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Flexural vibration of perforated plates and porous elastic materials under acoustic loading a)

This paper presents a method of theoretical treatment of acoustic coupling due to flexural vibration of perforated plates and plates of porous elastic materials. The analytical model is developed by introducing flow continuity at the plate surface in a spatially mean sense and air-solid interaction within the plate material. To demonstrate the method of application, some fundamental acoustic problems based on a classical thin-plate theory are analyzed and discussed in relation to the interactive effect of flexural vibration and plate permeability. For acoustic radiation from a vibrating plate excited by a harmonic pointforce, the attenuation effect of power radiation appears at frequencies below the critical frequency of coincidence. In the problem of sound absorption of a perforated plate or a plate of porous elastic material backed by an air layer, as permeability decreases, the effect of plate vibration increases. For perforated absorber systems including plate vibration effects, the trend of variation from ordinary theory depends on plate thickness.

I. INTRODUCTION

In elastic solids shaped into plate-like form, three types of waves occur: quasitransverse shear, quasilongitudinal, and flexural waves. Of these wave types, flexural waves are by far the most important in the field of noise and vibration control because of their direct contribution to sound radiation. In theoretical treatment of flexural vibration of plates, thin-plate theory is the most popular and widely used, while theory of thick plates including the effect of shear deformation in the plate cross section has been often used as a corrected plate theory. Both theories are based on general ͑clas-sical͒ elastic theory for homogeneous and isotropic media. Therefore, application of these plate theories is limited to materials of this type.

In problems of structural-acoustic coupling due to plate vibration, the boundary surface of the plate is assumed to be homogeneous. There are also some materials, such as perforated plates or plates of porous materials having extensive range of application in machinery noise control and architectural acoustics, to which ordinary methods of setting the boundary condition cannot be applied. In the case of perforated plates with a smaller hole diameter, the phase of flexural vibration naturally appears as demonstrated by the experimental work of Lee. [START_REF] Lee | Compact sound absorbers for low frequencies[END_REF] However, the effect of plate vibration on sound absorption of microperforated plates [START_REF] Lee | Compact sound absorbers for low frequencies[END_REF][START_REF] Maa | Microperforated-panel wideband absorbers[END_REF][START_REF] Fucs | The application of micro-perforated plates as sound absorbers with inherent damping[END_REF] has been disregarded since the pioneering work of Rayleigh. [START_REF] Rayleigh | Theory of Sound ͑Dover[END_REF] A similar situation can be seen in the plate-like form of glass wool or rock wool used for ordinary purposes of sound absorption and/or heat insulation; i.e., flexural-mode vibration as well as properties of dilatational wave-propagation media exist. Furthermore, in the case of newly developed sound absorbing panels with pores of a solid frame, [START_REF] Koga | Desirable construction of porous sound absorber with rigid frame[END_REF] as permeability decreases the effect of flexural vibration may become so serious that it cannot be disregarded.

The present paper focuses on development of a generalized approach to investigate problems surrounding structural-acoustic coupling for both perforated plates and plates of porous elastic materials. As a similar problem, Go ¨ransson [START_REF] G O ¨ransson | Acoustic finite element formulation of a flexible porous material-A correction for inertia effects[END_REF] studied the problem of a flexible porous material assuming that the material is limp ͑the plate stiffness effect is neglected͒; in that study, solid frame motion is included only by the viscous drag force due to relative motion between the solid frame and the fluid. Owing to the latter assumption, however, this model does not allow for studies of effects of mechanical excitation applied to the material. More recently, Horoshenkov et al., [START_REF] Horoshenkov | Acoustic response of a thin poroelastic plate[END_REF][START_REF] Horoshenkov | A method to calculate the acoustic response of a thin, baffled, simply supported poroelastic plate[END_REF] analyzed acoustic response of porous elastic materials, including the effect of plate vibration, which is similar to the present problem. They introduced a simple boundary condition as a coupling condition between the plate and surrounding air at the plate surface, which is different from the model herein. In Horoshenkov's model, flow continuity at the plate surface is used by assuming that the particle velocity of surrounding air equals the sum of frame velocity and particle velocity of the wave-propagation medium modeled as a usual static porous material. In this model the effect of air-solid interaction within the material is neglected.

