can be seen as a tensor product. The minimization of this cost function leads to:

{

[φ̃R] = [En − δδT ]−1[φR − δφ∗
L],

[φ̃L] = [En − δT δ]−1[φL − δT φ∗
R].

(20)

This gives the expression of the modified complex vectors when [δ] is known. To obtain the value of the

Lagrange multipliers, one has to solve a Riccati equation:

0 = [φRφT
L] − [φRφ∗T

R ] [δ] − [δ] [φ∗
LφT

L] + [δ] [φ∗
Lφ∗T

R ] [δ]. (21)

This equation is the generalization of the one proposed in reference [1]. This Riccati equation is not the one

which is classicaly used in active control theory, since both matrices in factor of [δ] are not transposed one

from another. Nevertheless, a quite efficient method can be used to find a solution of this equation using

a Newton technique, which requires the resolution of a Sylvester equation that can be solved using several

techniques among which the one proposed in reference [10]. One could note that the proposed methodology

to solve the Riccati equation could be inefficient in the context of active control, since in this case the

”closest” solution to the initial value of [δ] which is found could be another solution than the optimal one in

the sense of active control (real-valued positive-definite solution corresponding to the steady-state optimal

configuration of the control). In our case, the optimal solution is supposed to be ”close” to the initial state

(i.e. the experimental identification is not too far from the ”exact” solution), and the Newton algorithm is

likely to converge to the solution of interest.

5 Rotordynamics application

A wide class of non self-adjoint problems is constituted of rotordynamics applications. A whirling beam

example, which has been described in [11], is considered here to illustrate the application of the method in

this context. This high speed gyroscopic system includes a lumped mass at the center of the beam. The

system is discretized using 10 degrees of freedom, and the corresponding matrices (including gyroscopic

and circulatory terms) are:

[M ] =

[

M 0
0 M

]

, [C] =

[

C G
−G C

]

, [K] =

[

Ka H
−H Kb

]

, (22)

including 5 × 5 matrices such as:

Mpq = mLδpq + 2M sin(pπ/2) sin(qπ/2),
Cpq = (c + h)Lδpq,
Gpq = −2ΩMpq,
Ka

pq = 2 (k1 + (−1)p+qk2) pqπ2/L2 + EIxp2q2π4/L3δpq − Ω2Mpq,

Kb
pq = 2 (k1 + (−1)p+qk2) pqπ2/L2 + EIyp

2q2π4/L3δpq − Ω2Mpq,

Hpq = −hΩLδpq,

(23)

where δpq is the Kronecker symbol, and the system properties are m = 10 kg.m−1, M = 10 kg, L = 5 m,

EIy = 9L3/5π2 N.m2, EIx = 4L3/5π2 N.m2, k1 = k2 = L2/20 N.m, Ω =
√

21.6π rad.s−1, c = h = 0.25
N.S.m−1.
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The complex eigenvalues and left and right eigenvectors are evaluated using the state-space form, and an

artificial noise is added to the calculated values (random noise on real and imaginary parts with a relative

magnitude of 1% for eigenvalues and 3% for eigenvectors).

The efficiency of the methodology can be illustrated using FRFs. The figure 1 exhibits the following curves:

• The Reference FRF, calculated from the initial given matrices. It is supposed to represent the behavior

of the system to be identified. For illustration purpose, only one of the many FRFs is presented here

(corresponding to the collocated input and output on the first degree of freedom).

• The Modal FRF re-built after noise introduction on eigenvectors. This is associated to ”experimen-

tally” identified eigenvalues and eigenvectors. An important point is that this curve is visually coinci-

dent to the reference one. In an experimental procedure, this would indicate that the identification is

correct.

• The Direct FRF reconstructed using the matrices obtained after solving the inverse problem from the

eigenvalues and eigenvectors affected by noise. This procedure clearly fails in this case, because

equations (13) and (15) are not verified strictly since the properness condition is not verified. Some

small differences in the eigendata can induce large discrepancies on the identified system.

• The Proper FRF obtained using data with enforcement of the properness condition, to be discussed in

the next paragraph. This curve is also visually coincident with the reference one.
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Figure 1: Frequency Response Functions between dofs 5 and 7 - Original system (Ref), modal response of

disturbed system (Modal), direct reconstruction (Direct), properness enforced reconstruction (Prop)

One important point is that while the properness condition is not verified, there is no equivalent system that

is able to represent the behavior of the system with 5 degrees of freedom, and this is the reason why the

direct reconstruction fails.

