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Statistical analysis of a hierarchical clustering
algorithm with outliers

Nicolas Klutchnikoff∗ Audrey Poterie† Laurent Rouvière‡

Abstract

It is well known that the classical single linkage algorithm usually fails to
identify clusters in the presence of outliers. In this paper, we propose a
new version of this algorithm and we study its mathematical performances.
In particular, we establish an oracle type inequality which ensures that our
procedure allows to recover the clusters with large probability under mini-
mal assumptions on the distribution of the outliers. We deduce from this
inequality the consistency and some rates of convergence of our algorithm
for various situations. Performances of our approach is also assessed through
simulation studies and a comparison with classical clustering algorithms on
simulated data is also presented.
Keywords: Clustering, single linkage, clustering risk
AMS Subject Classification: 62G07, 62H30

1 Introduction

In unsupervised learning, clustering refers to a very broad set of tools which
aim at finding a partition of the data into dissimilar groups so that the ob-
servations within each group are quite similar to each other. Considered as
one of the most important questions in unsupervised learning, there is a vast
literature on this paradigm (Hartigan, 1975, Jain and Dubes, 1988, Duda
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et al., 2012). Moreover, a lot of various clustering methods have been de-
veloped, such as the k-means algorithm (MacQueen, 1967), the hierarchical
clustering methods (Johnson, 1967), the spectral clustering algorithms (Ng
et al., 2002) or the model-based clustering approaches (McLachlan and Bas-
ford, 1988). Clustering plays an important role in explanatory data analysis
and has been used in many fields including pattern recognition (Satish and
Sekhar, 2006), image analysis (Filipovych et al., 2011), document retrieval,
bioinformatics (Yamanishi et al., 2004, Zeng et al., 2012), data compression
(Gersho and Gray, 2012). Overall, clustering tools are often used to help
users understand the data structure. Furthermore, with the massive increase
in the amount of collected and stored data, clustering methods can also be
used as dimensionality reduction techniques (Yengo et al., 2014).

In this paper, we consider a mathematical framework close to the one used
in Maier et al. (2009), Arias-Castro et al. (2011), Auray et al. (2015). The
data are generated according to a mixture of several distributions whose sup-
ports are assumed to be disjoint in order to identify the groups. Moreover,
we assume that the data is contaminated by outliers, observations that do
not belong to any of the supports. Many authors have studied theoretical
properties of nearest neighbor graphs, hierarchical and spectral clustering al-
gorithms in a similar context. For instance Maier et al. (2009) provide a deep
analysis of k-nearest neighbor graphs while Arias-Castro (2011) study perfor-
mances of spectral clustering algorithms and single linkage algorithms under
assumptions on both distances between supports and number of outliers.

Single linkage algorithm is a hierarchical method which consists in recursively
merging the two closest clusters in term of minimal distance. Even if this pro-
cedure has many interesting properties, it is well known that it is not robust
to the presence of outliers. This lack of robustness comes from two different
phenomena. On the one hand, the procedure may wrongly detect small clus-
ters among the outliers. On the other hand, during the recursive clustering
procedure, a chain of outliers may merge two clusters which contains obser-
vations that belong to two different supports. To circumvent these problems,
we propose a simple procedure based on a new analysis of the dendrogram
produced by the hierarchical agglomerative clustering in term of minimal
distance. This new procedure can be viewed as a simple modification of the
classical single linkage algorithm which is both robust to the presence of out-
liers and well adapted to detect low-dimensional geometrical structures. This
last property, shared with spectral clustering, is of prime interest in several
modern applications (see Arias-Castro, 2011). Like spectral clustering, our
data-driven procedure only requires the knowledge of the number of groups
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to identify the clusters with large probability (under mild assumptions on
the size of the clusters). The main advantage of our approach, compared to
spectral clustering, lies in its time complexity which is drastically better.

The paper is organized as follows. In Section 2, we introduce the mathe-
matical framework, the model assumptions and we define a criterion, called
clustering risk, to measure the performance of a clustering algorithm. Sec-
tion 3 describes the single linkage clustering algorithm and shows, through
simple examples, that this algorithm often fails to recover the true clusters
in the presence of outliers. Then, a robust version of this algorithm which re-
quires the selection of a positive parameter (a radius) to stop the algorithm is
proposed. Section 4 provides an oracle inequality which ensures that this pro-
cedure is efficient. Some consistency results and rates of convergence are de-
duced from this inequality. Finally, Section 5 is devoted to highlight the per-
formances of the proposed algorithms in comparison with the single linkage
algorithm, the k-means method and the spectral clustering through several
synthetic data sets. The proofs are gathered at the end of the paper, in Sec-
tion 6. The proposed clustering method has been implemented in R and the
source code is available at https://github.com/klutchnikoff/robustSL.

2 Mathematical framework

In this section, we define a sufficiently general probabilistic model to generate
data which locally lie into low-dimensional structures and which possibly
contain outliers. We also specify what we expect from a clustering procedure
in this framework and we define a risk to assess the performance of such a
procedure.

2.1 Generative model

We are given n independent [0, 1]D-valued random variables X1, . . . , Xn ran-
domly drawn from a distribution P which can be written as a mixture of
M + 1 distributions P0, . . . ,PM . More precisely, for 0 ≤ ε < 1 and a vector
of convex weights (γ1, . . . , γM), we assume that

P = εP0 + (1− ε)
M∑
i=1

γiPi. (2.1)
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In this decomposition, ε denotes the weight of outliers contained in the data
and P0 is the distribution of these outliers. The second part provides the dis-
tribution for the actual data or non-outlier data. These data are expanded
into M groups, γi represents the weight for the i-th group and Pi its distri-
bution. Let

Si = supp(Pi), i ∈ {1, . . . ,M}

be the (compact) set of all points x ∈ RD for which any neighborhood A of
x satisfies Pi(A) > 0. We also define the set

S0 = [0, 1]D \

(
M⋃
i=1

Si

)

which refers to the support of the outliers.

2.2 Assumptions

Clusters are usually identified by high density regions separated by low den-
sity regions. For instance, Hartigan (1975) defines cluster as the connected
components of the level sets of the density of the observations. Moreover, the
geometry of the cluster often corresponds to low dimensional structures such
as manifolds (Arias-Castro, 2011, Arias-Castro et al., 2011). We propose a
similar way which is specified in the following assumptions.

(A1) For each i ∈ {1, . . . ,M}, the set Si is connected. Moreover

δ = min
1≤i<j≤M

min{‖x− y‖ : (x, y) ∈ Si × Sj} > 0,

where ‖ · ‖ stands for the Euclidean norm.

