
HAL Id: hal-03153709
https://hal.science/hal-03153709

Submitted on 26 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real Time Audio Digital Signal Processing With Faust
and the Teensy

Romain Michon, Yann Orlarey, Stéphane Letz, Dominique Fober

To cite this version:
Romain Michon, Yann Orlarey, Stéphane Letz, Dominique Fober. Real Time Audio Digital Signal
Processing With Faust and the Teensy. Sound and Music Computing Conference (SMC-19), May
2019, Malaga, Spain. �hal-03153709�

https://hal.science/hal-03153709
https://hal.archives-ouvertes.fr


Real Time Audio Digital Signal Processing With Faust and the Teensy

Romain Michon,1,2 Yann Orlarey,1 Stéphane Letz,1 and Dominique Fober1
1 GRAME-CNCMC, 11 Cours de Verdun-Gensoul, 69002 Lyon (France)

2 Center for Computer Research in Music and Acoustics, 660 Lomita Ct., Stanford CA 94350-8180 (USA)
rmichon@ccrma.stanford.edu

ABSTRACT

This paper introduces a series of tools to program the
Teensy development board series with the FAUST pro-
gramming language. faust2teensy is a command line
application that can be used both to generate new ob-
jects for the Teensy Audio Library and standalone Teensy
programs. We also demonstrate how faust2api can
produce Digital Signal Processing engines (with potential
polyphony support) for the Teensy. Details about the im-
plementation and optimizations of these systems are pro-
vided and the results of various tests (i.e., computational,
latency, etc.) are presented. Finally, future directions for
this work are discussed through a discussion on bare-metal
implementation of real-time audio signal processing appli-
cations.

1. INTRODUCTION

Arduinos 1 contributed to the spreading of microcon-
trollers by making them more accessible through a high
level programming language (which is essentially a sub-
set of C++), various domain-specific libraries, and an Inte-
grated Development Environment (IDE) allowing to export
the generated firmware to the board using USB.

The impact of the “Arduino revolution” on the com-
puter music/NIME (New Interfaces for Musical Expres-
sion) community has been significant and gave birth to
hundreds of new music controllers and instruments.

In parallel of that, the rise of embedded Linux platforms
with their potential applications to real-time audio sig-
nal processing also impacted the way we approach digi-
tal lutherie [1]. A series of tools (both hardware and soft-
ware) such as Satellite CCRMA [2] and the BELA 2 [3]
(to only name a few) have been exploiting the potential of
these new technologies. The BELA is especially interest-
ing to us as it adds audio-rate analog I/Os and low-latency
audio processing capabilities to the BeagleBone Black. 3

More specific applications and experiments have also been

1 https://www.arduino.cc/. All URLs presented in this paper
were verified on Feb. 4, 2019.

2 https://bela.io/
3 https://beagleboard.org/bone

Copyright: c© 2019 Romain Michon,1,2 Yann Orlarey,1 Stéphane Letz,1 and Do-

minique Fober1 et al. This is an open-access article distributed under the terms 

of the Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original 

author and source are credited.

Figure 1. The Teensy 3.2 and its audio shield.

targeting specialized boards such as FPGAs (Field Pro-
grammable Gate Array) (e.g., Digilent Zybo Series 4 ) [4,5]
and DSPs (Digital Signal Processing) (e.g., Analog De-
vices SHARC Audio Module, 5 etc.). The main drawback
of these platforms is their price: fully functional “all-in-
one” solutions can’t be found for less than 100USD.

On the other hand, recent microcontrollers are cheap, of-
fer an heightened computational power, and can be used
to synthesize/process audio signals. Some of them such as
the ARM Cortex-M4F 6 even include a dedicated Floating-
Point Unit (FPU) and support for DSP instructions, making
them a well-suited platform for sound synthesis/process-
ing.

ARM Cortex-M4 microcontrollers are used at the heart
of PJRC’s Teensy 7 development board series whose
price averages 25USD. Since the Cotex-M4 hosts its own
DAC, 8 sound can be synthesized and played directly from
the Teensy. PJRC also offers an audio shield for the Teensy
that essentially upgrades it with a SGTL5000 Audio Codec
providing a 16bits 44.1kHz stereo audio input and output
(see Figure 1) for 15USD!