In the present analytical model, the plate is assumed to be a thin plate governed by classical thin-plate theory, with the same fluid ͑air͒ on both sides. Interaction between the plate and surrounding air is introduced in a spatially mean a͒ Portions of this work were presented in ''Effects of flow resistance on acoustic performance of permeable elastic-plate absorbers,'' Proceedings of the 16th International Congress on Acoustics, Seattle, WA, June 1998. sense by combining flow continuity at the plate surface with the force due to relative motion at the air-solid interface within the plate material. As a result, the effect of inhomogeneity of the boundary surface is smoothed out, i.e., it is assumed in this study that the length scales of structure components of the boundary surface are relatively small compared to the acoustic wavelength. A similar treatment can be seen in Leppington's work [START_REF] Leppington | The effective boundary conditions for a perforated elastic sandwich panel in a compressible fluid[END_REF] for analysis of acoustic response of a perforated sandwich plate; there, he formulated the problem in terms of a hypothetical compound surface with homogeneous boundary conditions. Abrahamas 10 applied this method to the same sandwich plate system for calculations of sound radiation due to a line excitation. The analytical model employed by both researchers is eventually homogeneous impermeable elastic plate with homogeneous boundary conditions that is different on the two sides: one is acoustically hard and the other has properties of a Helmholtz resonator.

To demonstrate the method of application of the simplified model proposed here, some fundamental acoustic problems are analyzed and discussed in relation to the interactive effect of plate vibration and permeability.

II. THEORY

A. Acoustic coupling for perforated plates

Shown schematically in Fig. 1 is a cross-sectional view of a perforated plate that is vibrating in flexural mode with a velocity v p under any acoustic loading with the pressure difference ⌬p. Consider the case, in which the plate itself is at rest (v p ϭ0), the mean particle velocity v ¯of surrounding air can be written as v ¯ϭv f , where v f is the spatially averaged velocity in the hole and is the ratio of perforation. Let Z 0 be the acoustic impedance of the hole, and Z be the overall acoustic impedance of the plate surface, which are defined as

Z 0 ϭ ⌬p v f ϭ ⌬p v ¯ϭZ. ͑1͒
The resistance term Z resist of the acoustic impedance Z 0 (ϵZ resist ϩZ react ) is related to air-solid interaction. Thus, when v p ϭ0, Eq. ͑1͒ can be rewritten as

Z resist v f ϩZ react v f ϭ⌬p. ͑2͒
Consider next the case in which the plate is vibrating under the same acoustic loading; the mean particle velocity v ¯becomes v ¯ϭv p ϩ͑v f Ϫv p ͒. ͑3͒

In this case, the viscous force at the air-solid interface in the hole depends on relative velocity v f Ϫv p . Owing to this alteration, Eq. ͑2͒ is modified as Z resist (v f Ϫv p )ϩZ react v f ϭ⌬p, which yields

v f Ϫv p ϭ ⌬p Z 0 Ϫ Z react Z 0 v p . ͑4͒
Thus from Eqs. ͑1͒ and ͑4͒, Eq. ͑3͒ becomes

v ¯ϭ I v p ϩ ⌬p Z 0 ϭ I v p ϩ ⌬p Z , ͑5͒ 
where I ϭ1Ϫ(Z react /Z 0 ). The simple and easy way of realizing this approach is to substitute the flow resistance for the impedance Z, which is measured using an ordinary flowresistance apparatus with a steady flow. This simple approach was introduced into the theory for acoustic properties of permeable membranes; [START_REF] Takahashi | Acoustic properties of permeable membranes[END_REF] it gives good quantitative predictions that show good agreement with experimental results. In the case of elastic plates, however, due to thickness of the plate, there exist other factors such as air mass inertia in the hole and the radiation effect at the hole entrance. These factors contribute mainly to the imaginary part of the impedance. Then, the flow resistance alone seems to be insufficient for analyzing the perforated plate. In the present case, therefore, an expression developed by Maa 2 is adopted, which is

Z 0 ϭZ resist ϩZ react ϭ 8 0 ͑ d/2͒ 2 ͩͱ 1ϩ X 2 32 ϩ &dX 8h ͪ Ϫi 0 h ͩ 1ϩ 1 ͱ9ϩX 2 /2 ϩ 0.85d h ͪ ,

͑6͒

where Xϭ(d/2)ͱ 0 / 0 , with d, h as the diameter of the hole and plate thickness, respectively, 0 as the air viscosity ͑ϭ1.8ϫ10 Ϫ5 N•s/m 2 in the normal condition͒, and 0 as the air density. Equation ͑6͒ is an approximation of the analytical solution for wave propagation in a tube having a circular cross section, 12,[START_REF] Zwikker | Sound Absorbing Materials ͑Elsevier[END_REF] and is given end corrections. [START_REF] Ingard | On the theory and design of acoustic resonators[END_REF] In any problems concerning structural-acoustic coupling due to flexural vibration, the continuity condition at the interface is used as the boundary condition. Let v be the particle velocity of air on the boundary surface of the vibrating plate. The boundary condition can be written as vϭv p for the case that the plate surface is assumed homogeneous; the rigid boundary moves concomitant with the velocity v p . In contrast, in the case of a perforated plate with the acoustic impedance Z 0 of the orifice, by using velocity v ¯of Eq. ͑5͒ with a spatially averaged sense over the plate surface as shown in Eq. ͑3͒, the boundary condition can be written as