Assumption (A1) ensures that the supports are disjoint and well-separated.
This implies that the model is identifiable since the decomposition (2.1) of
P is then unique. Note also that, under this assumption, the dataset Xn =
{X1, . . . , Xn} is splitted into M + 1 well-defined groups : Xn∩S0 corresponds
to the outliers whereas for i ≥ 1, Xn ∩ Si correspond to the true clusters we
want to recover.

Throughout the paper, for any 0 ≤ s ≤ D, we denote byHs the s-dimensional
Hausdorff outer measure. We recall that, if s is an integer, this measure agrees
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with ordinary "s–dimensional surface area" on regular sets. In particular HD

is the standard Lebesgue measure on the ambient space RD. We refer the
reader to Evans and Gariepy (2015) for more details on this topic. We also
define:

si = dimH(Si) and d = max{si : i ∈ {1, . . . ,M}},

where dimH(Si) denotes the Hausdorff dimension of the set Si, that is the
unique real number s ∈ [0, D] such that Ht(Si) =∞ if t < s and Ht(Si) = 0
if t > s. Remark that if Si is a submanifold of RD, its Hausdorff dimension
si corresponds to its classical dimension.

(A2) There exists κ0 > 0 such that, for any A ⊆ S0

P0(A) ≤ κ0HD(A).

This assumption relates on the distribution of the outliers and can be re-
formulated as follows: P0 is absolutely continuous with respect to HD, with
bounded Radon-Nikodym derivative. This implies, in some sense, that the
outliers are nowhere dense in S0 and thus prevents from having clusters that
correspond to groups of outliers.

(A3) For any i ∈ {1, . . . ,M}, there exists κi > 0 such that, for any A ⊆ Si:

Pi(A) ≥ κ−1
i Hsi(A).

Assumption (A3) relates on the distribution of actual data and ensures that
each Pi is quite dense on Si. Note in particular that Pi can be singular with
respect to Hsi (Pi is singular with respect to HD as soon as si < D).

Assumptions (A1), (A2) and (A3) are classical in the clustering setting.
The first one guarantees identifiability of the model while the other two
highlight differences between outliers and actual data: the former are diffused
while the latter are distributed in a dense way into their supports.

Geometric assumptions on the supports Si are also needed. To state them,
we denote by B(x, r) the Euclidean ball centered at x ∈ RD with radius r > 0
and by Γ the usual gamma function. Recall that, for any s > 0, the function
η(s) = πs/2Γ−1(1 + s/2) generalizes to non-integer parameters the volume of
the unit ball in dimension s.
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(A4) There exists κc ≥ 1 such that, for any i ∈ {1, . . . ,M}, x ∈ Si and
0 < r ≤ ∆i = diam(Si),

κ−1
c ≤

Hsi(Si ∩B(x, r))

η(si)rsi
≤ κc.

Here diam(Si) = max{‖x − y‖ : x ∈ Si, y ∈ Si} denotes the diameter
of the support Si.

Assumption (A4) prevents the sets Si from being “too narrow” in some
places. A similar assumption is made by Arias-Castro (2011). Note also
that, if Si is a submanifold that satisfies a reach condition, then (A4) is
automatically fulfilled (see Biau et al., 2007, and references therein).

(A5) For any i ∈ {1, . . . ,M}, the Hausdorff dimension si of Si agrees with
its Minkowski-Bouligand dimension, that is:

si = lim
r→0

log(Nr(Si))

log(1/r)
,

where Nr(Si) denotes the minimal number of open balls of radius r
required to cover Si.

Assumption (A5) is needed to obtain sharp bounds on the covering numbers
Nr(Si), r > 0, i = 1, . . . ,M . Indeed, in general, we only have

si ≤ lim inf
r→0

log(Nr(Si))

log(1/r)
≤ lim sup

r→0

log(Nr(Si))

log(1/r)
≤ D.

Here we assume that the limit inferior matches with the limit superior and
that these limits equal si. This technical assumption is not too restrictive.
We offer two simple generic examples. First, if Si is a submanifolds of RD

then (A5) holds. Indeed, in this case, the Hausdorff dimension and the
Minkowski-Bouligand dimension both match with the usual dimension of
Si. Next, (A5) is also satisfied if Si is a self-similar set. Indeed using
Assumption (A4) with r = ∆i, we obtain that 0 < Hsi(Si) < +∞. This
implies that Si satisfies the open set condition which allows us to conclude
that both the Hausdorff and the Minkowski-Boulingand dimensions match
with the affinity dimension of the self-similar set Si (see Falconer, 2014,
chapter 9).

Last assumption relates on the size of the clusters.
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(A6) Let γ∗ = min{γi : i ∈ {1, . . . ,M}}, γ∗ = max{γi : i ∈ {1, . . . ,M}}
and γ = γ∗ − γ∗/2. We assume that:

γ∗ < 2γ∗ and 0 ≤ ε < γ /(1 + γ ).

This assumption allows to differentiate actual clusters from the group of
outliers. It implies that the sizes of the actual clusters should be of the same
order since the largest cluster cannot be twice as large as the smallest one.
Moreover, the number of allowed outliers is constrained by the difference
in size of the groups: ε could vary from 0 (if γ∗ = 2γ∗) to 1/(2M + 1) (if
γ∗ = γ∗ = 1/M).

2.3 Clustering risk

We aim at finding a clustering procedure that group together the data that
lie within the same set Si, for each i ∈ {1, . . . ,M}. Regarding the outliers,
they can be affected to any other group or garbage into a specific group by
the procedure.

A clustering procedure consists of splitting the data Xn into M disjoint clus-
ters. In other words, a clustering algorithm provides a family of clusters
X = {X1, . . . ,XM} such that

Xi 6= ∅, i = 1, . . . ,M
Xi ∩ Xj = ∅, 1 ≤ i 6= j ≤M⋃M
i=1Xi ⊆ Xn.

Observe that the family X may not cover the whole set Xn, it could be the
case if the algorithm reveals some outliers, these outliers are not assigned
into one cluster.

In our context, a clustering procedure is efficient if each cluster contains
all the observations from (only) one of the supports Si, i ∈ {1, . . . ,M}.
It means that there exists a unique permutation π ∈ Πm from the set of all
permutations of {1, . . . ,M}, such that, for any i = 1, . . . ,M , the data Xn∩Si
are included into Xπ(i). In this context, we measure the performances of a
clustering procedure by the clustering risk defined as

Rn(X ) = P(∀π ∈ ΠM ,∃i ∈ {1, . . . ,M}, Xn ∩ Si * Xπ(i)), (2.2)
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where X = {X1, . . . ,XM} is the clustering family selected by the clustering
procedure. This quantity is the probability that the clustering procedure
does not correctly recover one subset of observations from at least one of the
Si’s. The smaller this risk, the better the clustering procedure.