The figure 1 exhibits the FRFs for the disturbed configuration and both reconstructions. One can observe

first that including some noise in the eigenvectors does not affect much the FRFs, which once again indicates

that even with good values of criteria based on FRFs errors, the matrix reconstruction can be poor. The

second observation concerns the enforcement of the properness condition that leads to errors which are very

low compared with those obtained by direct reconstruction. One interesting trend is that the lowest values

of error are obtained for frequencies corresponding to resonances of the system, while the maximum values

are related to anti resonances. Concerning FRFs obtained from matrices identified with inverse procedure,

one can observe in figure 1 that the properness enforcement allows a correct reconstruction, while the direct

inverse technique leads to significant errors. The figure 2 shows the efficiency of the properness enforcement

using a graphical representation of system matrices, since the direct reconstruction introduces extra terms
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Figure 2: Graphical representation of matrices - Original system, direct reconstruction and reconstruction

with properness enforcement (white = zero value, black = maximum amplitude)

in matrices that lead to large errors in FRFs. The matrix which is the most affected by the use of unproper

eigenvectors is the damping matrix. This will be also reported in the next illustrations. One can conclude

that damping matrices identification without properness identification has many chances to fail, and that the

properness enforcement methodology can be seen as a physical regularization procedure.

6 Experimental illustration

6.1 Description of the experimental set-up

In this section an experimental illustration of the methodology is presented. The figure 3 shows the exper-

imental set-up which has been used. It is constituted with two bending beams which are coupled through

their bases by a common ”clamping” device. The frequency range of interest concerns the two firsts modes

of the coupled system, which could be represented by a 2-degrees of freedom equivalent model, using points

1 and 2 indicated in figure 3 as reference points. These points are equipped with accelerometers and some

contactless force transducers are used to excite the structure, with force sensors. An electrical intensity probe

has also been used to check the value of the force sensors and to verify that the moving masses do not perturb

the measured information. The system itself is characterized by symmetric matrices, the unsymmetric parts

are introduced using an active device.

Figure 3: Experimental set-up with analogical loop

The active part includes an Analogic Signal Processing (ASP) circuit, which introduces a force at point 3
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depending on the value of displacement or acceleration of point 4. The results which are presented here

correspond to a force feedback which is directly proportional to the displacement: it can be seen as a non-

symmetric term in the stiffness matrix. The gain of the feedback loop was chosen such that the system

remains in the stable domain. All measurements have been performed using a sine-stepping approach to

avoid undesirable effects due to broadband signal in feedback loop.

6.2 Left and right modes identification

The classical LSCF method [7] can be easily adapted to identify the left and right complex modes of the

structure. As indicated in [12], the full identification of the left and right vectors requires the use of sensors

and excitations at every point of interest (i.e. every degree of freedom of the model). It is emphasized that, as

soon as relationships between left and right eigenvectors are available, this condition is no longer necessary

and only a limited number of excitation points can be used. In the present case, in which there is no link

between left and right vectors, there is no alternative to the excitation of all points of interest, and extension

of LSCF technique for non-self adjoint problem has to be considered.

6.3 Results and discussion

A similar analysis can be performed with the closed loop. In this case the system is not symmetric. The re-

sults presented here correspond to a gain value of 6 in the feedback loop, corresponding to a strong feedback

that remains in the stable domain. The figure 4 shows two measured FRFs and the corresponding synthetized

ones using the identified complex modes, the matrices obtained by direct inversion and those correspond-

ing to properness enforcement. It is then clear that once again the properness enforcement gives very good

results compared with the direct procedure.
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Figure 4: Examples of FRFs for closed loop with gain in 6th position - Original system (Ref), modal synthesis

from identified modes (Modal), direct reconstruction (Direct), properness enforced reconstruction (Prop)

The modified LSCF technique leads to the identification of right and left eigenvectors:

[
φ

6

R

]
=

[
0.0256 − 0.0322i 0.0188 − 0.0201i

0.0368 − 0.042i −0.0381 + 0.0505i

]

,
[
φ

6

L

]
=

[
0.0406 − 0.0511i 0.0399 − 0.0425i

0.0165 − 0.0164i −0.0246 + 0.0278i

]

. (24)

The non symmetry of the system is clear. Once again, the properness enforcement induces small shifts in the
identified complex modes:

[φ̃6

R] =

[
0.0287 − 0.0287i 0.0216 − 0.0173i

0.0380 − 0.0411i −0.0397 + 0.0491i

]

,
[
φ̃

6

L

]
=

[
0.0427 − 0.0490i 0.0413 − 0.0413i

0.0190 − 0.0138i −0.0269 + 0.0249i

]

. (25)