vϭ I v p ϩ ⌬p Z 0 . ͑7͒

B. Acoustic coupling for porous elastic plates

Porous elastic materials have a two-phase structure as the wave propagation media, air within the pores and the frame. Many theoretical models for wave propagation in porous media have been presented since the initial conceptual model was developed by Rayleigh. 12 These are classified roughly into the following three categories: the method for modeling acoustic behavior in the pores, the method for taking into account the effect of frame vibration, [START_REF] G O ¨ransson | Acoustic finite element formulation of a flexible porous material-A correction for inertia effects[END_REF][START_REF] Beranek | Acoustical properties of homogeneous, isotropic rigid tiles and blankets[END_REF][START_REF] Kawasima | Sound propagation in a fiber block as a composite medium[END_REF] and development of a mixed two-phase model based on the general elastic theory. [START_REF] Biot | Theory of elasticity and consolidation for a porous anisotropic solid[END_REF] Furthermore, some empirical models 18 -20 derived from the original conception of Delany and Bazley 21 have been presented. Works concerned with such materials are extensively reviewed by Attenborough [START_REF] Attenborough | The influence of microstructure on propagation in porous fibrous absorbents[END_REF][START_REF] Attenborough | Acoustical characteristics of porous materials[END_REF] and Allard. [START_REF] Allard | Propagation of Sound in Porous Media ͑Elsevier[END_REF] In application of these theories to the practical acoustic problems such as absorption and reflection of sound, many parameters for detailed description of wave motion in the medium, e.g., porosity, shape factor, tortuosity, and so on, are integrated into an equivalent homogeneous wavepropagation medium. Thus, such porous materials replaced by the homogeneous medium can be characterized by two parameters: the propagation constant and the characteristic impedance, or equivalently the complex density and the complex bulk modulus. For practical applications in engineering, such materials are often shaped into plate-like form. In this case, it is expected that waves in the material approximate the flexural type; this tendency may become more remarkable with decreased permeability. As a related problem, Theodorakopoulos and Beskos 25 derived governing equations for flexural vibrations of thin, fluid-saturated, poroelastic plates, which are based on Biot's theory. The derivation process is similar to those in classical thin-plate theory based on homogeneous elastic theory. They argued about the dynamic response of the plate neglecting the effect of acoustic loading.

The approach used herein for such porous elastic plates in structural-acoustic problems can be considered in a similar manner as described in the preceding section; that is, the boundary condition at the air-structure interface at the plate surface can be described by combining continuity of flow in a spatially mean sense with air-solid interaction within the plate material. From the concept of this model, to adopt any values for both the propagation constant and the characteristic impedance, it is required to use any rigid-frame model of porous media.

Let p be the sound pressure in the equivalent medium characterized by the propagation constant ␥ and the characteristic impedance Z c , of any porous elastic material composed of rigid frame and pores. The particle velocity of the medium can be written as (Ϫ1/␥Z c ) grad p. In the case where the material is shaped into plate-like form lying in the xy plane, and vibrating in the z direction with the velocity v p , a similar method used in the preceding section can be applied; that is, reasoning that the resistance term of ␥Z c is related to air-solid interaction within the material gives an expression of the form

v f Ϫv p ϭϪ 1 ␥Z c ץp ץz Ϫ ͓␥Z c ͔ react ␥Z c v p , ͑8͒
where v f is the particle velocity in pores and ͓␥Z c ͔ react represents the reactance term of ␥Z c . The particle velocity in an averaged sense of the surrounding air on the plate surface vibrating in the flexural mode can be expressed by Eq. ͑3͒.

Substituting Eq. ͑8͒ into Eq. ͑3͒ yields

v ¯ϭ I v p Ϫ 1 ␥Z c ץp ץz , ͑9͒
where I ϭ1Ϫ͓␥Z c ͔ react /␥Z c and is the porosity defined in the same manner as described by Biot. [START_REF] Biot | Theory of elasticity and consolidation for a porous anisotropic solid[END_REF] For quantities ␥ and Z c , any model is available for porous media, provided that its frame is assumed to be rigid. In the following section, we will use an empirical model developed by Allard, [START_REF] Allard | New empirical equations for sound propagation in rigid frame fibrous materials[END_REF] which is

␥Z c ϭϪi 0 ͫ 1Ϫ ͑ 1Ϫi 0 f /R F ͒ 1/2 i2 0 f /R F ͬ ,

͑10͒

where R F represents the flow resistivity ͓N•s/m 4 ͔ of the material and f is frequency. The reactance term of ␥Z c is given as ͓␥Z c ͔ react ϭi Im͕␥Z c ͖.