3 A robust single linkage algorithm

Many clustering algorithms have been studied in a context similar to our
setting. For instance, Maier et al. (2009), Arias-Castro (2011) and Arias-
Castro et al. (2011) prove that algorithms based on pairwise distances (k-
nearest neighbor graph, spectral clustering...) are efficient as soon as sup-
ports Si, i = 1, . . . ,M are separated enough. The single linkage hierarchical
clustering algorithm has also been investigated by Arias-Castro (2011) and
Auray et al. (2015). However, it is well known that this algorithm is sensitive
to outliers. We propose here to recall the weaknesses of this algorithm in the
presence of outliers and to provide a robust version which allows to improve
its performances in this context.

3.1 Agglomerative clustering with single linkage

Many hierarchical clustering algorithms rely on the notion of r–connected
set of points in [0, 1]D, where r is a nonnegative real number. A subset
A ⊆ R[0, 1]D is said to be r–connected, if

B(A, r/2) =
⋃
a∈A

B(a, r/2)

is a connected set, from a topological point of view. In particular A = {x, y}
is r–connected if ‖x − y‖ ≤ r. The single linkage algorithm may be defined
with this notion of connected set of points. For any r ≥ 0, the set B(Xn, r/2)
can be expanded into M(r) ∈ {1, . . . , n} connected components denoted by
Bm(r),m = 1 . . . ,M(r). These connected components provide a partition of
Xn into M(r) clusters defined by

Ym(r) = Bm(r) ∩ Xn, m ∈ {1, . . . ,M(r)}.

The family Y(r) = {Ym(r) : m ∈ {1, . . . ,M(r)}} provides clusters of the
single linkage algorithm with radius r.
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We can observe the number of possible families Y(r) is finite when we let
r move in R+. Indeed, as r increases the clustering process consists in re-
cursively merging clusters. To see that, consider the single linkage distance
between two r-connected components Ym(r) and Ym′(r). It is defined as the
distance between the two closest members between these components

dist(Ym(r),Ym′(r)) = inf{‖Xk −Xl‖ : Xk ∈ Ym(r), Xl ∈ Ym′(r)}.

At the beginning, for r = ρ0 = 0 we have a first family

Y(ρ0) = {Ym(ρ0), m ∈ {1, . . . ,M(ρ0)}}.

Observe that if Xi 6= Xj for all 1 ≤ i 6= j ≤ n then M(ρ0) = n and
each cluster Ym(ρ0) corresponds with one observation. Next the two closest
clusters are merged according to the (smallest) distance dist(·). Denote by
ρ1 > 0 the distance between the two closest clusters in Y(ρ0), we obtain the
second family

Y(ρ1) = {Ym(ρ1),m ∈ {1, . . . ,M(ρ1)}}.
This process is then recursively repeated until all (distinct) observations be-
long to a single cluster. We denote by K the (random) number of iterations,
observe that K ≤ n− 1 almost surely.

Remark 3.1 Let us make some general remarks about this procedure. At
every step k with 1 ≤ k ≤ K, the new selected radius ρk is larger than the
previous radius: ρk > ρk−1. This radius corresponds to the distance between
the two closest clusters belonging to Y(ρk−1). Moreover, for any ρ ∈ [ρk; ρk+1[
with 0 ≤ k ≤ K − 1 and ρK =∞, we have

Y(ρ) = Y(ρk).

At the end of the process, we obtain a sequence Y(ρ0), . . . ,Y(ρK−1) of par-
titions of the data. The aim is to determine how to choose one partition in
this sequence. It remains to select one radius in the sequence ρ0, . . . , ρK−1.
Since the number of clusters is known, a natural way is to choose the radius
such that the associated number of clusters is close to M . More precisely, it
is usually chosen such that

ρ̂n,SL ∈ argmax
ρ∈{ρk : k∈{0,...,K−1}}

{M(ρ) ≥M}.

Observe that ρ̂n,SL exists as soon as each support Si contains at least one
observation. This algorithm is known to be consistent without outlier (if
ε = 0) and under assumptions close to ours (Arias-Castro, 2011, Auray et al.,
2015).
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3.2 Dealing with outliers

In the presence of outliers, clusters in Y(ρ̂n,SL) may fail to recover supports
Si with large probability. We provide two toy examples to show that.

Example 1. Figure 1 displays clusters obtained by the classical single link-
age algorithm on 2 datasets. The first one (data1) contains 2 groups and
these two groups are perfectly identified by the algorithm. For the second
one (data2), one outlier has been added and we can observe that this single
outlier defines one group while all the other observations are in the second
group. The performance is clearly affected by this outlier.
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Figure 1: Results of classical single linkage algorithm performed on 2
datasets.

Example 2. We consider data generated according to the following uni-
variate distribution :

P =
1− ε

2
(P1 + P2) + εP0

where P1 = δ−1, P2 = δ1, P0 = U([−3, 3]) and ε > 0. For ε small enough, it is
easily seen that assumptions presented in section 2.2 are satisfied. However
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simple calculations show that the clustering risk for the the algorithm fails
with large probability, more precisely, for any n > 2,

Rn(Y(ρ̂n,SL)) ≥ 2

3
− 8

3

1

(n+ 1)ε
.

As n increases, the clustering risk tends to 2/3.

3.3 Robust single linkage clustering

As explained in the last section, the classical single linkage procedure is
generally not efficient in presence of outliers. To deal with outliers, Arias-
Castro (2011) considers a modified version of this procedure that requires the
knowledge of the minimal separation distance δ instead of the knowledge of
M . Moreover he assumes that the minimal distance between the outliers and
the clusters is at least δ. It is not the case in our model. Since assumptions
on our generative model involve that sizes of the clusters should be of the
same order, we propose to take account of the cluster sizes in the procedure
by considering only the M largest clusters.

Recall that, for a fixed radius r > 0, the agglomerative clustering presented
at the beginning of Section 3 provides M(r) clusters

Y(r) = {Ym(r),m ∈ {1, . . . ,M(r)}}.

With no loss of generality, we reorder indices of the r-connected components
in Y(r) such that

|Y1(r)| > |Y2(r)| > . . . > |YM(r)(r)|.

