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Feature selection (FS, i.e., selection of a subset of predictor variables) is essential in high-
dimensional datasets to prevent overfitting of prediction/classification models and reduce 
computation time and resources. In genomics, FS allows identifying relevant markers and 
designing low-density SNP chips to evaluate selection candidates. In this research, several 
univariate and multivariate FS algorithms combined with various parametric and non-parametric 
learners were applied to the prediction of feed efficiency in growing pigs from high-dimensional 
genomic data. The objective was to find the best combination of feature selector, SNP 
subset size, and learner leading to accurate and stable (i.e., less sensitive to changes in the 
training data) prediction models. Genomic best linear unbiased prediction (GBLUP) without 
SNP pre-selection was the benchmark. Three types of FS methods were implemented: (i) 
filter methods: univariate (univ.dtree, spearcor) or multivariate (cforest, mrmr), with random 
selection as benchmark; (ii) embedded methods: elastic net and least absolute shrinkage 
and selection operator (LASSO) regression; (iii) combination of filter and embedded methods. 
Ridge regression, support vector machine (SVM), and gradient boosting (GB) were applied 
after pre-selection performed with the filter methods. Data represented 5,708 individual 
records of residual feed intake to be predicted from the animal’s own genotype. Accuracy 
(stability of results) was measured as the median (interquartile range) of the Spearman 
correlation between observed and predicted data in a 10-fold cross-validation. The best 
prediction in terms of accuracy and stability was obtained with SVM and GB using 500 or 
more SNPs [0.28 (0.02) and 0.27 (0.04) for SVM and GB with 1,000 SNPs, respectively]. 
With larger subset sizes (1,000–1,500 SNPs), the filter method had no influence on prediction 
quality, which was similar to that attained with a random selection. With 50–250 SNPs, the 
FS method had a huge impact on prediction quality: it was very poor for tree-based methods 
combined with any learner, but good and similar to what was obtained with larger SNP 
subsets when spearcor or mrmr were implemented with or without embedded methods. 
Those filters also led to very stable results, suggesting their potential use for designing 
low-density SNP chips for genome-based evaluation of feed efficiency.

Keywords: feature selection, stability, machine learning, genomic prediction, SNP, pigs, feed efficiency and growth

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.611506&domain=pdf&date_stamp=2021--22
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.611506
https://creativecommons.org/licenses/by/4.0/
mailto:miriam.piles@irta.es
https://doi.org/10.3389/fgene.2021.611506
https://www.frontiersin.org/articles/10.3389/fgene.2021.611506/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.611506/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.611506/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.611506/full


Piles et al. Stability of Feature Selectors for Regression

Frontiers in Genetics | www.frontiersin.org 2 February 2021 | Volume 12 | Article 611506

INTRODUCTION

Statistical models and methods used for predicting phenotypes 
or breeding values of selection candidates have an impact on 
the efficiency of genomic selection (GS). Machine learning 
(ML) methods are appealing for genomic prediction; they 
encompass a wide variety of techniques and models to predict 
outputs or to identify patterns in large datasets. Those methods 
do not require assumptions about the genetic determinism 
underlying the trait. ML is increasingly used in situations where 
the number of parameters is much larger than the number 
of observations, as it is the case for high-density genetic markers 
for GS. Thus, in animal and plant breeding, ML models that 
are non-linear in either features or parameters have been 
proposed to enhance genome-enabled prediction of complex 
traits (Gianola et al., 2006, 2011; Gianola and van Kaam, 2008).

Feature selection (i.e., selection of a subset of predictor 
variables, also known as features, from the input data; FS) 
reduces computation requirements and prevents over-fitting 
which occurs with high-dimensional data (Chandrashekar and 
Sahin, 2014). In addition, when features have a high level of 
redundancy, different training samples can produce different 
feature ranks (and therefore different models when a subset 
of features is selected) with the same prediction accuracy. In 
genetic studies, the stability of FS methods or “preferential 
stability” (i.e., the agreement of prediction models produced 
by an algorithm when trained on different training sets) is 
important to understand biological processes involved in the 
trait of interest and to design small low-cost prediction chips 
for GS or diagnostic (Phuong et  al., 2005; Bermingham et  al., 
2015; Alzubi et  al., 2018). Overall, it is wished to achieve a 
good prediction performance on independent data sets and a 
stable possible set of predictors, this being understood as those 
less sensitive to changes in the training set.

A review of FS methods can be found in Saeys et al. (2007), 
Chandrashekar and Sahin (2014), and Venkatesh and Anuradha 
(2019). All FS methods take as input a matrix of predictor 
variables (e.g., SNP genotypes or microarrays) for a set of 
samples with different output or target (i.e., the phenotype) 
and return a set of selected features of user-defined or tuned 
size. FS methods can be classified into three groups of methods: 
wrapper, embedded, and filter (Guyon and Elissee, 2003). 
Wrapper methods fit a supervised learning model using different 
subsets of the whole set of features, which are evaluated by 
a performance measurement calculated on the resulting model. 
Examples of wrapper methods are evolutionary FS algorithms 
and recursive feature elimination methods (Samb et  al., 2012). 
Most wrapper methods are computationally infeasible for high-
dimensional data sets (Saeys et  al., 2007). Embedded methods 
perform FS as part of the model construction/fitting procedure. 
Some examples are least absolute shrinkage and selection 
operator (LASSO) regression, elastic net (Zou and Hastie, 2005), 
and tree-based methods (Strobl et  al., 2008; Waldmann, 2016). 
Finally, filter methods compute a score for each feature 
independently of the learning algorithm and then select a set 
of a fixed number of them (which can be  optimized) with 
the highest scores or those that exceed a defined threshold. 

Filter methods can be  combined with any kind of predictive 
method, even methods with embedded FS. Filter methods can 
be  univariate if they do not consider interactions between 
features or multivariate if they do so. As they do not rely on 
learning algorithms, filter methods avoid overfitting and are 
computationally less demanding than wrapper and embedded 
methods. However, using univariate methods it is possible to 
select redundant variables and discard features that are 
informative when combined with others but less informative 
on their own.