The Teensy comes with an Audio Library 9 where ba-
sic DSP objects (e.g., oscillators, effects, Karplus-Strong,
etc.) implemented in C++ can be patched with a high level
API. This task is facilitated by an online graphical environ-

4 https://store.digilentinc.com/
zybo-z7-zynq-7000-arm-fpga-soc-development-board/

5 https://wiki.analog.com/resources/
tools-software/sharc-audio-module

6 https://developer.arm.com/products/
processors/cortex-m/cortex-m4

7 https://www.pjrc.com/teensy/
8 DigitaltoAudioConverter
9 https://www.pjrc.com/teensy/td_libs_Audio.

html

mailto:rmichon@ccrma.stanford.edu
https://www.arduino.cc/
https://bela.io/
https://beagleboard.org/bone
http://creativecommons.org/licenses/by/3.0/
https://store.digilentinc.com/zybo-z7-zynq-7000-arm-fpga-soc-development-board/
https://store.digilentinc.com/zybo-z7-zynq-7000-arm-fpga-soc-development-board/
https://wiki.analog.com/resources/tools-software/sharc-audio-module
https://wiki.analog.com/resources/tools-software/sharc-audio-module
https://developer.arm.com/products/processors/cortex-m/cortex-m4
https://developer.arm.com/products/processors/cortex-m/cortex-m4
https://www.pjrc.com/teensy/
Digital to Audio Converter
https://www.pjrc.com/teensy/td_libs_Audio.html
https://www.pjrc.com/teensy/td_libs_Audio.html


ment 10 where objects can be connected by drawing patch
chords between them.

The standard DSP objects of the Teensy Audio Library
are relatively basic. New objects can be implemented in
C++, which is often out of reach to people in the DIY (Do
It Yourself) community who might use the Teensy. Also,
since not all the microcontrollers used in the Teensy se-
ries have an FPU, the standard DSP objects of the Teensy
Audio Library are all implemented in fixed point.

FAUST [6] is a functional programming language for ef-
ficient real-time audio signal processing. The FAUST com-
piler can generate DSP code/classes in various languages
(i.e., C, C++, Java, JS, LLVM, WebAssembly, etc.) from
a given FAUST program. The FAUST DSP libraries im-
plement hundreds of algorithms for sound synthesis and
processing.

In this paper, we introduce a series of tools to pro-
gram the Teensy with FAUST. 11 First, we present
faust2teensy, a command-line application to gener-
ate new DSP objects for the Teensy Audio Library. Then,
we introduce a new target for faust2api [7] allowing
us to generate DSP engines (with potential polyphony sup-
port) for the Teensy. We also demonstrate how ready-to-
use Teensy programs can be written in FAUST. In that case,
the parameters of a FAUST program (e.g., the frequency of
an oscillator, etc.) can be directly mapped to the analog
and digital inputs of the Teensy. Finally, we evaluate the
performances of these systems and we present future di-
rections for this type of work.

2. CREATING NEW OBJECTS FOR THE TEENSY
AUDIO LIBRARY

2.1 Generating DSP Objects With faust2teensy

faust2teensy is a command-line tool that can be used
to generate new DSP objects compatible with the Teensy
Audio Library. 12 For this, the -lib option must be pro-
vided when calling faust2teensy:

faust2teensy -lib MyFaustSynth.dsp

which will yield a package containing two C++ files:
MyFaustSynth.h and MyFaustSynth.cpp (see Fig-
ure 2) implementing a class called MyFaustSynth.

These files can either be placed in the source of the
Teensy Audio Library or in their own library. In both
cases, the .h file should be included at the beginning of
the Teensy program and then called and connected at least
to a DAC (Digital to Audio Converter) just like any other
object of the Teensy Audio Library:

#include <Audio.h>
#include <MyFaustSynth.h>
MyFaustSynth myFaustSynth;
AudioOutputAnalog dac;

10 http://www.pjrc.com/teensy/gui/index.html
11 All the tools presented in this paper are open source and have been

integrated to the FAUST distribution which can be found on GitHub:
https://github.com/grame-cncm/faust.