If |Ym(r)| = |Ym′(r)|, then we have a tie. There are several rules for tie
breaking, we use the following one: Ym(r) is declared “bigger” than Ym′(r) if

min{k ∈ {1, . . . , n} : Xk ∈ Ym(r)} < min{k ∈ {1, . . . , n} : Xk ∈ Ym′(r)}.

This means that tie breaking is done by the smallest index in the cluster.

Our robust single linkage clustering procedure proposes to consider only the
M (which is assumed to be known) largest clusters and to merge the other
clusters together. Formally, for a fixed value of r > 0 we consider the M
clusters

X1(r) = Y1(r), . . . ,XM(r) = YM(r). (3.1)

11



Other observations, i.e. observations that belongs to

X0(r) =

M(r)⋃
m=M+1

Ym(r),

are not classified and might be considered as outliers. For a fixed value of r >
0, this procedure provides the family of clusters X (r) = {X1(r), . . . ,XM(r)}.

Here again, we have to make a safe choice for the radius r. Too small values
of r may result in large values M(r). In this case, the M largest clusters
could be too small and the clustering procedure may fail to recover all the
supports S1, . . . , SM . On the opposite, too large values of r may increase:

• the risk to gather observations from different supports Si, i = 1, . . . ,M
in the same cluster;

• and the possibility to obtain clusters defined by outliers.

The algorithm’s performance then depends greatly on the choice of r and con-
sequently the radius r has to be defined efficiently based on a data-dependent
approach. Here again we use the size of the clusters and we propose to choose
the radius in {ρk : k ∈ {0, . . . , K − 1}} which maximizes the size of theM -th
cluster:

r̂n = max argmax
ρ∈{ρk : k∈{0,...,K−1}}

|XM(ρ)|. (3.2)

Remark 3.2 The main difference compared to the single linkage clustering
is that this algorithm selects the partition which maximizes the size of the M-
th cluster. Other observations, i.e. observations in X0(r), are not classified
and might be considered as outliers.

4 Main results

The selection procedure (3.2) defines clusters X (r̂n) = {Xm(r̂n),m ∈ {1, . . . ,M}}
with clustering risk

Rn(X (r̂n)) = P(∀π ∈ ΠM ,∃i ∈ {1, . . . ,M}, Xn ∩ Si * Xπ(i)(r̂n)).

The following theorem provides a oracle-type inequality which ensures that
this clustering risk is closed to the optimal clustering risk, i.e., the one
achieved with the best value of r.
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Theorem 4.1 Assume (A1) and (A6) hold. Let η0 > 0 and η1 > 0 be such
that

η0 = 1− [(1− ε)(1 + γ )]−1 and
4η1

1− η1

=
γ∗
γ∗
− 1

2
.

Then for all η ≤ min(η0, η1) and all n ≥ M , the clustering risk for clusters
X (r̂n) satisfies

Rn(X (r̂n)) ≤ inf
r>0
Rn(X (r)) + 2M exp(−ψ(η)(1− ε) γ n) (4.1)

where for η > 0 ψ(η) = (1 + η)(log(1 + η)− 1) + 1 > 0.

This theorem ensures that the proposed data-driven method (3.2) is efficient
for n large enough. Indeed, since ψ(η)(1 − ε) γ > 0, inequality (4.1) says
that the performance of the proposed procedure is optimal, up to a remainder
term which tends to zero at an exponentiel rate. In particular, if there exits
a specific value rn of r such that the clustering risk of X (rn) tends to 0 as n
increases, Theorem 4.1 implies that the risk of X (r̂n) also tends to 0.

To study the clustering risk of X (r) for a given value of r > 0, we need the
following parameters:

a =
γ∗(κ

∗κc)
−1η∗(d)

1 + γ
, b = η(D)κ0 (4.2)

where

κ∗ = max
i∈{1,...,M}

κi and η∗(d) = min
0≤s≤d

η(s) = min(1, η(d)). (4.3)

Parameters a and b measure to some extent the complexity of the problem.
Indeed, b essentially depends on the density of the outliers through the pa-
rameter κ0. Problems with sparse outliers will correspond to a small value of
b. The second parameter a is related to the distribution of the actual data
in their supports Si, i ∈ {1, . . . ,M} and on the regularity of these supports.
Regular supports (κc small) with a large density of observations (κ∗ small)
lead to large values of a. To summarize, difficult problems match with small
a and/or large b.

The following theorem controls the clustering risk of X (r) in terms of the
parameters of the model.
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Theorem 4.2 Under assumptions (A1)–(A6) we have, for any 0 < r <
min(mini ∆i, δ) and for any η such that 0 < η < η0

Rn(X (r)) ≤ Λr−d exp(−anrd) + nε(bεnrD)b
δ
r
c + 2M exp(−ψ(η)(1− ε) γ n),

(4.4)
where Λ is a positive constant specified in the proof of the Theorem.

The upper bound in (4.4) is governed by the two first terms since the last
term generally tends to zero much faster. Recall that the cluster family X (r)
may fail to recover the true clusters if one of these two conditions is satisfied:

1. Observations in a same support are not r-connected: there exists i ∈
{1, . . . ,M} such that Xn ∩ Si is not r-connected;

2. Some observations that belong to different supports are r-connected:
there is a r-connected path between Si and Sj for (i, j) ∈ {1, . . . ,M}2

with i 6= j.

The first term in the right hand side of (4.4) corresponds to the first condi-
tions. Unsurprisingly, this term is small for large values of r and/or a. The
second term is related to the second condition and, in contrast with the first
term, it tends to decrease when r decreases. This second term also depends
on the distribution of the outliers. We observe that it is equal to zero without
outlier and it increases as the outlier parameter b and/or the proportion of
outlier ε grows.

Observe also that the minimal distance δ between supports occurs through
the exponent bδ/rc. If bεnrD < 1, the second error term decreases as bδ/rc
increases. Moreover, we can remark that the upper bound involves two di-
mensions: the (maximal) Hausdorff dimension d of the support Si and the
dimension D of the outlier space S0. For fixed values of D, we could obtain
slower rates as d increases because it is more difficult to connect observations
for large values of d. On the opposite, keeping d constant, rates could be
faster when D grows because the probability to connect observations in S0

decreases. Combining Theorems 4.1 and 4.2 we obtain:

Theorem 4.3 Under assumptions (A1)–(A6) we have, for all n ≥ M , for
any 0 < r < min(mini ∆i, δ) and all η ≤ min(η0, η1):

Rn(X (r̂n)) ≤ inf
r>0

{
∆r−d exp(−anrd) + nε(bεnrD)b

δ
r
c
}

+ 4M exp(−ψ(η)(1− ε) γ n).
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If we intend to prove any consistency results regarding Rn(X (r̂n)), we have
to exhibit at least one value of r such that the first terms in this upper bound
tends to zero. The following corollary provides sufficient conditions for the
consistency of the clustering procedure, i.e., conditions for which we have

lim
n→+∞

Rn(X (r̂n)) = 0. (4.5)

Except for D and d, all parameters (δ, κ∗, ε...) may vary with n. For
simplicity, we only let ε vary with n and keep all other parameters fixed in
the conditions.