Measures that have been used to quantify FS stability can 
be classified into similarity-based and frequency-based measures 
(Nogueira et  al., 2018). Similarity-based estimators measure 
stability over all pairs of feature subsets (e.g., Generalized 
Kalousis estimator, Kalousis et  al., 2007), whereas frequency-
based estimators measure stability by the frequencies of selection 
of each feature over the feature sets (e.g., the relative weighted 
consistency; Somol and Novovicova, 2010). Recently, Nogueira 
et  al. (2018) established five desirable properties a stability 
estimator must have. These properties are: (i) to allow variation 
in the number of features selected; ii) to be  a decreasing 
function of the variable sample variances; (iii) to be  upper/
lower bounded by constants not dependent on the number 
of features selected; (iv) to achieve its maximum only when 
all selected feature sets across training sets are identical and; 
(v) to be  corrected for chance. After concluding that none of 
the existing stability estimators possesses all these properties, 
they proposed a novel one meeting these properties and provided 
confidence intervals and hypothesis tests on stability, which 
is crucial for proper comparison among FS algorithms.

Several studies from different domains have compared the 
predictive performance of FS methods combined with 
classification or prediction methods using experimental or 
simulated data sets. However, only few used genomic data 
and none evaluated the stability of the performance of the FS 
algorithm. For example, Gunavathi et  al. (2017) and Bolón-
Canedo et al. (2014) compared classification accuracy of different 
FS methods based on microarrays datasets. Bommert et  al. 
(2020) compared some of the most prominent types of filter 
methods for FS in terms of accuracy and computing time 
across 16 high-dimensional classification datasets, including 
microarray data. The best FS methods differed among datasets, 
so they recommended testing several ones in each 
specific analysis.

The objective of our research was to explore the influence 
of various combinations of FS methods and learners on prediction 
quality and stability of models for predicting residual feed 
intake (RFI) from SNP genotypes, in order to find the best 
strategy for genetic evaluation of growing pigs at reduced 
genotyping cost.

MATERIALS AND METHODS

The data used was from an existing database made available 
by Topigs Norsvin (Beuningen, Netherlands). No Animal Care 
Committee approval was necessary for our purposes.
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Animals
Animals were 5,708 boars from a terminal sire line originated 
from 217 boars and 1,120 sows from Topigs Norsvin (Beuningen, 
Netherlands). All animals were born and raised in two Specific 
Pathogen Free nucleus farms, located in Netherlands and France, 
with semen exchange between farms being frequent.

Phenotypes
Nucleus farms were equipped with IVOG feeding stations 
(INSENTEC, Marknesse, Netherlands) that register individual 
feed intake of group housed pigs. All pigs had ear tags with 
unique numbering; individual feed intake records were available 
for all pigs for each day on the test. The pigs had ad libitum 
access to water and to a commercially available diet until the 
end of the performance test.

Average daily gain (ADG) was measured between the 
beginning (median age of 68 days and median weight of 31 Kg) 
and end of the test (median age of 155 days and median weight 
of 130 Kg). Only records from boars starting the test period 
between 50 and 105 days of age and remaining on the test 
between 60 and 120 days were retained.

Backfat thickness (BFT) was determined ultrasonically on 
live animals (US-fat in mm) at the end of the test period. 
Metabolic weight (MW; g) was calculated as: 

MW W Wstart end=
+








2

0 75.

, where
 
Wstart  and Wend  are the

 

weights at the beginning and end of the test period, respectively.
Multivariate outlier records of ADG, daily feed intake (DFI), 

BFT, and MW were identified and removed within batch and 
farm when the squared Mahalanobis distance away from the 
center of the distribution was >12 (Drumond et  al., 2019). 
Then, RFI was estimated as the residual of a phenotypic linear 
regression of DFI on ADG, BFT, and MW. Thus, for animal ith:

 
DFI ADG BFT MBW RFIi i i i i= × + × + × +b b b1 2 3

Subsequently, RFI records were pre-adjusted by macro-
environmental effects fitting a linear model which included 
the fixed effects of age at the start of the test (Age, covariate), 
duration of the performance test (Length, covariate), and the 
combination of farm and batch (FarmBatch, 46 levels). The 
FarmBatch effect resulted from the combination of two farms 
and 2-month period batches. All FarmBatch levels retained 
for the analyses had at least 10 records. Thus, for animal ith 
and level of FarmBatch jth:

 
RFI FarmBatch Age Length eij i i ij= + × + × +j b b1 2

The adjusted RFI records were obtained after subtracting 
the estimates of these systematic environmental effects from 
the values of the original trait. From here onwards, we  refer 
to adjusted RFI (i.e., eij) as RFI. Both linear models were fitted 
using the using lm() function (R Development Core Team, 2020).

Genotypes
Animals were genotyped using the Illumina Porcine SNP60 
BeadChip (Illumina Inc., San Diego). Assuming an additive 
allele substitution effect, genotypes were arbitrarily coded to 

0, 1, and 2 for the homozygote for the minor allele, heterozygote, 
and other homozygote, respectively. SNPs with a call rate lower 
than 0.90 and a minor allele frequency lower than 0.05 were 
removed. Boars with a call rate lower than 0.90 and parent-
offspring pairs that displayed Mendelian inconsistencies were 
discarded. After this quality control, 46,610 SNPs were retained 
to pursue the analyses. Zero and near-zero-variance SNPs were 
identified and removed with the “nearZeroVar” function which 
removes predictors that have a unique value or have very few 
unique values relative to the number of samples, and the ratio 
of the frequency of the most common value to the frequency 
of the second most common value is 95/5 (Caret R package, 
Kuhn, 2008). Subsequently, the “findCorrelation” function (Caret 
R package, Kuhn, 2008) with a cut-off  =  0.8 was used to 
diminish high pair-wise correlations between features. After 
this genotype edition, 9,523 SNPs were retained.