III. APPLICATION TO FUNDUMENTAL ACOUSTIC PROBLEMS

Fundamental acoustic problems related to flexural plate vibration are, for example, sound radiation due to mechanical excitation of a force, transmission of sound caused by an acoustic excitation, and sound absorption of a plate. In these problems, if the plate is permeable, response may seriously undergo effects of changed permeability. A method of acoustic coupling described in the preceding section can be used for such cases. Methods of application for several acoustic problems due to flexural motion of permeable plates are outlined in this section; also, some numerical examples are presented to illustrate general characteristics of response including permeability effects.

A. Sound radiation of a perforated single plate excited by a point force 1. Formulation of the problem

Consider a perforated thin elastic plate of infinite extent with the same fluid ͑air͒ on both sides, lying in the plane z ϭ0; the plate vibrates under a concentrated normal force acting at the origin of cylindrical coordinates (r,,z)a s shown in Fig. 2͑a͒. The equation of motion for the axisymmetric displacement w(r) can be written as

Dٌ 4 wϪh 2 wϭp 1 ϩ ␦͑r͒ 2r Ϫp 2 , ͑11͒
where ٌ 4 ϭ͓(ץ 2 /ץr 2 )ϩ(1/r)(ץ/ץr)͔ 2 , and where ␦(r) is the Dirac delta function, D, , and h represent the plate's flexural rigidity, density, and thickness, respectively. Let r be the vec-tor denoting a position in the region or on the boundary surface S, and r 0 a position on S. With a Helmholtz integral formula, the radiated sound pressure p 1 on the surface S of the region zр0 can be expressed as

p 1 ͑ r͒ϭ2 ͵͵ S G͑r͉r 0 ͒ ץp 1 ͑ r 0 ͒ ץn dr 0 , ͑12͒ 
where G is the free space Green's function given by

G͑r͉r 0 ͒ϭ e ik 0 R 4R , Rϭ͉rϪr 0 ͉, ͑13͒
with k 0 ϭ/c 0 as the acoustic wave number, c 0 as the speed of sound, and n as the outward normal to the surface. Applying the relation of Eq. ͑7͒ to the pressure gradient of Eq. ͑12͒ yields

ץp 1 ץn ϭ ץp 1 ץz ͯ zϭ0 ϭi 0 ͩ Ϫi I wϩ p 1 Ϫ p 2 Z 0 ͪ . ͑14͒
Substitution of Eqs. ͑13͒ and ͑14͒ into Eq. ͑12͒ yields

p 1 ͑ r͒ϭ 1 2 ͵͵ S ͓ 0 2 I wϩik 0 ␤͑ p 1 Ϫp 2 ͔͒ e ik 0 R R dr 0 ,

͑15͒

where ␤ϭ 0 c 0 /Z 0 . Similarly, the radiated sound pressure p 2 on the surface of the region zу0 is given by

p 2 ͑ r͒ϭϪp 1 ͑ r͒. ͑16͒
Equations ͑11͒, ͑15͒, and ͑16͒ form a set of simultaneous equations with unknown quantities w, p 1 , and p 2 . The solution can be obtained in the wave-number space by using the Hankel transform technique. The transform pair with respect to r and the wave-number space k is defined, for example, as

w͑r ͒ϭ ͵ 0 ϱ W͑k ͒J 0 ͑ kr͒kdk, ͑17͒ W͑k ͒ϭ ͵ 0 ϱ w͑r ͒J 0 ͑ kr͒rdr, ͑18͒
where J 0 (kr) denotes the Besell function of order zero. Solutions for the transformed expression w, p 1 , and p 2 are

W͑k ͒ϭ͑ ͱk 0 2 Ϫk 2 ϩ2k 0 ␤͒F 1 ͑ k ͒, ͑19͒ P 2 ͑ k ͒ϭϪP 1 ͑ k ͒ϭϪi 0 2 I F 1 ͑ k ͒, ͑20͒
where

F 1 ͑ k ͒ϭ 1/͓2D͑k 4 Ϫk F 4 ͔͒ ͱk 0 2 Ϫk 2 ϩ2k 0 ␤Ϫ2i 0 2 I /͓D͑k 4 Ϫk F 4 ͔͒ ͑21͒
and k F 4 ϭh 2 /D. Taking the inverse transform of these equations gives the solution for w, p 1 , and p 2 . The energy flow across the surface with the sound pressure p 2 and the particle velocity v 2 normal to the surface is given by Re͕p 2 v 2 * ͖/2, where a symbol * represents the complex con- jugate. From Eqs. ͑7͒ and ͑16͒ it can be shown that

v 2 ϭϪi I wϪ 2␤ 0 c 0 p 2 . ͑22͒
The acoustic power P W radiated from this surface under a point excitation of 1N force can be obtained by integrating the energy flow over the whole area of the surface, which is given by