Corollary 4.1 Under the assumptions of Theorem 4.3, consistency (4.5)
holds if either d < D or D = d and ε < (b log n)−1.

We obtain this result by taking rd = D log(n)/(adn). This corollary ensures
that consistency holds as soon as the Hausdorff dimension of the supports
Si, i = 1, . . . ,M is smaller than the dimension D of the ambient space. When
these dimensions match, the proportion of outliers should tend to 0 much
faster than 1/ log n. Observe also that without outlier (ε = 0), convergence
occurs for all d ≤ D. Using similar tools, we can obtain many rates on
convergence with respect to the proportion ε of outliers. Some examples are
gathered in the following corollary.

Corollary 4.2 Under the assumptions of Theorem 4.3, there exists two uni-
versal constants C1 and C2 such that the following propositions hold:

1. Few outliers: if ε = exp(−n) then:

Rn(X (r̂n)) ≤ C1n exp(−C2n).

2. Small dimensions of the supports: If D > d+ 1 then

Rn(X (r̂n)) ≤ C1n exp(−C2n
1/(d+1)).

3. Large dimensions of the supports with few outliers: if d ≤ D ≤ d + 1
and ε = n−β with β ≥ 1−D/(d+ 1), then

Rn(X (r̂n)) ≤ C1n
d/(d+1) exp(−C2n

1/(d+1)).
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4. Large dimensions of the supports with many outliers: if d ≤ D ≤ d+ 1
and ε = n−β with 0 < β < 1−D/(d+ 1), then

Rn(X (r̂n)) ≤ C1n
(1−β)d/D exp(−C2n

1+(β−1)d/D).

To summarize, in each of the above situations we obtain an upper bound of
the form

Rn(X (r̂n)) ≤ C1n
A exp

(
−C2n

B
)

where A, B are given positive constants that depend on the complexity of
the problem. Case 1 exhibit a fast rate when the number of outliers is small.
When we have a gap between the ambient dimension D and the dimension
of the support of the actual data d (case 2), we observe that the rate is
governed by d in the exponential term. Finally, when d gets closer to D and
the outlier rate ε is polynomial (cases 3 and 4), only the polynomial term in
the bound changes in terms of ε. The rate is better when β is greater than
1−D/(d+ 1), we obtain slower rates for smaller values of β.

5 Numerical experiments

Here, the proposed clustering algorithm is assessed through several simula-
tion studies. After a description of the models used, the performances of
the robust single linkage algorithm (RSL) are assessed and compared with
the performances of three classical agglomerative clustering methods, namely
the single linkage algorithm (SL), the k-means algorithm (KMeans) and the
spectral clustering (SC).

All implementations have been performed in R and source code is available at
https://github.com/klutchnikoff/robustSL. RSL and SC have been im-
plemented by using the functions hclust (package fastcluster) and cutree
(package stats). The function kmeans (package stats) was used to perform
KMeans with 20 different random starts (parameter nstart). SC has been
implemented following Ng et al. (2002) and using the function specc (pack-
age kernlab). The scaling parameter is set to the optimal value provided
by specc and we consider 20 different random starts for the k-means step of
the algorithm. Observe that the four clustering approaches used here require
the number M of groups.

The computations have been carried out on a MacBook Pro, 2,4 GHz Intel
Core i5 and 16Gb of RAM memory.

16

https://github.com/klutchnikoff/robustSL


5.1 Description of the models

In this study we evaluate the performances of our method on two-dimensional
data simulated according to the design introduced in Section 2.1. As stated
in Section 4, the performances of the proposed clustering algorithm depend
on the complexity of the clustering problem, measured through the parame-
ters (a, b, δ, ε). Among them, the most sensitive are the inter-group distance
δ and the proportion of outliers ε. Of course, the larger ε and the smaller
δ, the more difficult the problem. In the experiments, we consider differ-
ent values for these two parameters and we use the three different models
described below (respectively called the “squares”, “concentric-circles” and
“sine” models) to simulate data. More precisely, for each model, we consider

• two values of δ, one "small value" which corresponds to an "easy" case
and one "large" value for a "tricky” case;

• five values of ε, equally spaced between 0 and 0.2 with a step of 0.05;

• two different sample sizes: n = 200 and n = 500.

For each model, both groups and outliers are uniformly sampled over their
supports Si, i = 1, . . . ,M and S0. We now describe the three models.

Squares model. Data are grouped in three distinct squares with similar
areas. We use the same weights for each group. Easy and tricky cases
correspond to inter-group distances 0.35 and 0.07 respectively, see Figure 2.

Concentric circles. This model consists of 2 groups which correspond to
two nested rings with weight 0.4 for the smallest ring and 0.6 for the largest
ring. Inter-group distances are fixed to 2.6 (easy) and 1.6 (tricky), see Figure
3. Outliers are generated only between the two rings.

Sine model. This model includes 3 groups with various shapes. The first
group is tight and represents the sine curve while the two others are com-
pact groups (squares). We use the same weights for each group. Easy and
tricky cases correspond to inter-group distances

√
(π

2
− 1

2
)2 + 1

4
(≈ 1, 18) and√

(π
4
− 1

2
)2 + 1

2
(≈ 0, 76) respectively, see Figure 4.
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Simple calculations show that these models satisfy assumptions (A1)-(A6)
when ε < 1/11 for the "concentric circles" model and ε < 1/7 for the two
others. We can also remark that the Hausdorff dimension for all supports
equals 2, excepted for the sine group where it equals to 1.

5.2 Performances of the robust single linkage clustering

Through various numerical experiments based on the scenarios described in
the previous section, the performances of RSL are assessed and compared to
those of SL, KMeans and SC, which are part of the classical approaches used
in clustering.