Model Fitting and Prediction
Models were fitted using individual genotypes as predictor 
variables and individual RFI records as output or target variable. 
For each combination of prediction method (i.e., learner) and 
SNP subset size, model fitting and (hyper)parameter optimization 
were conducted with a nested cross-validation (Figure  1). 
Nested cross-validation allows estimating the generalization 
error of the underlying model and its (hyper)parameter search 
(Bischl et  al., 2016). It consists of several training-validation 
and testing dataset splits. An outer 10-fold cross-validation 
using all data was performed using nine equal-size parts of 
the original data sets for training the model, and the remaining 
one for testing. Within each outer training set, features (i.e., 
SNPs) were standardized and FS was performed using several 
methods and for a varying number of selected features (50, 
250, 500, 750, 1,000, and 1,500). Also, within each outer training 
set, an inner six-fold cross-validation was implemented for 
tuning the hyper-parameters of the model. Hyper-parameter 
values were chosen based on a mean square error on the 
validation set of this inner cross-validation. The model was 
finally fitted to the whole training set using the optimal hyper-
parameters. Same data split (i.e., same data subsets) was used 
across combinations of learners and datasets to compare 
prediction performance in the same conditions regarding data 
structure and composition.

In what follows, a description of the FS methods and learners 
implemented is provided first. Then, measurements of quality 
and stability of the predictions and of the selected features 
are defined.

Feature Selection Methods
Several filter and embedded FS methods (Saeys et  al., 2007), 
and combinations hereof were used to rank and select the 
most relevant SNPs for predicting the target trait.

Filter Methods
The filter methods implemented were either univariate or 
multivariate to account for interactions between features. Consider 
a dataset of N records of p features (i.e., predictor variables, 
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SNPs in this study which are considered to be  continuous 
variables) in a set S of features and a target variable of  
interest Y. Five filter methods were implemented to rank the 
available SNPs according to their relevance for prediction of 
the target trait (Bommert et  al., 2020): (i) Sort features with 
the Spearman’s rank correlation (spearcor) between each  
feature X and Y. (ii) Univariate decision tree (univ.dtree) 
resamples a decision tree for each feature individually. The 
resampling performance is used as a filter score to rank features. 
(iii) Maximal relevance minimal redundancy filter (mrmr) is 
based on the concept of mutual information of two  
variables, defined as I Y;X H Y H Y|X( )= ( )− ( )  where 

H Y f Y f Y dy( )=−∫ ( ) ( )log  is the differential entropy and 

H Y|X f Y,X logf Y|X dy dx( )=−∫ ∫ ( ) ( )  is the conditional 

differential entropy (Ding and Peng, 2005). The entropy measures 
the uncertainty of the variable. The mutual information of 
two variables can be  interpreted as the decrease in uncertainty 
about Y conditional on knowing X or as the amount of 
information shared by both variables since I Y;X I X;Y( )= ( ) . 

Filter mrmr uses the score I Y;X
S

I X ;Xk

X S

k j

j

( )− ( )
∈
∑1  where 

term I Y;Xk( )  measures the relevance of the kth feature via 

the information this feature has about Y, while the term 
1

S
I X ;X

X S

k j

j∈
∑ ( )  measures its redundancy by the mean

 

information that the feature shares with other jth features in 
the set S of size S . Therefore, the variables with the highest 
values of the score are those that have the maximum relevance 

and minimum redundancy with the other variables. (iv) 
Conditional permutation importance for correlated predictors 
(Strobl et  al., 2008) of fitted random forest (cforest) uses a 
randomly permuted feature Xk to predict the response and to 
evaluate the difference in prediction accuracy before and after 
permuting that predictor Xk. If the original Xk variable is 
associated with the response, this permutation will lead to a 
decrease in prediction accuracy. Its advantage over univariate 
screening methods is that it covers the impact of each predictor 
variable individually, as well as in multivariate interactions 
with the other predictor variables. Conditional permutation 
importance (Strobl et al., 2008) was chosen to rank the markers 
because of the existence of correlation patterns among them. 
In this method, the permutation is performed within groups 
of observations that are defined by the values of the remaining 
predictor variables. (v) Random selection of SNPs (random), 
used as benchmark.

Embedded Methods
In the embedded methods the search for an optimal subset 
of features is done within the prediction model. Like wrapper 
methods, they are specific to a learning algorithm but less 
computationally demanding. Embedded methods used here were 
LASSO regression (LR, Park and Casella, 2008) and elastic net 
(ENET, Zou and Hastie, 2005), as explained in the section below.

Learners
Ridge regression (RR), LR, ENET, support vector machine for 
regression (SVM), and gradient boosting (GB) were used for 
predicting RFI records. Genomic best linear unbiased prediction 
(GBLUP, VanRaden, 2008) was used as benchmark.

FIGURE 1 | Nested resampling diagram.
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Elastic net (Zou and Hastie, 2005) is originally a regression 

method that combines L1 ( l b1
2

1
×



=∑ jj

p ) and L2 

(l b2
1

×



=∑ jj

p ) penalties of ridge and LASSO in a mixture 

of the two. Parameters l1  and l2  control the strength of the L1 

and L2 penalties and b j  is the regression coefficient on SNP jth. The  

ENET penalty is: l b b× −( )×




+ ×



( )= =∑ ∑1

1

2

1
a jj

p
jj

pa , 

where a l
l l

=
+

(
2

1 2

).

Thus,

bb bb= + × − × + ×−( ) ( ) 









( )= =∑ ∑argminb l a b by X

2

1

2

1
1 j jj

p

j

p
a ,

 

where y is the vector of adjusted phenotypes of dimension 
N´1 , X is the matrix of standardized genotypes of dimension 
N p´  and bb={ }b j  is the vector of regression coefficients 
of dimension p´1 . The genotypes were standardized to have 
a mean of 0 and a standard deviation of 1.