P W ϭ 0 3 ͉ I ͉ 2 ͵ 0 k 0 ͉F 1 ͑ k ͉͒ 2 ͱk 0 2 Ϫk 2 kdk. ͑23͒

Numerical results and discussion

An example of results calculated for the radiated power is shown in Fig. 3. The results are presented showing the power level ͑in dB re 10 Ϫ12 W͒ radiated from a perforated acrylic panel of thickness 9 mm under a point excitation of 1N force, with a parameter of the ratio of perforation . Other factors related to flexural vibration of the plate are Young's modulus, E; density, ; loss factor, ; which are assumed here as follows: Eϭ5.6ϫ10 9 N/m 2 , ϭ1150 kg/m 3 , ϭ0.02. For density, the actual value (1 Ϫ) was used instead of , while all other parameters were assumed to be constant regardless of perforation change. The hole diameter was taken as dϭ1, 3, and 5 mm with 20 mm hole spacing, also, corresponding perforation was 0.2%, 1.77%, and 4.91%, respectively. The critical frequency of coincidence f c was about 3 kHz, that is slightly shifted by perforation change. Clearly, the effect of change in is quite different above and below f c . At frequencies above f c the radiated power is little affected by change in ; below f c , however, the effect increases monotonically as frequency decreases. As expected, sound radiation from a vibrating permeable plate strongly depends on both sound absorption and sound transmission characteristics. Some explanations concerning this matter are given in Sec. III B 2.

B. Sound absorption and sound transmission of a perforated single plate 1. Formulation of the problem

Consider the case of Fig. 2͑b͒, in which the same plate as in the preceding section is vibrating under an incident plane wave at angle . The analytical procedure is the same as that described in the previous work for permeable membranes, [START_REF] Takahashi | Acoustic properties of permeable membranes[END_REF] except for the method of modeling the permeability. Then only outline will be described below. With a Helmholtz integral formula for a two-dimensional problem, the sound pressure p 1 (x) at the surface of the source side can be expressed as

p 1 ͑ x ͒ϭ2 p i ͑ x ͒ ϩ i 2 ͵ Ϫϱ ϱ ץp 1 ͑ x 0 ͒ ץn H 0 ͑ 1 ͒ ͑ k 0 ͉xϪx 0 ͉͒dx 0 , ͑24͒ 
where H 0 [START_REF] Lee | Compact sound absorbers for low frequencies[END_REF] (k 0 ͉xϪx 0 ͉) denotes the Hankel function of the first kind of order zero. The sound pressure associated with the plane wave of unit amplitude is the form p i ϭe ik 0 (sin •xϩcos •z) . Applying Eq. ͑7͒ to this case and substituting Eq. ͑14͒ into Eq. ͑24͒ yields

p 1 ͑ x ͒ϭ2 p i ͑ x ͒ϩ i 2 ͵ Ϫϱ ϱ ͓ 0 2 I wϩik 0 ␤͑ p 1 Ϫp 2 ͔͒ ϫH 0 ͑ 1 ͒ ͑ k 0 ͉xϪx 0 ͉͒dx 0 . ͑25͒ 
Similarly, the sound pressure p 2 (x) on the surface of the transmitted side can be expressed as

p 2 ͑ x ͒ϭϪ i 2 ͵ Ϫϱ ϱ ͓ 0 2 I wϩik 0 ␤͑ p 1 Ϫ p 2 ͔͒ ϫH 0 ͑ 1 ͒ ͑ k 0 ͉xϪx 0 ͉͒dx 0 . ͑26͒
The pressure difference p 1 Ϫ p 2 causes plate vibration, which is governed by

Dٌ 4 wϪh 2 wϭp 1 Ϫp 2 , ͑27͒
where ٌ 4 ϭ(ץ 2 /ץx 2 ϩץ 2 /ץz 2 ) 2 . A set of simultaneous equations, Eqs. ͑25͒-͑27͒, can be solved analytically by using the Fourier transform technique. Details of the procedure are presented in Ref. 6. Finally the closed form solutions for the reflected sound pressure p r , and the transmitted sound pressure p 2 at an arbitrary point ͑x,z͒ are written as follows:

p r ͑ x,z ͒ϭ cos ϩi 0 2 I F 2 ͑ k 0 sin ͒cos cos ϩ2␤ ϫe ik 0 ͑ sin •xϪcos •z͒ , ͑28͒ p 2 ͑ x,z ͒ϭ 2␤Ϫi 0 2 I F 2 ͑ k 0 sin ͒cos cos ϩ2␤ ϫe ik 0 ͑ sin •xϩcos •z͒ , ͑29͒
where F 2 (k)ϭ4F 1 (k). The absorption coefficient at an incident angle can be calculated as 1Ϫ͉p r /p i ͉ 2 ; the sound transmission loss is given by 10 log 10 (͉p i / p 2 ͉ 2 ). In the following sections, these are statistically averaged over the range of incident angles that corresponds to field incidence.