The changes in complex shapes are illustrated in figure 5, in which it can be observed that the changes mainly
occur on the phase values, while the amplitudes of the vectors remain almost unchanged. The direct inversion
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Figure 5: Right and left eigenmodes - original shapes (dashed lines), modified shapes (solid lines); mode 1

(blue), mode 2 (red)

of the problem to estimate the values of the matrices is clearly not the good way to obtain a physical value
of the damping matrix:

[M6] =

[
0.543 0.0173
0.0350 0.628

]

, [C6] =

[
−18.4 −1.25
−1.05 −20.6

]

,
[
K

6
]

=

[
2.59 × 104 98.9
−1.01 × 103 3.07 × 104

]

. (26)

The reconstruction after properness enforcement is much better:

[M̃6] =

[
0.541 0.0168
0.0356 0.627

]

, [C̃6] =

[
1.60 −0.451
1.48 0.608

]

,
[
K̃

6
]

=

[
2.57 × 104 87.8

−988 3.06 × 104

]

. (27)

The values of these matrices are clearly in accordance with the experimental conditions: compared with

identified values in open loop, the mass matrix is almost unchanged, the damping matrix is slightly changed,

according to the phase delays in the feedback loop, while the extradiagonal term of the stiffness matrix is

very affected by the force feedback.

This analysis can be performed for several amplifier gain values in the feedback loop, in order to check the

evolution of matrices terms when the gain changes. The figure 6 shows the results of the analysis. The mass

matrix seems to be almost unsensitive to the gain value, which is in accordance with the fact that the feedback

is supposed to be proportional to the displacement. The extradiagonal terms are varying, but they are much

smaller than the diagonal ones, this is physically reasonable. The stiffness matrix extradiagonal term K12

exhibits the largest evolution when the amplifiers gain changes, this is in accordance with the nature of the

feedback, while the diagonal terms remain almost constant. Finally, even the behavior of the damping matrix

is coherent: there is a clear shift between the open loop configuration and the feedback loop configuration,

which is due to the signal processing that induces phase delays which can be interpreted as damping effects.

Nevertheless, once the feedback is considered, diagonal terms are almost constant, while an evolution on

extradiagonal terms can be observed, due to the amplification of the feedback gain.

7 Extension of properness to vibroacoustics

7.1 Movement equations

Discretizing an internal vibro-acoustical problem using the natural fields for the description of the structure

(those which can be directly measured), i.e. displacement for the structure and acoustic pressure for the

cavity, leads to the following matrix system [13]:
[

Ms 0
LT Ma

]

︸ ︷︷ ︸

[M ]

{

ẍ
p̈

}

︸ ︷︷ ︸

{q̈}

+

[

Cs 0
0 Ca

]

︸ ︷︷ ︸

[C]

{

ẋ
ṗ

}

︸ ︷︷ ︸

{q̇}

+

[

Ks −L
0 Kf

]

︸ ︷︷ ︸

[K]

{

x
p

}

︸ ︷︷ ︸

{q}

=

{

Fs(t)

Q̇a(t)

}

︸ ︷︷ ︸

{f(t)}

, (28)

in which {x} is the vector of generalized displacements of the structure, {p} is the vector of acoustic pres-

sures, [Ms] is the mass matrix of the structure, [Ma] is called ”mass” matrix of acoustic fluid (its components
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Figure 6: Evolution of mass, stiffness and damping matrices (SI units) terms versus gain value of amplifier

(dashed line = open loop values)

are not homogeneous to masses, the name is chosen for analogy with structural denomination), [Ks] is the

stiffness matrix of the structure, [Ka] is the ”stiffness” matrix of fluid domain, [L] is the vibro-acoustic cou-

pling matrix, [Cs] and [Ca] respectively represent structural and acoustic losses. This formulation includes

the hypothesis that there is no loss at the coupling between structural and acoustic parts, and that internal

losses can be represented using equivalent viscous models. {Fs(t)} is the vector representing the generalized

forces on the structure, while {Q̇a(t)} is associated to acoustic sources (volume acceleration) in the cavity.

The non self-adjoint character of the formulation induces difficulties for the resolution of this kind of problem

using modal decomposition. Some research works have been done to find symmetric formulations dedicated

to coupled vibroacoustic problems [13, 14], but up to now, these formulations are either not able to take into

account dissipation in the fluid domain, or lead to full matrices which can not be efficiently used for large

models. The technique which is widely used for model reduction in the field of numerical analysis is based

on the use of two uncoupled bases (structural and fluid), and the solution of the coupled system is projected

on these bases, even if some convergence problems can be found [15]. Being able to evaluate numerically

the coupled modal basis in an efficient way is still a challenge, in particular for damped problems. On the

other hand, starting from experimental data, it is possible to identify these modes [2], and one of the ways

to build reduced models could be to follow the same methodology as the one used in structural dynamics,

extended to vibroacoustics.