Elastic net is an embedded method of FS because it allows 
selecting a subset of predictor variables out of p candidates. When 
N p

, ENET can select more than N predictor variables. This 
learner was implemented with the various SNP subset sizes, and 
with the full SNP set as well (9,523 SNPs). The function “cv.
glmnet” from the “glmnet” R package (Friedman et  al., 2010) 
was used to fit ENET. The value of α was tuned by testing values 
from 0 (i.e., a LR model) to 1 (i.e., a RR model) in increments 
of 0.1; the optimal λ parameter was found by cross-validation. 
Variable importance in the different fitted models was measured 
as the regression coefficients of each standardized predictor variable.

Support vector machine aims at identifying a function that 
has a maximum deviation ε from the observed values (Y) and 
has a maximum margin for the set of prediction variables (S). 
A review of this method can be  found in Smola and Schölkopf 
(2004). The power of the SVM resides in a particular component 
known as kernel. One of the most used kernel is the Gaussian 
Radial Basis Function (RBF) because almost every surface can 
be  obtained with it (Christianini and Shawe-Taylor, 2000). One 
of the main parameters in a SVM is the “cost parameter” (C), 
which is a trade-off between the prediction error and the simplicity 
of the model. The other hyper-parameter (γ) of SVM enters into 
the Gaussian function inside the RBF kernel. Performance of SVM 
is very sensitive to changes in γ parameter. Tested values for C 
were 0.001, 0.1, 1, 5, and 10, and for γ 0.005, 0.05, 0.5, and 5. 
The “e1071” R package was used for the analyses (Meyer et al., 2019).

Gradient boosting or GB (Mason et al., 1999) is an ensemble 
method because it uses several fast and easy computation 
learning algorithms to get a better predictive performance 
than the one that could be  obtained by using the algorithms 
individually. Predictors are combined sequentially by applying 
some shrinkage to each. Details on GB can be  found in 
Hastie et  al. (2009). For implementing GB, three hyper-
parameters were tuned: depth of tree (10, 12, 15, 17), a 

learning rate that controls the size of the steps in the gradient 
descent process (0.01 and 0.02), and the number of trees 
(500, 1,000, and 3,000 trees). The “gbm” R package was used 
(Greenwell et  al., 2019).

A Bayesian GBLUP was used as a reference employing the 
same outer training and testing datasets partitions as those 
used with the other learners. In Bayesian GBLUP, the model 
was y 1 u= + +m ee  the vector of genomic breeding values, 

u ui={ } , are assumed to be  normally distributed as 

p | N ,u uu Gσ σ2 2
0( ) ( )~ . The su

2

 is the additive genomic variance 

and the genomic relationship matrix (G) was computed from 

the 46,610 SNPs as
 
G

M E M E
=

−( ) −( )′
−( )=∑2 1

1j

p

j jq q

 
(VanRaden, 2008).

 

Marker genotypes in M  were previously centered by subtracting 
the average allele frequencies at each locus (i.e., 2qj  from 
each element on column j of E where qj  is the allelic frequency 
of the major allele of the jth SNP. Since allele frequencies at 
each locus from the base population were not available, they 
were computed directly from the available data. The  
distribution for random residuals was assumed to 

be  p | N ,ee IIs se e
2 2

0( ) ( )~ . Priors assumed for su
2  and se2  were 

scaled inverse -c2  distributions with degrees of freedom dl  

and scale factor Sl: p |d ,S |d ,Sl l l l l ls c s2 2 2( ) ( )−
~  for 1e eu,{ } .

The Gibbs2f90 software (Misztal, 1999) was used to implement 
this method. Flat priors were assumed for su

2  and the residual 
variance. Single chains of 250,000 iterations were run by 
discarding the first 25,000. The number of discarded samples 
was, in all folds, larger than the required burn-in that was 
determined by visual inspection of the chains. Samples of 
parameters of interest were saved every 10 iterations and their 
posterior means were retained for each training/testing partition 
of the dataset for later comparison. Effective sample size was 
larger than 700 for all the parameters of the model.

Quality of Prediction and Stability of Feature 
Selectors
The objective was to find the best combination of FS method 
and learner to obtain the smallest and most stable SNP subset 
that leads to the most accurate prediction.

The quality of trait prediction was evaluated for accuracy, 
as the median of the Spearman correlation (SC) between 
observed (i.e., adjusted phenotypes) and predicted trait across 
the 10 outer testing sets, and for stability/generality of results, 
as the interquartile range (IQR) of those values.

Stability of FS algorithms measures how variation in the 
training sample produces a change in the selected feature subset 
(Kalousis et  al., 2007). If FS is performed setting a threshold 
for a number of the most important features for prediction 
based on a weight, score, or rank assigned to each feature, 
preferential stability can be  measured as the mean Pearson’s 
correlation (PC) or as the SC between all pairs of 
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weighting-scoring and ranking values, respectively, obtained 
in different training sets. When FS is performed by a procedure 
that does not involve any weight or rank (i.e., using embedded 
and wrapper methods), preferential stability can be  measured 
as the amount of overlap between two sets of an arbitrary 
size (Generalized Kalousis, Kalousis et  al., 2007). All those 
measures require the equal size of the feature subsets. To 
compare the stability of subsets of varying sizes, as obtained 
with embedded methods, Somol and Novovicova (2010) 
introduced the relative weighted consistency measure. Relative 
Weighted Consistency and Generalized Kalousis do not meet 
the properties (iv) and (v), respectively, for a proper stability 
estimator established by Nogueira et  al. (2018) who proposed 
a new stability estimator F
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number of features selected over the n feature sets. To correct 
for similarity between feature sets due to chance, the estimator 
is rescaled by its expected value under the Null model of 
random FS ( H0 ). NOG ranges from 0 to 1. Confidence intervals 
for the population stability ¦ S( )  were approximated with a 
0.05 significance level. Refer to Nogueira et  al. (2018) for 
further details. In this study, PC, SC, and NOG were used as 
stability measurements.