In each scenario, the clustering risk (2.2) of each clustering algorithm is
approximated by its empirical estimator computed over 1000 Monte Carlo
replications

1

B

B∑
b=1

1{
∀π∈ΠM , ∃i=1,...,M, Xbn∩Si*X bπ(i)

}, (5.1)

where X b = {X b
1 , . . . ,X b

M} denotes the clusters obtained by the procedure
on the b-th Monte Carlo sample of data Xb

n = {Xb
1, . . . , X

b
n}. Estimator

(5.1) corresponds to the proportion of Monte Carlo replications in which the
clustering procedure does not correctly recover one subset of observations
from at least one of the Si’s.

Figures 2-4 display the three models and the empirical estimate (5.1) of the
clustering risk according to ε, n and δ for the four considered algorithms in
each model.
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Case (b): δ small
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SL 0.000 (0.000) 1.000 (0.000) 0.000 (0.000) 1.000 (0.000)
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SC 0.000 (0.000) 0.604 (0.015) 0.000 (0.000) 0.469 (0.016)

ε = 0 ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2

δ
large

n
=

200

δ
sm

all

n
=

200

δ
large

n
=

500

δ
sm

all

n
=

500

RSL SC SL KMeans RSL SC SL KMeans RSL SC SL KMeans RSL SC SL KMeans RSL SC SL KMeans

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Failure Success

Figure 2: Results in squares model. From top to bottom : a sample of
n = 500 observations with ε = 0.1 and (a) δ = 0.35 (easy) and (b) δ ≈
0.07 (tricky); a table and a barplot displaying the empirical estimate of the
clustering risk according to ε, n and δ.19
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SC 0.000 (0.000) 0.744 (0.014) 0.000 (0.000) 0.192 (0.012)

Case (b): δ small
RSL 0.001 (0.001) 0.997 (0.002) 0.000 (0.000) 0.909 (0.009)
SL 0.000 (0.000) 0.999 (0.001) 0.000 (0.000) 1.000 (0.000)
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Figure 3: Results in concentric circles model. From top to bottom : a
sample of n = 500 observations with ε = 0.1 and (a) δ = 2, 6 (easy) and (b)
δ = 1, 6 (tricky); a table and a barplot displaying the empirical estimate of
the clustering risk according to ε, n and δ.20
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Figure 4: Results in sine model. From top to bottom : a sample of n = 500
observations with ε = 0.1 and (a) δ ≈ 1, 18 (easy) and (b) δ ≈ 0, 76 (tricky);
a table and a barplot displaying the empirical estimate of the clustering risk
according to ε, n and δ. 21



First of all, as expected, the estimated clustering risk behaves as an increasing
function of ε in all experiments and for all clustering algorithms. Moreover, for a
fixed value of ε, the risk of clustering of all methods is higher when the number
n of observations and the inter-group distance, δ, are smaller. In all experiments,
when there is no outlier (i.e. ε = 0), the clustering risk of both SL and RSL is
roughly zero. This result agrees with Theorem 4.1, Arias-Castro (2011) and Auray
et al. (2015) which prove that under assumptions close to (A1)-(A6) and when
ε = 0, SL is consistent and its clustering risk tends quickly to zero. As discussed
in Section 3.2, in presence of outliers SL often fails to recover the true clusters
and its clustering risk increases quickly with ε. On the contrary, RSL seems less
sensitive to the outlier proportion ε. In the numerical experiments, RSL always
works better than SL when there are some outliers.

As expected, we can see that KMeans works well with compact groups (see for
instance results for the squares model) but often fails with non-linearly separable
groups (see for instance results for the sine model and the concentric-circles model)
whereas SC is well adapted to non-linearly separable groups but can work quite
badly with compact groups (Nadler and Galun, 2007). Contrary to KMeans and
SC, RSL is part of the two best methods in each experiment, and so it seems to
perform well whatever the shape of the groups. Moreover, observe that compared
to KMeans and SC, RSL as well as SL are exact, in the sense that they do not
require any random process (for instance the random starts used in KMeans and
SC).

Finally, RSL and SC are also compared in terms of time efficiency. Table 1 displays
the time required by each algortihm in the squares model for various values of n.
For large n, RSL is much more faster than SC. Moreover when n increases, time
complexity increases much less quicker for RSL than fo SC.

n RSL SC

100 1.41 0.10
200 1.56 0.38
500 2.09 3.86
1000 3.37 27.80
2000 3.27 2× 103

5000 3.94 4× 104

10000 6.68 3× 105

Table 1: Time complexity (in second) of RSL and SC for various values of n
in the squares model.
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6 Proofs

6.1 Technical lemmas

Lemma 6.1 Fix i = 1, . . . ,M and 0 < r < ∆i. Under (A1)-(A3)-(A4), there
exists a positive constant Λi such that

ψn,i(r) = P(Xn ∩ Si is not r-connected) ≤ Λir
−d exp(−anrd).

Proof. We denote by N∗r (Si) the minimal number of balls of radius r > 0, centered
at points of Si, required to cover Si. Note that, for any r > 0 we have by definition
Nr(Si) ≤ N∗r (Si). Moreover, using triangle inequality we also have N∗r (Si) ≤
Nr/2(Si). Using Assumption (A5), this implies that

si = lim
r→0

log(N∗r (Si))

log(1/r)
.

Thus, there exists a positive constant Λi (that depends on Si) such that, for any
0 < r < ∆i we have:

N∗r (Si) ≤ 4−dΛir
−si ≤ 4−dΛir

−d.

Thus, there exists an index set Li, whose cardinality is bounded above by Λir
−d,

and a family of balls (B`)`∈Li centered at a points that belong to Si, with radius
r/4, which satisfy

Si ⊂
⋃
`∈Li

B`.

Since, for any ` ∈ Li, we have (Xn ∩Si)∩B` 6= ∅, there exists α` ∈ {1, . . . , n} such
that Xα` ∈ B` ∩ Si. Using triangle inequality, this implies that B(Xα` , r/2) ⊃ B`.
Thus

Xn ∩ Si ⊂
⋃
`∈Li

B(Xα` , r/2) with Xα` ∈ Xn ∩ Si.