12 We’ll see in §4 that faust2teensy can also be used to generate
ready-to-use Teensy programs.

AudioConnection
patchCord0(myFaustSynth,dac);

void setup() {
AudioMemory(2);

}
void loop() {
}

Listing 1. Simple Teensy program using a FAUST-
generated DSP object with the built-in DAC of the Teensy.

AudioOutputAnalog corresponds to the built-in DAC
of the Teensy but AudioOutputI2S could be used instead,
in case the Teensy is equipped with an audio shield. In that
case, an AudioControlSGTL5000 object should also be
instantiated and multi-channel audio connections can be
used:

#include <Audio.h>
#include <MyFaustSynth.h>
MyFaustSynth myFaustSynth;
AudioOutputI2S dac;
AudioControlSGTL5000 audioShield;
AudioConnection

patchCord0(myFaustSynth,0,dac,0);
AudioConnection

patchCord1(myFaustSynth,0,dac,1);
void setup() {

AudioMemory(2);
audioShield.enable();

}
void loop() {
}

Listing 2. Simple Teensy program using a FAUST-
generated DSP object with the Teensy Audio Shield.

Note that the number of audio inputs and outputs of the
generated object depends on the FAUST program, hence
MyFaustSynth could have more than one output, in
which case the wiring of the audio connections could look
like:

AudioConnection
patchCord0(myFaustSynth,0,dac,0);

AudioConnection
patchCord1(myFaustSynth,1,dac,1);

The following Code Listing presents an example FAUST
program implementing a band-limited sawtooth wave os-
cillator that could be used as MyFaustSynth.dsp:

import("stdfaust.lib");
freq = nentry("f",300,50,2000,0.01) :

si.smoo;
gain = nentry("g",0.5,0,1,0.01) :

si.smoo;
process = os.sawtooth(freq)*gain;

Listing 3. FAUST program implementing a band-limited
sawtooth oscillator controllable with some UI elements.

f controls the frequency of the oscillator and g its gain.
Both are processed by si.smoo which exponentially in-
terpolates samples, preventing discontinuities.

http://www.pjrc.com/teensy/gui/index.html
https://github.com/grame-cncm/faust


Faust Program

Faust Compiler

C++ DSP Class

Teensy Audio 
Library Wrapper

faust2teensy -lib

.cpp and .h files

faust2api -teensy

DSP object for the
Teensy Audio Library

Teensy DSP Engine

Teensy Program
Wrapper

Teensy ARM
Compiler

.dex File

.ino Project

Project can be open in
the Teensyduino IDE

faust2teensy

Ready to be uploaded
with the Teensy bootloader

Faust Compiler

C++ DSP Class

faust2api Teensy
Wrapper

.cpp and .h files

Faust DSP Audio
Engine

Polyphony?

faust2api -teensy

Figure 2. Overview of the various tools to use FAUST on the Teensy.

The value of f and g can be set at any point by call-
ing the setParamValue method which takes the name of
the FAUST parameter and its corresponding value as ar-
guments. Note that this method can also be used with
faust2api (see §3) as it is inherited from the same
parent class (MapUI) of the FAUST architectures system.
Hence, the frequency of the FAUST sawtooth oscillator pre-
sented in Code Listing 3 could be set randomly every two-
hundred milliseconds by modifying the implementation of
the loop function 13 of Code Listing 1:

void loop() {
myFaustSynth.setParamValue("f",

random(50,2000));
delay(200);

}

2.2 Implementation

faust2teensy is a simple bash script calling the
command-line FAUST compiler to generate the C++ DSP
class corresponding to a given FAUST program (see Fig-
ure 2). The generated C++ code is pasted into a wrapper
C++ file (also called architecture in the FAUST world) im-
plementing a generic object for the Teensy Audio Library.
This file and its corresponding header file are then pack-
aged in a zip file which is provided to the user.

13 loop is a standard Arduino function that is repeated until the device
running it is powered off. In other words, it corresponds to the main
thread of the system. delay is also an Arduino function that can be
used to pause the thread for a given duration in milliseconds.