RESULTS

Results (Singleton, 2001) refer to prediction of yet-to-be observed 
individual RFI based on pigs’ genotypes. Prediction performances 
correspond to the 10 best configurations obtained in the 10-outer 
cross-validation folds. Notice that FS was done by cross-validation 
in each of the 10-outer training folds. Therefore, for each FS 
method and learner, there are 10 subsets of selected features 
and 10 prediction performances obtained with those subsets, 
allowing a measurement of the stability of the FS method, as 
well as a measurement of the dispersion of prediction accuracy.

Prediction Quality: Accuracy and Stability
Figures  2, 3 show boxplots for SC obtained in the 10-outer 
testing sets with GBLUP, ENET, LR, and RR without 

pre-selection of SNPs (Figure  2), and with SVM, GB, ENET, 
LR, and RR with pre-selection of SNPs performed using the 
various filter methods (Figure  3). No results were obtained 
with SVM and GB without pre-selection of SNPs due to 
numerical problems.

When the prediction was performed with GBLUP the median 
(IQR) of SC was 0.22 (0.01; Figure 2), not significantly different 
from the obtained with RR (median of SC  =  0.22) and ENET 
(median of SC = 0.19) with 9,523 SNPs. However, it was more 
stable for GBLUP since IQR was 0.04 and 0.03 for RR and 
ENET, respectively (Figure 2). LASSO regression had the poorest 
performance in terms of accuracy and stability of results [median 
of SC  =  0.19 (0.03)].

Elastic net, RR, and LR combined with different filter methods 
had the same pattern of prediction performance (Figure  3). 
For subset sizes smaller than 500, prediction accuracy was 
smaller than with GBLUP when univ.dtree and random selection 
of SNPs were used as filter methods. However, the same accuracy 
as GBLUP was obtained when spearcor and mrmr filters were 
used, even with only 50 SNPs, while cforest filter led to an 
intermediate predictive performance. The effect of the filter 
on SC decreased with an increasing number of SNPs up to 
1,500, for which SC was not statistically different across filters. 
Random selection of SNPs led to very poor performances with 
subset sizes of 50 and 250 SNPs. When more than 250 SNP 
were used as predictor variables, with SVM and GB used as 
learner SC of the random filter was the same as the one 
attained with other filter methods, whereas it remained lower 
than the other filters when ENET, RR, and LR were used.

Globally, SC attained with SVM and GB increased as the 
number of SNPs increased up to 500 SNPs, and then remained 
at about the same level. The stability of results measured as 
IQR of SC followed the same pattern. However, when spearcor 
or mrmr were used to perform pre-selection of SNPs, the SC 
attained with 50 SNPs was close to that attained with 500 or 
more SNPs: 0.18 (0.04) and 0.18 (0.06) with spearcor and 
mrmr combined with SVM, respectively; 0.18 (0.04) and 0.20 
(0.07) with spearcor and mrmr combined with GB, respectively. 
The highest median SC was obtained with SVM [0.28 (0.02)] 
and GB [0.27 (0.04)] using a subset with the 1,000 best-ranked 
SNPs according to cforest (Figure  3). Performance obtained 
with SVM and GB with just 750 SNPs was in all cases equal 
or superior to the median SC obtained using GBLUP (0.22), 
although results were slightly more stable with GBLUP (IQR: 
0.02 for the best model with SVM or GB compared to 0.01 
for GBLUP).

Feature Selection Stability
Stability of FS methods for prediction of RFI with ENET 
and LR implemented with SNP subsets obtained with or 
without pre-selection with various filter methods are presented 
in Tables 1 and 2, respectively. Boxplots for NOG values 
from ENET and LR by filter method in the 10 subsets are 
shown in the left and middle panels of Figure  4, whereas 
boxplots for NOG values from just filter methods are in the 
right panel of Figure  3. According to the scale defined by 
Nogueira et  al. (2018), without pre-selection of SNPs the 
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stability estimator for ENET and LR was intermediate to 
good (0.57 and 0.56 for ENET and LR, respectively; Tables 1 
and 2). In this case, the median (IQR) number of selected 
SNPs for ENET was 717 (11) out of 9,523 SNPs (Table  1), 
while LR performed a stronger but less stable selection, 
retaining only 269 (111) SNPs (Table  2). With pre-selection 
of the most important features, ENET and LR removed a 
considerable part of them and showed differences in FS 
stability among filter methods and subset sizes (Tables 1 
and 2, Figure  4). As expected, the number of SNPs selected 
in regularized regression (ENET and LR) was smaller for 
random SNP pre-selection than for other filters, ranging from 
42% for subset size of 50 to 2.2% for subset sizes of 1,500. 
However, it ranged from 100% for subset sizes of 50 to 40% 
for subset sizes of 1,500 SNPs when pre-selection was performed 
with mrmr. Univariate decision tree performed like random 
selection whereas in cforest and spearcor the selected percentage 
was between random and mrmr filters. Elastic net and LR 
produced similar patterns of FS stability with increasing 
subset size. The most stable subsets were obtained with 
spearcor, with excellent values when the subset size of 
pre-selected SNPs was 50 (0.70 and 0.69 for ENET and LR, 
respectively, Figure  4, Tables 1 and 2). For other subset 
sizes, no differences in stability were found between spearcor 
and mrmr, or across subset sizes within filter, with NOG 
values ranging from 0.52 to 0.55. All other filter methods 
(i.e., cforest, univ.dtree, or random) gave very poor FS 
stabilities. Univariate decision tree for SNP pre-selection 
combined with ENET and LR had null stabilities, with 

magnitudes that were similar to a random selection. Cforest 
combined with either ENET or LR slightly improved FS 
stability up to 0.14 with 1,500 SNPs, which was significantly 
different from random selection, but very unstable FS and 
far from the most stable methods.