7.2 Complex modes for vibro-acoustics

The non-self adjoint character of vibroacoustic problem is particular since extradiagonal coupling terms that

appear in mass and stiffness matrices are linked. It can be shown [2] that the left eigenvectors are related to

the right ones by the following relationship:

If {φRj} =

{

Xj

Pj

}

then {φLj} =

{

Xj

−Pj/λ2
j

}

. (29)
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This point is fundamental for modal analysis of coupled system, since only extraction of right eigenvectors

is required to derive the left ones. The previous relation can also be written as:

If [φR] =

[

X
P

]

then [φL] =

[

X
−PΛ−2

]

. (30)

7.3 Properness for vibro-acoustics

For the particular vibro-acoustic case, left eigenvectors are linked to right ones, and the properness condition

can be written using only the right complex eigenvectors:

[

XXT −XΛ−2P T

PXT −PΛ−2P T

]

= 0. (31)

7.4 Methodologies for properness enforcement

7.4.1 Structural dynamics based strategy

When the complex modes are available from experimental identification, one can use inverse relationships

in order to find the reduced model which is supposed to have the same behavior as the measured one. The

fact is that in general, the modes do not verify the properness condition (31). In the particular case of

vibroacoustics, one can try to follow the same methodology as the one used in structural dynamics. The

following constrained optimization problem should then be solved:

Find [X̃] and [P̃ ] minimizing
∥
∥
∥X̃ − X

∥
∥
∥ and

∥
∥
∥P̃ − P

∥
∥
∥

while [X̃X̃T ] = 0,
[

X̃P̃ T
]

= 0,
[

X̃Λ−2P̃ T
]

= 0,
[

P̃Λ−2P̃ T
]

= 0,
(32)

in which [X] and [P ] are two given complex rectangular matrices and [Λ] is a given diagonal complex matrix.

This problem can be re-written using four Lagrange multipliers matrices [δj ] (j=1 to 4):







0 =

{

X̃

P̃

}

−
{

X
P

}

+ 1
2

[

δ1 + δT
1 δ2

δT
2 0

] {

X̃

P̃

}

−1
2

[

0 δ3

δT
3 δ4 + δT

4

] {

X̃Λ−2

P̃Λ−2

}

0 = [X̃X̃T ]

0 = [X̃P̃ T ]

0 = [X̃Λ−2P̃ T ]

0 = [P̃Λ−2P̃ T ].

(33)

Solving this problem is clearly not easy because of the presence of the Λ matrices that makes impossible

to find explicitly the expression of multipliers versus the unknown vectors. An iterative procedure could be

investigated but this is not the best way to obtain quick results that can be used in real-time during modal

analysis. Some simplified methods have been proposed [16], among which one is called over-properness:

considering the fact that the method developed for structural dynamics [1] is valid for all matrix [x] subjected

to a properness condition [xxT = 0], one can use as [x] matrix:

[x] =






X
P

−PΛ−2




 , (34)

11



then:

[xxT ] =






XXT XP T −XΛ−2P T

PXT PP T −PΛ−2P T

−PΛ−2XT −PΛ−2P T PΛ−4P T




 . (35)

It can be observed that the four required terms of equation (31) are included in this matrix, while two of

them are not theoretically required. Using this vector in the procedure detailed by equations (18) leads to

a so-called over-proper solution which includes more constraints than those required, but that includes the

required ones.

7.4.2 Alternative strategy

Another thinkable way for obtaining matrices of system (28) is to use a least-square approach. Being given

a set of measured frequency responses [X] corresponding to a set of measured excitations [F ], the matrices

can be found by solving the following problem:

min
([M ],[C],[K])∈▼×❈×❑

ε(M, C, K) = ||[−ω2M + iωC + K][X] = [F ]||, (36)

where ▼ × ❈ × ❑ is the space of admissible matrices (whose topology correspond to a vibroacoustic

problem). The function to minimize can be written using a linear system:

ε(M, C, K) = ||[D]{α} − {G}||, (37)

where {α} = {M11M12...Knn}T , while [D] includes terms coming from [X] and ω, and {G} includes terms

coming from {F}. The matrices components can finally be found using pseudo-inverse for minimization of

least-square error:

{α} = [D]†{G}. (38)

This strategy can then be used to directly find the matrices without using the complex eigenvectors, which can

be found in post processing stage by solving the eigenvalue problem. This approach implies undoubtedly

a higher calculation cost than the previous strategies, in particular for systems with numerous degrees of

freedom, while in the case of low order reduced models, this strategy could be appropriate.