Numerical results and discussion

Sound absorption of microperforated plates was investigated by some authors [START_REF] Lee | Compact sound absorbers for low frequencies[END_REF][START_REF] Maa | Microperforated-panel wideband absorbers[END_REF][START_REF] Fucs | The application of micro-perforated plates as sound absorbers with inherent damping[END_REF] for the purpose of developing effective absorbers at low frequencies. For this purpose, the value of must be made smaller, to such an extent that the effect of plate vibration cannot be disregarded. In the case that a single perforated plate is used as a partition, we are interested in the effect of permeability on sound transmission as well as sound absorption. Figure 4 shows such numerical examples calculated for the same plate material as in Sec. III A 2, in which lines and symbols are as indicated for Fig.

3.

Characteristics of transmission loss change with the perforation ratio, corresponding to sound absorption change. In the limit case of ϭ0, as a matter of course, the theoretical expressions of Eqs. ͑28͒ and ͑29͒ agree well with existing theoretical results. [START_REF] Sakagami | Acoustic properties of an infinite elastic plate with a back cavity[END_REF][START_REF] Heckl | The tenth Sir Richard Fairey memorial lecture[END_REF] Results of further investigations ͑not shown here͒ indicate that the resistance term of the hole impedance Z 0 has an effect on response at high frequencies; also, the reactance term strongly affects response at low frequencies. In addition, overall, alteration of the reactance term produces greater variation in both sound absorption and sound transmission than that of the resistance term. For this reason, characteristics are somewhat different from those obtained in permeable membranes analysis, [START_REF] Takahashi | Acoustic properties of permeable membranes[END_REF] in which only the resistance term is taken into account. The same tendency as in Fig. 4͑a͒ can also be seen in radiation characteristics of Fig. 3. This similarity implies that sound radiation from the vibrating surface may depend strongly on surface absorption characteristics. Comparing sound absorption and sound transmission characteristics reveals that sound transmission at high frequencies above coincidence is almost entirely dependent on energy dissipation in the hole, which differs from the membrane case.

C. Sound absorption of a plate backed by an air layer

In any practical application for noise control engineering, perforated plates and porous materials are used extensively as a part of the sound absorbing structure as shown in Fig. 5. The case in which the facing is an ordinary ͑imper-meable͒ plate was investigated in Ref. 27, while the case where perforated facings without the plate vibration effect has been studied extensively by many authors. In the case of porous materials, the method for predicting sound absorption is known as the theory using impedance matching for homogeneous layers of finite thickness. 29 In this section, the method for analyzing sound absorption of a facing backed by an air layer is outlined, including the interactive effects of plate vibration and permeability.

Perforated plates

When a plane wave, p i (ϭe ik 0 (sin •xϩcos •z) ), impinges on a perforated plate at an angle of incidence . The sound pressure p 1 on the surface of the source side is given by Eq. ͑25͒, in which p 2 is, in this case, the sound pressure at the plate-cavity interface. The sound pressure and the particle velocity in the cavity can be written as

p 2 ͑ x,z ͒ϭ͑ p 2 ϩ e ik 0 cos •z ϩp 2 Ϫ e Ϫik 0 cos •z ͒e ik 0 sin •x , ͑30͒ v 2 ͑ x,z ͒ϭ cos 0 c 0 ͑ p 2 ϩ e ik 0 cos •z Ϫp 2 Ϫ e Ϫik 0 cos •z ͒e ik 0 sin •x , ͑31͒
where unknown quantities p 2 Ϯ denote the amplitude associated with propagating waves toward the Ϯz direction. The pressure difference p 1 Ϫ p 2 is the distributed excitation force for flexural vibration of the plate, which is governed by Eq. ͑27͒. The boundary condition for the cavity at the plate interface can be written from Eq. ͑7͒ as

v 2 ͑ x,h ͒ϭϪi I wϩ ␤ 0 c 0 ͑ p 1 Ϫ p 2 ͒, ͑32͒
and at the back wall with the terminal impedance Z B , the boundary condition is ϭ

v 2 ͑ x,
͑ cos ϩ 0 c 0 /Z B ͒tan͑ k 0 L cos ͒ ͑ cos 2 ϩ 0 c 0 /Z B ͒tan͑ k 0 L cos ͒ϩi cos ͑␤ϩ 0 c 0 /Z B ͒ . ͑36͒