Stability measurements were slightly smaller when filter 
methods were combined with embedded methods than when 
only filter methods were implemented, for all subset sizes 
(Tables 1 and 2 vs. Table  3). According to the scale defined 
by Nogueira et  al. (2018), when only filter methods were used, 
the best FS stability was obtained with spearcor for any subset 
size ranging from 0.73 to 0.69 when 50 and 1,000–1,500 SNPs 
were pre-selected, respectively (Figure 4, right panel). Maximum 
relevance minimum redundancy also had a good FS stability. 
Unlike for spearcor, FS stability of mrmr increased with an 
increasing number of SNPs, from 0.53 to 0.66 with 50 and 
1,500 SNPs, respectively. Univariate decision tree and cforest 
showed null stability, as random selection, with a maximum 
of 0.04 for cforest with 1,500 SNPs, and marginal improvement 
with an increase of subset sizes.

Table  4 shows the mean of the PC and SCs over all pairs 
of feature scores in the 10 outer training sets obtained with 
the different filter methods for FS. The highest PC and SCs 
between the scores obtained for each SNP across training sets 
were obtained with mrmr and spearcor, which indicates the 
highest stability in the selection of relevant features for prediction 
across outer training sets. Tree-based methods (univariate or 
multivariate) exhibited low stability in the selection of 
predictor variables.

FIGURE 2 | Boxplots for the Spearman correlation obtained in 10-outer testing sets with a genomic best linear unbiased predictor (GBLUP), elastic net (ENET), 
least absolute shrinkage and selection operator regression (LR), and ridge regression (RR) with no feature selection method used to select SNPs.
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The same analyses were performed for ADG with similar 
results. The corresponding tables and figures showing the results 
obtained for this trait are provided in Supplementary Material.

DISCUSSION

It is well known that classification or prediction with high 
dimensional data is computationally demanding and may 
produce overfitted models with poor prediction quality that 

are difficult to interpret (Huang, 2014). Therefore, the search 
of effective FS algorithms is important, and it is an active 
area of research, despite overfitting can be  avoided via 
regularization in some models. Such algorithms are required 
to develop prediction models that are accurate and insensitive 
to small changes in the training data. Many authors have 
addressed the question of the sensitivity of FS methods with 
respect to small changes in the training data in different 
domains of research. Kalousis et  al. (2007) were the first to 
consider the stability of FS procedures. Their research was 

FIGURE 3 | Boxplots for the Spearman correlation obtained in 10-outer testing sets with support vector machine for regression (SVM), gradient boosting (GB), 
elastic net (ENET), least absolute shrinkage and selection operator regression (LR), and ridge regression (RR) with 50, 250, 500, 750, 1,000, and 1,500 SNP subsets 
selected with different filter methods. Filter methods: Maximum relevance minimum redundancy (mrmr), random forest (cforest), Spearman’s correlation (spearcor), 
univariate decision tree (univ.dtree), and random selection (random).
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followed by several publications in application areas where 
stability is critical, such as microarray classification or molecular 
profiling and by studies addressing how to quantify stability 
(Davis et  al., 2006; Kuncheva, 2007; Jurman et  al., 2008; 
Zucknick et al., 2008; Zhang et al., 2009; Somol and Novovicova, 
2010; Goh and Wong, 2016). The measurement of stability 
is important because it indicates how much the output of an 
algorithm can be trusted by capturing the underlying mechanism. 
This is very important in many biological and biomedical 
domains, and genetics applied to livestock production is not 
an exception. Here, an objective could be, for example, to 
design low-density SNP chips for GS, or to assign further 
resources to the search of genes with a major effect on important 
production traits.

In this research, several univariate and multivariate 
algorithms combined with parametric and non-parametric 
learners were applied to the prediction of RFI of growing 
pigs from high-dimensional genomic data (60 K SNP chip). 
The objective was to find the best combination of feature 
selector, subset size, and learner leading to as high as possible 

accurate and stable predictions. GBLUP with no SNP selection 
beyond the standard quality control was the benchmark. 
Three types of FS methods were implemented: (i) filter 
methods: univariate (univ.dtree, spearcor) or multivariate 
(cforest, mrmr) and a random selection filter as benchmark; 
(ii) embedded methods: ENET and LR; (iii) the combination 
of filter and embedded methods. Regularized regression using 
RR, which does not perform FS, was also used as an 
intermediate option between no and strong FS. In addition, 
SVM and GB, considered to be  among the most efficient 
ML methods, were implemented, but only with the SNP 
pre-selection performed with filter methods. These two methods 
have been successfully used in various fields (James et  al., 
2013; Attewell et  al., 2015) including livestock and plant 
breeding (Moser et  al., 2009; Long et  al., 2011; González-
Recio et  al., 2014; Montesinos-Lopez et  al., 2019).

The best prediction quality in terms of accuracy and stability 
of results was obtained with SVM and GB for subset sizes 
equal or larger than 500 SNPs. These two non-parametric 
methods outperformed GBLUP and regularized methods (RR, 

TABLE 1 | Stability of feature selection methods for prediction of residual feed intake with elastic net.