Thus, Xn ∩ Si is r-connected. This implies that,

ψn,i(r) ≤ P (∃` ∈ Li, B` ∩ (Xn ∩ Si) = ∅)
≤ P (∃` ∈ Li, ∀k ∈ {1, . . . , n}, Xk /∈ Si or (Xk ∈ Si, Xk /∈ B`))

≤
∑
`∈Li

(
P(X /∈ Si) + P(X /∈ B` | X ∈ Si)P(X ∈ Si)

)n
≤
∑
`∈Li

(
1− P(X ∈ B` | X ∈ Si)P(X ∈ Si)

)n
≤
∑
`∈Li

(
1− (1− ε)γiPi(X ∈ B`)

)n
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Moreover

Pi(X ∈ B`) = Pi(X ∈ B` ∩ Si) from (A1)

≥ κ−1
i H

si(B` ∩ Si) from (A3)

≥ (κiκc)
−1η(si)r

si from (A4)

≥ (κ∗κc)
−1η∗(d)rd,

where κ∗ and η∗(d) are defined by (4.3). Putting all pieces together we obtain

ψn,i(r) ≤ |Li|
(
1− (1− ε)γ∗(κ∗κc)−1η∗(d)rd

)n
≤ Λir

−d exp(−anrd),

where a is defined in (4.2).

Lemma 6.2 Let r > 0 and denote by ϕn(m, r) the probability that there exists, in
S0, a path of at least m r-connected observations. If assumptions (A1) and (A2)
hold, we have

ϕn(m, r) ≤ nε(bnεrD)m−1

where b is defined in (4.2).

Proof. Fix r > 0. For any I ⊆ {1, . . . , n} we denote by AI the following event:
there exists a permutation i1 < . . . < im of I such that ‖Xij −Xij+1‖ ≤ r for any
j = 1, . . . ,m− 1. We have:

ϕn(m, r) ≤
∑

I⊆{1,...,n}
|I|=m

P(AI ∩ {XI ⊆ S0})

≤
∑

I⊆{1,...,n}
|I|=m

εmP0(AI).

Now remark that

P0(AI) ≤ m!E0

m−1∏
j=1

1[0,r](‖Xij −Xij+1‖)


= m!

∫
S0

· · ·
∫
S0

1[0,r](‖x1 − x2‖) . . .1[0,r](‖xm−1 − xm‖)dP0(x1, . . . , xm).

Note also that, using (A2):∫
S0

1[0,r](‖x− y‖)dP0(y) ≤ P0(B(x, r)) ≤ κ0HD(B(x, r)) = κ0η(D)rD.

24



This, combined with Fubini’s theorem implies that:

P0(AI) ≤ m!(η(D)κ0r
D)m−1.

Finally, we obtain:

ϕn(m, r) ≤ n!

(n−m)!
εm(η(D)κ0r

D)m−1

≤ nε(bεnrD)m−1.

Lemma 6.3 Assume that assumptions (A1) and (A6) hold. Define Ni = |Xn ∩
Si|, i ∈ {0, . . . ,M} and for 0 < η ≤ η0 let

Ωη =
M⋂
i=1

{(1− η)(1− ε)γin < Ni < (1 + η)(1− ε)γin} .

We have

(i) P(Ωη) ≤ 2M exp(−ψ(η)(1− ε) γ n);

(ii) N0 <
γ
γ∗

mini∈{1,...,M}Ni < mini∈{1,...,M}Ni under Ωη.

Proof. Since Ni ∼ B(n, (1 − ε)γi), (i) is a direct consequence of (Shorack and
Wellner, 1986, page 440). For (ii), observe that (1− ε)(1− η0) = 1/(1+ γ ). Since
0 < η ≤ η0, it follows that

1− (1− ε)(1− η) ≤ (1− ε)(1− η) γ .

Thus, under Ωη,

N0 ≤ n−
M∑
i=1

Ni ≤ n

(
1− (1− ε)(1− η)

M∑
i=1

γi

)
≤ n(1− (1− ε)(1− η)) ≤ n(1− ε)(1− η) γ

≤
γ

γ∗
n(1− ε)(1− η)γi <

γ

γ∗
Ni ∀i = 1, . . . ,M.

Lemma 6.4 Assume that assumption (A6) holds. For each η ≤ min(η0, η1) we
have

1 + η

1− η
γ∗

γ∗
+

γ

γ∗
≤ 2.
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Proof. Let η ≤ min(η0, η1), then

1 + η

1− η
γ∗

γ∗
+

γ

γ∗
=

1− η + 2η

1− η
γ∗

γ∗
+

γ

γ∗

=
γ ∗+ γ

γ∗
+

1

2

4η

1− η
γ∗

γ∗

≤ γ∗/2 + γ∗
γ∗

+
1

2

(
γ∗
γ∗
− 1

2

)
γ∗

γ∗

=
3

2
+

γ∗

4γ∗
≤ 2.

Lemma 6.5 Assume (A6) holds. For r > 0, let

E(r) =
{
∃π ∈ ΠM ∀i = 1, . . . ,M Xn ∩ Si ⊆ Xπ(i)(r)

}
.

Let η ≤ min(η0, η1), then under E(r) ∩ Ωη we have

1. r̂n ≥ r almost surely;

2. There exists π ∈ ΠM such that, ∀i = 1, . . . ,M Xi(r) ⊆ Xπ(i)(r̂n).

Proof. Let η ≤ min(η0, η1) and assume that Ωη is true. We first prove that r̂n ≥ r
with a reductio ad absurdum. Assume that r̂n < r. Observe that

|YM (r̂n)| > |YM (r)|

by definition of r̂n. It follows that

|Y1(r̂n)| ≥ . . . ≥ |YM (r̂n)| > |YM (r)| .

Since r̂n < r, we deduce that one of the Yi(r), i = 1, . . . ,M−1 contains observations
of at least two clusters among Yi(r̂n), i = 1, . . . ,M . It implies that

|Y1(r)| ≥ 2 |YM (r̂n)| > 2 |YM (r)| . (6.1)

Moreover, under E(r) we have N(1) ≤ |Y1(r)| ≤ N(1) + N0 where Ni = |Xn ∩ Si|
and N(i), i = 1, . . . ,M are such that

N(1) ≥ . . . ≥ N(M).

Thus, under E(r) ∩ Ωη, we have from Lemma 6.3

|Y1(r)| ≤ N(1) +N0 ≤ N(1) +
γ

γ∗
N(M).
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Since
∣∣Y(M)(r)

∣∣ ≥ NM , we obtain from Lemma 6.4

|Y1(r)|
|YM (r)|

≤
N(1)

N(M)
+

γ

γ∗
≤ 1 + η

1− η
γ∗

γ∗
+

γ

γ∗
≤ 2

which is a contradiction with (6.1). We deduce that r̂n ≥ r almost surely.

For the second point, observe that since r̂n ≥ r, each Xi(r̂n), i = 1, . . . ,M may be
written as an union of clusters in

X1(r), . . . ,XM (r),YM+1(r), . . . ,YM(r)(r).