Plates of porous elastic materials

In the case that a plate of a porous elastic material, which is assumed to be homogeneous and isotropic medium, is placed parallel to a back wall as shown in Fig. 5, the sound pressure p a and the particle velocity v a in the medium can be written as [START_REF] Pyett | The acoustic impedance of a porous layer at oblique incidence[END_REF] p a ͑ x,z ͒ϭ͑ p a ϩ e Ϫqz ϩp a Ϫ e qz ͒e ik 0 sin •x , ͑37͒

v a ͑ x,z ͒ϭ q ␥Z c ͑ p a ϩ e Ϫqz Ϫp a Ϫ e qz ͒e ik 0 sin •x , ͑38͒
where qϭ␥͓1ϩ(k 0 sin /␥) 2 ͔ 1/2 with Re͕q͖у0 and Im͕q͖ р0. In these equations, ␥ and Z c are the propagation constant and the characteristic impedance of the medium as appeared in Eq. ͑9͒. For the sound pressure on the plate surface of the source side, Eq. ͑9͒ can be applied to the pressure gradient ץp 1 /ץn in Eq. ͑24͒. Thus the sound pressure becomes

p 1 ͑ x ͒ϭ2 p i ͑ x ͒ϩ 0 2 ͵ Ϫϱ ϱ ͓i I wϪv a ͑ x 0 ,0͔͒ ϫH 0 ͑ 1 ͒ ͑ k 0 ͉xϪx 0 ͉͒dx 0 , ͑39͒ 
with the boundary condition

p 1 ͑ x ͒ϭ p a ͑ x,0͒. ͑40͒
For the cavity, the same expression as denoted in the preceding section ͓Eqs. ͑30͒ and ͑31͔͒ can be used. The boundary condition on the back wall is given by Eq. ͑33͒, and on the plate surface, which can be written as follows:

v 2 ͑ x,h ͒ϭϪi I wϩv a ͑ x,h ͒, ͑41͒ p 2 ͑ x,h ͒ϭ p a ͑ x,h ͒. ͑42͒
Equations ͑27͒, ͑33͒, ͑39͒-͑42͒ form a set of simultaneous equations with unknown quantities p 1 , p a Ϯ , p 2 Ϯ , and w, which can be solved analytically by using the Fourier transform technique as described in Refs. 11 and 27. Final results for the reflected sound pressure p r are given as follows:

p r ͑ x,z ͒ϭ cos Ϫ␤ 4 ϩi 0 2 I ␤ 3 cos F 4 cos ϩ␤ 4 ϫe ik 0 ͑ sin •xϪcos •z͒ , ͑43͒ 
where

F 4 ϭ 2␤ 3 /͓D͑k 0 4 sin 4 Ϫk F 4 ͔͒ k 0 ͑ cos ϩ␤ 4 ͒Ϫi 0 2 I ͓͑ cos ϩ␤ 4 ͒ϩ␤ 3 2 ͔/͓D͑ k 0 4 sin 4 Ϫk F 4 ͔͒ , ͑44͒
and where

␤ 3 ϭ cosh qhϩ␣ sinh qhϪ1 cosh qhϩ␣ sinh qh , ͑45͒ ␤ 4 ϭ 0 c 0 q ␥Z c ␣ϩtanh qh 1ϩ␣ tanh qh , ͑46͒ ϭ ␥Z c 0 c 0 q tanh qh 1ϩ␣ tanh qh , ͑47͒ ␣ϭ ␥Z c 0 c 0 q Ϫi cos tan͑k 0 L cos ͒ϩ 0 c 0 /Z B cos Ϫi tan͑k 0 L cos ͒ 0 c 0 /Z B . ͑48͒ 

Numerical results and discussion

Figure 6 shows some numerical examples. The solid line shows results neglecting plate vibration, in which the material is a perforated plate of 6 mm thickness with 5 mm hole diameter, 20 mm hole spacing ͑ratio of perforation is 4.9%͒, and 0.1 m air layer of thickness. Values of the terminal impedance Z B of the cavity are assumed as those obtained from experimental data for a wooden plate. [START_REF] Sakagami | Acoustic properties of an infinite elastic plate with a back cavity[END_REF] In the case including the effect of plate vibration calculated for an acrylic plate used in Sec. III A 2, the difference is too little to be distinguished in the graph. On the whole, characteristics of this case show good agreement with that obtained from existing theory for perforated absorber systems. [START_REF] Takahashi | A new method for predicting the sound absorption of perforated absorber systems[END_REF] In calculated results for a plate of the same thickness, 6 mm, with 0.5 mm hole diameter, and 10 mm hole spacing, ͑perforation ratio of 0.2%͒ backed by the same cavity, plate vibration produces appreciably increased absorption. In results for a 0.5-mmthick plate with the same perforation of 0.2%, plate vibration gives the reverse effect of reducing absorption. Thus, it should be noted that the effect of plate vibration on the perforated absorber system depends on plate thickness.