Subset size1 Filter2 NSNPs3 PDF4 medianSel5 IQRSel6 NOG7

50

mrmr 499 0.30 50 0 0.53
cforest 458 0.89 47 3 0.03
spearcor 445 0.20 45 2 0.70
univ.dtree 219 0.98 22 6 0.00
random 209 1.00 21 4 0.00

250

mrmr 2,163 0.28 217 8 0.53
cforest 1,641 0.79 167 12 0.05
spearcor 1,541 0.28 155 8 0.55
univ.dtree 900 0.89 93 8 0.02
random 854 0.91 87 15 0.01

500

mrmr 3,294 0.28 330 20 0.53
cforest 2,175 0.71 223 35 0.08
spearcor 2,597 0.27 263 11 0.53
univ.dtree 1,501 0.84 154 14 0.02
random 1,547 0.85 148 19 0.02

750

mrmr 4,258 0.27 431 19 0.54
cforest 2,493 0.65 250 16 0.10
spearcor 3,426 0.27 344 21 0.53
univ.dtree 2,105 0.79 213 13 0.04
random 2,039 0.80 202 18 0.03

1,000

mrmr 5,059 0.26 511 13 0.55
cforest 2,879 0.62 292 18 0.11
spearcor 4,074 0.27 412 20 0.53
univ.dtree 2,546 0.73 253 11 0.06
random 2,455 0.75 244 7 0.05

1,500

mrmr 5,929 0.26 593 61 0.55
cforest 3,557 0.56 355 7 0.14
spearcor 4,973 0.27 497 23 0.55
univ.dtree 3,241 0.64 326 16 0.09
random 3,217 0.66 324 18 0.07

9,523 none 7,193 0.25 717 11 0.57

1Subset size = number of selected features.
2Filter method = Maximum relevance minimum redundancy (mrmr); Random forest (cforest); Spearman’s correlation (spearcor); Univariate decision tree (univ.dtree); Random 
selection (random).
3NSNPs = Total number of SNPs pre-selected in the 10 subsets.
4PDF = Proportion of distinct features in the 10 subsets.
5medianSel =Mean number of selected SNPS in the 10 subsets.
6IQRSel = Interquartile range of the number of selected SNPS in the 10 subsets.
7NOG = Nogueira et al. (2018) stability estimator.
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FIGURE 4 | Left and middle panels: Boxplots for Nogueira et al. (2018) stability estimator obtained from embedded methods implemented with different SNP 
subsets sizes and several filter methods in 10 outer-training folds. Right panel: Boxplots for Nogueira et al. (2018) stability estimator of different SNP subset sizes 
obtained with different filter methods in the 10-outer training folds. Subsets sizes: 50, 250, 500, 750, 1,000, and 1,500 SNPs. Filter methods: Maximum relevance 
minimum redundancy (mrmr), random forest (cforest), Spearman’s correlation (spearcor), univariate decision tree (univ.dtree), and random selection (random).

TABLE 2 | Stability of feature selection methods for prediction of residual feed intake with LASSO regression.

Subset size1 Filter2 NSNPs3 PDF4 medianSel5 IQRSel6 NOG7

50

mrmr 499 0.30 50 0 0.53
cforest 454 0.89 46 5 0.03
spearcor 441 0.20 44 3 0.69
univ.dtree 151 0.99 24 10 0.00
random 189 0.99 23 12 0.00

250

mrmr 2,096 0.28 209 8 0.53
cforest 1,693 0.79 172 13 0.05
spearcor 1,575 0.28 158 12 0.54
univ.dtree 804 0.90 83 18 0.02
random 740 0.92 80 48 0.01

500

mrmr 3,420 0.29 347 23 0.52
cforest 2,287 0.72 239 39 0.07
spearcor 2,560 0.28 260 9 0.52
univ.dtree 1,292 0.86 141 40 0.02
random 1,332 0.86 151 63 0.02

750

mrmr 4,333 0.28 437 24 0.53
cforest 2,646 0.67 275 35 0.09
spearcor 3,339 0.27 338 21 0.53
univ.dtree 1,667 0.79 165 40 0.04
random 1,745 0.80 160 57 0.03

1,000

mrmr 5,125 0.27 515 23 0.54
cforest 3,008 0.63 321 53 0.10
spearcor 3,978 0.27 394 15 0.53
univ.dtree 1,750 0.74 193 21 0.06
random 1,879 0.76 192 62 0.05

1,500

mrmr 5,978 0.26 595 21 0.55
cforest 3,478 0.56 341 8 0.14
spearcor 5,096 0.27 506 12 0.54
univ.dtree 2,270 0.66 235 19 0.09
random 2,200 0.68 235 80 0.08

9,523 none 2,963 0.27 269 111 0.56

1Subset size = number of selected features.
2Filter method = Maximum relevance minimum redundancy (mrmr); Random forest (cforest); Spearman’s correlation (spearcor); Univariate decision tree (univ.dtree); Random 
selection (random).
3NSNPs = Total number of SNPs pre-selected in the 10 subsets.
4PDF = Proportion of distinct features in the 10 subsets.
5medianSel = Mean number of selected SNPS in the 10 subsets.
6IQRSel = Interquartile range of the number of selected SNPS in the 10 subsets.
7NOG = Nogueira et al. (2018) stability estimator.
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LR, and ENET). This could be due to the ability of non-parametric 
models to capture interactions among predictor variables and 
non-linear relationships with the target variable without explicitly 
modeling these interactions or functional forms (Gianola et al., 
2006; Gianola and van Kaam, 2008). They are potentially able 
to capture complex signals from the data and deliver a better 

predictive accuracy, even if the trait is under additive gene 
action (Perez-Rodriguez et  al., 2012, 2013). With large subset 
sizes (i.e., 1,000–1,500 SNPs), the filter method had no appreciable 
influence on prediction quality, which was almost the same 
as with random SNP selection. However, FS was essential for 
the implementation of both methods, which had numerical 
problems when all 9,523 SNPs were included in the analysis. 
With small subset sizes (i.e., equal or smaller than 250 SNPs), 
the FS algorithm used had a huge impact. In fact, prediction 
quality was poor when tree-based methods or random selection 
were used for FS with any learner, but it was comparable to 
the one attained with larger SNP subsets when spearcor or 
mrmr were implemented for SNP pre-selection combined or 
not with embedded methods. Those filter methods also led 
to more stable results (i.e., smaller IQR of SC).