Moreover for each i ∈ {1, . . . ,M} there exists an unique j ∈ {1, . . . ,M} and a
subset T (r̂n) of {M + 1, . . . ,M(r)} such that

Xi(r̂n) = Xj(r) +
⋃

`∈T (r̂n)

Y`(r). (6.2)

Indeed if there exists i ∈ {1, . . . ,M} and 1 ≤ j 6= j′ ≤M such that

Xj(r) ∪ Xj′(r) ⊆ Xi(r̂n)

then XM (r̂n) may be written as an union of clusters in

{YM+1(r), . . . ,YM(r)(r)},

and thus |XM (r̂n)| ≤ N0. This is not possible since, by definition of r̂n and by
Lemma 6.3, we have

|XM (r̂n)| ≥ |XM (r)| ≥ N(M) > N0.

We deduce that (6.2) is true. Therefore there exists π ∈ ΠM such that, ∀i =
1, . . . ,M Xi(r) ⊆ Xπ(i)(r̂n).

6.2 Proof of Theorem 4.1

For r > 0, let

E(r) =
{
∃π ∈ ΠM , ∀i = 1, . . . ,M, Xn ∩ Si ⊆ Xπ(i)(r)

}
(6.3)

Let η ≤ min(η0, η1). Observe that

1−Rn(X (r̂n)) = P
(
E(r̂n)

)
≥ P

(
E(r̂n), E(r),Ωη

)
= P

(
E(r),Ωη

)
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where last line comes from Lemma 6.5. We deduce that

Rn(X (r̂n)) ≤ 1− P(Ωη, E(r))

≤ 1− P(E(r)) + P(Ωη)

≤ Rn(X (r)) + P(Ωη)

and the result follows from Lemma 6.3.

6.3 Proof of theorem 4.2

First observe that for r > 0,

1−Rn(X (r)) = P
(
∃π ∈ ΠM ∀i = 1, . . . ,M Xn ∩ Si ⊆ Xπ(i)(r)

)
≥ P

(
∃π ∈ ΠM ∀i = 1, . . . ,M Xn ∩ Si ⊆ Xπ(i)(r),Ωη

)
(6.4)

where Ωη is the event defined in Lemma 6.3. Since, under Ωη, N0 < mini∈{1,...,M}Ni

the event in (6.4) equals
∀i = 1, . . . ,M, Xn ∩ Si are r-connected
∀i 6= j, there is no r-connected path between Xn ∩ Si and Xn ∩ Sj
Ωη

which contains (since 0 < r < δ)
∀i = 1, . . . ,M, Xn ∩ Si are r-connected
there is no r-connected path in S0 with at least bδ/rc+ 1 observations
Ωη.

We deduce from Lemmas 6.1 and 6.2 that

Rn(X (r)) ≤
M∑
i=1

ψn,i(r) + ϕn

(⌊
δ

r

⌋
+ 1, r

)
+ P(Ωη)

≤Λr−d exp(−anrd) + nε(bεnrD)b
δ
rc + P(Ωη),

where Λ =
∑M

i=1 Λi. Result follows from Lemma 6.3.

References
E. Arias-Castro. Clustering based on pairwise distances when the data is of mixed

dimensions. IEEE Transaction on Information Theory, 57(3):1692–1706, 2011.

28



E. Arias-Castro, G. Chen, and G. Lerman. Spectral clustering based on local linear
approximations. Electronic Journal of Statistics, 5:1537–1587, 2011.

S. Auray, N. Klutchnikoff, and L. Rouvière. On clustering procedures and nonpara-
metric mixture estimation. Electronic Journal of Statistics, 9:266–297, 2015.

G. Biau, B. Cadre, and B Pelletier. A graph-based estimator of the number of
clusters. ESAIM Probab. Stat., 11:272–280, 2007. ISSN 1292-8100. doi: 10.
1051/ps:2007019. URL https://doi.org/10.1051/ps:2007019.

R. Duda, P. Hart, and D. Stork. Pattern classification. John Wiley & Sons, 2012.

L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions.
CRC press, 2015.

Kenneth Falconer. Fractal geometry. John Wiley & Sons, Ltd., Chichester, third
edition, 2014. ISBN 978-1-119-94239-9. Mathematical foundations and applica-
tions.

R. Filipovych, S. Resnick, and C. Davatzikos. Semi-supervised cluster analysis of
imaging data. NeuroImage, 54(3):2185–2197, 2011.

Allen Gersho and Robert M Gray. Vector quantization and signal compression,
volume 159. Springer Science & Business Media, 2012.

J.A. Hartigan. Clustering Algorithms. John Wiley, 1975.

A. Jain and R. Dubes. Algorithms for clustering data. 1988.

S. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.

J. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

M. Maier, M. Hein, and U. Von Luxburg. Optimal construction of k-nearest-
neigbor graphs for identifying noisy clusters. Theoritical Computer Science, 410:
1749–1764, 2009.

G. McLachlan and K. Basford. Mixture models: Inference and applications to
clustering, volume 84. Marcel Dekker, 1988.

B. Nadler and M. Galun. Fundamental limitations of spectral clustering. In Ad-
vances in neural information processing systems, pages 1017–1024, 2007.

A. Y Ng, M. I Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm. In Advances in neural information processing systems, pages 849–
856, 2002.

29

https://doi.org/10.1051/ps:2007019


D. Satish and C. Sekhar. Kernel based clustering and vector quantization for
speech segmentation. In Neural Networks, 2006. IJCNN’06. International Joint
Conference on, pages 1636–1641. IEEE, 2006.

R. Shorack and J. Wellner. Empirical Processes with Applications to Statistics.
SIAM, 1986.

Y. Yamanishi, J. Vert, and M. Kanehisa. Protein network inference from multiple
genomic data: a supervised approach. Bioinformatics, 20(suppl_1):i363–i370,
2004.

L. Yengo, J. Jacques, and C. Biernacki. Variable clustering in high dimensional
linear regression models. Journal de la Societe Française de Statistique, 155(2):
19, 2014.

E. Zeng, C. Yang, T. Li, and G. Narasimhan. Clustering genes using heteroge-
neous data sources. In Computational Knowledge Discovery for Bioinformatics
Research, pages 67–83. IGI Global, 2012.

30


	Introduction
	Mathematical framework
	Generative model
	Assumptions
	Clustering risk

	A robust single linkage algorithm
	Agglomerative clustering with single linkage
	Dealing with outliers
	Robust single linkage clustering

	Main results
	Numerical experiments
	Description of the models
	Performances of the robust single linkage clustering

	Proofs
	Technical lemmas
	Proof of Theorem 4.1
	Proof of theorem 4.2