Figure 7 shows calculated results for the sound absorber system of Fig. 5 with the facing of porous elastic plate of 50 mm thickness, and a rigidly backed layer of 0.1 m thickness. Plate material is plastic foam, which is used by Allard 32 as an example for calculation using Biot's theory. Parameters are as follows: Young's modulus, 5ϫ10 5 N/m 2 ; density, 30 kg/m 3 ; Poisson's ratio, 0.4; loss factor, 0.1; and porosity, 0.93. The flow resistivity R F , which seems to be the most effective for absorption of the system, is assumed as 5.5 ϫ10 4 and 1.1ϫ10 4 N•s/m 4 . The former case is the same used by Allard. Alteration of flow resistivity normally has an effect on other parameters, especially on porosity. In the present calculation, however, these are assumed to be independent. For reference, results for calculations supposing that porosity is 1.0 show the variation, which is too little to be detected in the graph. From these results, in the case of R F ϭ1.1ϫ10 4 , absorption is little affected by plate vibration, while the case with a value five times this amount shows appreciable effects of plate vibration.

IV. CONCLUSIONS

A new method for analyzing acoustic problems concerning structural-acoustic coupling due to flexural vibration of plates was presented. It takes into account the effect of permeability ͑perforation͒ of plates and the effect of flexural mode of vibration of porous elastic materials. For perforated plates, this method enables treatment of plates with ratios of perforation between 0-1, i.e., from impermeability to acoustic transparency. The impermeable case corresponds to an ordinary theory for acoustic coupling due to flexural vibration of plates. As the ratio of perforation increases, this method gives results approaching those obtained by an ordinary method for immovable perforated plates. In the case of a sound absorber system composed of a plate backed by an air layer, the tendency of the perforation effect depends on plate thickness. For porous elastic materials shaped into a plate-like form, this method makes it possible to deal with various material states, from a flexural mode to a mode of dilatational wave-propagation media, depending on the synthetic effect of flow resistivity and porosity. 
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 1 FIG. 1. Analytical model of a perforated plate.

FIG. 2 .

 2 FIG.2. Geometry of a plate ͑a͒ excited by a point force, and ͑b͒ with a plane wave incidence.FIG.3. Sound power level in dB re 10 Ϫ12 W radiated from a perforated acrylic plate of thickness 9 mm, under a normal point excitation of 1N force. The parameter is the ratio of perforation .

FIG. 4 .

 4 FIG. 4. Effect of the perforation ratio on ͑a͒ the sound absorption coefficient, and ͑b͒ the sound transmission loss.

FIG. 6 .

 6 FIG.6. Effect of flexural vibration on the sound absorption coefficient of a perforated plate with a backed layer of 0.1 m thickness. The results for a plate of 6 mm thickness and ϭ4.9%͑-͒. With ͑-᭹-͒ and without ͑-᭺-͒ the vibration effect for a plate of 6 mm thickness and ϭ0.2%. With ͑--͒ and without ͑-ᮀ-͒ the vibration effect for a plate of 0.5 mm thickness and ϭ0.2%.

  hϩL ͒ϭ p 2 ͑ x,hϩL ͒/Z B . ͑33͒ Mathematical details of the solution and derivation of the closed form expression for the reflected sound pressure p r are presented in Refs. 11 and 27. The final result is p r ͑ x,z ͒ϭ cos Ϫ␤ 2 ϩi 0 2 I ␤ 1 cos F 3 cos ϩ␤ 2 ͑ cos ϩ␤ 2 ͒Ϫi 0 2 I ͓͑ cos ϩ␤ 2 ͒ϩ␤ 1 2 ͔/͓D͑ k 0 4 sin 4 Ϫk F

		Equations ͑25͒, ͑27͒, ͑32͒, and ͑33͒ form a set of simulta-
		neous equations with unknown quantities p 1 , p 2 ϩ , p 2 Ϫ , and
		w. ϫe ik 0 ͑ sin •xϪcos •z͒ ,	͑34͒
		where		
	F 3 ϭ	2␤ 1 /͓D͑k 0 4 sin 4 Ϫk F 4 ͔͒ k 0 4 ͔͒	,	͑35͒

and where ␤ 1 ϭ1Ϫ␤, ␤ 2 ϭ␤(1Ϫ␤) with FIG.

5

. Geometry of a permeable plate with a backed layer for a problem of sound absorption.