Regularized methods (ENET, LR, and RR) with or without 
embedded FS followed the same pattern with respect to subset 
size (Figure  3). When no SNP pre-selection was performed 
or subset size was equal or larger than 750 SNPs, prediction 
accuracy was not different from the one attained with GBLUP, 
although results were more stable with the latter (Figure  2). 
In this situation (i.e., with medium-large subset sizes), FS would 
reduce computation time and resources, but would not improve 
over the predictions from regularized regression. Like for SVM 
and GB, when subset size was smaller than 500 SNPs, the 
filter method had a marked influence on prediction quality, 
with spearcor and mrmr being the only methods that produced 
a prediction quality comparable to the one obtained when all 
9,523 SNPs were used.

Results regarding the stability of FS (Tables 1–4) were quite 
clear. Stability generally increased with the subset size. Stability 
of tree-based methods for FS (univ.dtree and cforest) was 
considered null. The FS methods that produced the best 
prediction quality (spearcor and mrmr) even with small subset 
sizes (i.e., 50 or 250 SNPs) were also the ones that showed 
stable compositions of SNP subsets, insensitive to changes in 
datasets. Univariate FS was computationally fast, but it does 
not account for the potential correlation between features. This 
could lead to similar ranking scores of correlated features that 
would potentially be  selected together leading to increased 
redundancy in the feature subset retained. The similar 
performance of spearcor and mrmr methods, one univariate 
and the other multivariate, could be  due to the fact that most 
correlated and less variable SNPs were excluded in the previous 
step of SNP quality control, before the FS process. This could 
have masked the potential differences in stability resulting from 
accounting for correlations between features or not. However, 
when combined with regularized methods (ENET and LR), 
the SNP subsets obtained with spearcor were more trimmed 
by the regularization than those obtained with mrmr, suggesting 
that some redundancies remained. With this two-step approach, 
spearcor seems preferable over mrmr, because of its much 
lower requirements in computation time and resources.

Elastic net and LR had the same stability values within 
subset size, despite different underlying SNP selection strategies. 
According to Nogueira et al. (2018), when features are correlated, 
LR would tend to select different features in different subsets. 

TABLE 4 | Mean of the Pearson and Spearman correlation over all pairs of 
feature scores in the 10-outer training sets obtained with different filter methods 
for feature selection for prediction of residual feed intake.

Filter method1 Pearson Spearman

mrmr 0.875 0.893
cforest 0.025 0.015
spearcor 0.863 0.802
univ.dtree 0.062 0.059
random 0.001 0.001

1Filter method = Maximum relevance minimum redundancy (mrmr); Random forest 
(cforest); Spearman’s correlation (spearcor); Univariate decision tree (univ.dtree); 
Random selection (random).

TABLE 3 | Stability of filter methods for prediction of residual feed intake.

Subset size1 Filter 
method2

NSNPs3 PDF4 NOG5

50

mrmr 500 0.30 0.53
cforest 500 0.90 0.02
spearcor 500 0.19 0.73
univ.dtree 500 0.96 0.00
random 500 0.98 0.00

250

mrmr 2,500 0.26 0.58
cforest 2,500 0.80 0.04
spearcor 2,500 0.23 0.67
univ.dtree 2,500 0.85 0.01
random 2,500 0.88 0.00

500

mrmr 5,000 0.25 0.59
cforest 5,000 0.72 0.04
spearcor 5,000 0.21 0.66
univ.dtree 5,000 0.75 0.02
random 5,000 0.79 0.00

750

mrmr 7,500 0.22 0.62
cforest 7,500 0.65 0.04
spearcor 7,500 0.20 0.68
univ.dtree 7,500 0.67 0.02
random 7,500 0.71 0.00

1,000

mrmr 10,000 0.21 0.64
cforest 10,000 0.59 0.04
spearcor 10,000 0.19 0.69
univ.dtree 10,000 0.60 0.03
random 10,000 0.64 0.00

1,500

mrmr 15,000 0.19 0.66
cforest 15,000 0.49 0.04
spearcor 15,000 0.18 0.69
univ.dtree 15,000 0.50 0.03
random 15,000 0.52 0.00

1Subset size = number of selected features.
2Filter method = Maximum relevance minimum redundancy (mrmr); Random forest 
(cforest); Spearman’s correlation (spearcor); Univariate decision tree (univ.dtree); 
Random selection (random).
3NSNPs = Total number of SNPs selected in the 10 subsets.
4PDF = Proportion of distinct features in the 10 subsets.
5NOG = Nogueira et al. (2018) stability estimator.
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Elastic net might increase stability. However, as stated above, 
we  used 9,523 out of 45,610 SNPs, with a PC smaller than 
0.8  in order to reduce computation requirements of the ML 
algorithms. This pre-selection may have reduced redundancy, 
which produces instability (Gulgezen et  al., 2009), reducing 
the differences between both regressors.

In conclusion, both accuracy and stability of results and 
of feature selector should be accounted for when constructing 
a model for prediction. In the case of prediction of RFI in 
growing pigs, different FS algorithms performing similarly 
well for prediction had wide differences in terms of stability. 
This issue can have important consequences on the 
interpretability and reproducibility of results and should 
be  considered as an additional criterion to consider when 
evaluating FS methods. Elastic net, LR, and RR did not 
outperform GBLUP when the 9,523 SNPs were used for 
prediction or when they were pre-selected according to some 
criteria. With these learners, when the subset size was small 
(50–250 SNPs), only SNPs pre-selected with mrmr or spearcor 
produced prediction accuracies comparable to that of GBLUP 
with all the SNPs, and good FS stabilities. Thus, a strong 
SNP pre-selection could be  performed to reduce computation 
requirements for regularized regression. Nevertheless, the best 
prediction quality in terms of accuracy and stability was 
obtained with the ML approaches (SVM and GB) using 500 
or more SNPs pre-selected with mrmr or spearcor as predictor 
variables. Thus, the use of low-density SNP chips for GS 
seems feasible. Finally, when SNP quality control includes 
removing highly correlated SNPs, SC is recommended for FS 
over mrmr because of its simplicity and small requirements 
in computation time and resources.

Results and conclusions for ADG were consistent with the 
ones obtained for RFI. They are provided in 
Supplementary Material.
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