7.5 Experimental test-case

An experimental test-case based on measurements on a guitar given by F. Gautier from LAUM-Le Mans
and J.-L. Le Carrou from LAM-Paris VI is now considered. In that case, only two degrees of freedom are
considered, in order to represent the behavior of the guitar in the frequency range corresponding to the so-
called A0 and T1 modes, which are of first interest in the design of the instrument [17, 18, 19]. These two
modes have been identified experimentally by a curve fitting technique, and the FRFs built from these two
modes is considered as the reference in the following. The direct approach leads once again to bad estimation
of damping terms:

[M ] =

[
3.10 × 10−2 2.10 × 10−9

3.88 × 10−2 2.85 × 10−7

]

, [C] =

[
−2.23 2.19 × 10−6

−3.68 −3.72 × 10−5

]

, [K] =

[
2.30 × 104

−3.59 × 10−3

705 1.28 × 10−5

]

.

(39)

The properness enforcement allows the damping terms to become more physical:

[M ] =

[
3.09 × 10−2 1.88 × 10−9

3.84 × 10−2 2.83 × 10−7

]

, [C] =

[
0.942 −1.52 × 10−6

0.315 7.55 × 10−6

]

, [K] =

[
2.27 × 104

−3.57 × 10−3

632 1.26 × 10−5

]

.

(40)

Finally, the least-square error (LSE) approach leads to a correct topology of matrices, with physical damping
term on structural part, while its value on the acoustic part is negative, but very small:

[M ] =

[
2.91 × 10−2 0
3.44 × 10−2 2.57 × 10−7

]

, [C] =

[
1.37 0
0 −2.97 × 10−6

]

, [K] =

[
2.15 × 104

−3.45 × 10−3

0 1.15 × 10−5

]

.

(41)
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The comparison of FRFs, in figure 7, leads to the conclusion that the direct inversion is clearly not the right

way to proceed. One can also observe that, even if the topology of the over-proper solution is not exactly

the right one, the global error on FRFs reconstruction is of the same order as in the case of LSE technique.

Indeed, depending on the objective, one should evaluate matrices from both formulations and choose the ones

which are the most appropriate. One can also point out the fact that all methodologies lead to quite good

estimation of mass and stiffness matrices, the critical point being the evaluation of damping matrix. The

properness enforcement is not sufficient to obtain the correct topology, but the improvement is nevertheless

clear, it can be seen as a regularization procedure for the inverse problem which is addressed here.
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Figure 7: Methodologies for properness enforcement on guitar measurements

8 Conclusion

In this paper, the properness condition of complex modes is investigated and extended to non symmetric

second order systems. An original methodology is proposed to correct the experimental complex mode

shapes in an optimal way, in order to physically regularize the inverse procedure to identify the system

matrices. Three illustrations are presented. The first one is a numerical test based on an arbitrary simulated

system without any link to a particular physical problem. The second one is a numerical test coming from

the discretization of a rotordynamic application. The third one is an experimental test based on two coupled

bending beams with a non-colocated active feedback force. The trends observed on the three examples lead

to the following conclusions:

• Enforcing the properness condition on complex modes produces very slight changes in their com-

ponents, and these changes mainly occur on the phase values while the amplitudes remain almost

unchanged.

• When reconstructing a physical model from complex eigenvalues and eigenvectors, very small dif-

ferences in the complex modes lead to very large differences in system’s matrices, especially in the

damping matrix. As a consequence, even a low level of noise affecting the complex modes can lead to

a totally wrong and non-physical estimation of the damping matrix.

• Modifying the complex modes by enforcing the properness condition is a good way to regularize the

inverse problem. The reconstructed matrices and the derived FRFs show that the slight modifications

applied to the eigenvectors drastically reduce the effect of uncertainties and allow the identification of

physically meaningfull matrices.

Finally, the enforcement of the properness condition on experimentally identified complex modes should be

considered each time the reconstruction of a physical system is envisaged.
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The properness condition can be easily extended to vibroacoustics: this property must be verified by complex

modes in order to be those of a physical system. Two techniques have been proposed to enforce the property

on eigenshapes that do not verify it, leading to much better results than those corresponding to the use

of initial identified vectors. The first technique is based on the structural dynamics procedure, leading to

enforcement of more conditions than the theoretically required ones. The second one is based on a least

square error minimization. None of the two methods exhibits perfect results, so it is clear that one of the

next challenges in vibroacoustic reduced models identification based on experimental modal analysis will be

the improvement of the properness enforcement methodology. Up to now, the two proposed methods can be

applied for a given application and the user can choose between results depending of the efficiency of the

identified reduced model.
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