3. GENERATING FAUST DSP ENGINES FOR THE
TEENSY

3.1 Monophonic DSP Engine

FAUST can also be used to generate ready-to-use DSP en-
gines for the Teensy. In that case, the strategy consists
in letting FAUST taking care entirely of the sound synthe-
sis/processing portion of the program.

The FAUST program presented in Code Listing 3 can be
turned into a DSP engine using faust2api by running
the following command line in a terminal:

faust2api -teensy MyFaustSynth.dsp

Just like faust2teensy (see §2), the generated pack-
age contains a .cpp and a .h file that can be called directly
in a Teensy program:

#include <MyFaustSynth.h>
int SR = 44100; // Sampling Rate
int BS = 128; // Block Size
MyFaustSynth myFaustSynth(SR,BS);
void setup() {

myFaustSynth.setDevice(0,0);
myFaustSynth.start();

}
void loop() {

myFaustSynth.setParamValue(
"f",random(50,2000));

delay(200);
}

Listing 4. Teensy program using a FAUST-generated
monophonic DSP engine.

Here, the MyFaustSynth object relies on the Teensy
Audio Library which it calls internally. The setDevice

method allows the programmer to specify the hardware



Device ID Device Description
0 Teensy Audio Shield
1 Teensy Audio Shield (Quad)
2 Built-In ADC
3 Built-In ADC (Stereo)
4 Teensy Audio Shield (Slave Mode)
5 Pulse Density Modulated Bitstream
6 Time Division Multiplexed Frame
7 USB: receive stereo audio from computer

Table 1. Input devices ID for the setDevice method (di-
rectly taken from the Teensy Audio Library).

Device ID Device Description
0 Teensy Audio Shield
1 Teensy Audio Shield (Quad)
2 SPDIF
3 PT8211 DAC
4 Built-In DAC
5 Built-In DAC (Stereo)
6 PWM
7 Teensy Audio Shield (Slave Mode)
8 Time Division Multiplexed Frame
9 ADAT
10 USB: send stereo audio to computer

Table 2. Output devices ID for the setDevice method
(directly taken from the Teensy Audio Library).

input (see Table 1) and output (see Table 2) of the DSP en-
gine. start launches computation and setParamValue

is used to change the value of a specific parameter (as with
faust2teensy). All the other standard faust2api
methods [7] are also available.

3.2 Polyphonic DSP Engine

While the benefits of using a Teensy monophonic DSP en-
gine generated with faust2api over faust2teensy
might be questionable, faust2api also allows us to gen-
erate polyphonic audio engines that can be used with a spe-
cific API.

A FAUST program can be made “polyphony-compatible”
simply be declaring the freq, gain, and gate parame-
ters. 14 In that case, an audio effect common to all voices
can be declared using the effect standard declaration.
Hence, Code Listing 3 can be easily modified to make it
polyphony-compatible (MyFaustSynthPoly.dsp):

import("stdfaust.lib");
freq = nentry("freq",300,50,2000,0.01);
gain = nentry("gain",0.5,0,1,0.01);
gate = button("gate");
envelope = en.asr(0.01,gain,0.01,gate);
process = os.sawtooth(freq)*envelope;

14 https://faust.grame.fr/doc/manual/index.html#
midi-polyphony-support

effect = +˜@(ma.SR*0.15)*0.3; // echo

Listing 5. FAUST program implementing a MIDI-
controllable polyphonic synthesizer.

The FAUST program presented in Code Listing 5 can be
turned into a polyphonic DSP engine by running the fol-
lowing command line:

faust2api -teensy -nvoices 4 -effect auto
MyFaustSynthPoly.dsp

Note that -nvoices allows us to specify the maximum
number of voices of polyphony of the engine and that -
effect auto connects all the voices to the effect de-
clared in the effect standard declaration.

The generated DSP engine allows for the use of
polyphony-related methods [7] such as keyOn, keyOff,
newVoice, deleteVoice, setVoiceParamValue, etc.
Code Listing 6 demonstrates the use of a polyphonic DSP
engine by generating random major chords.

#include <MyFaustSynthPoly.h>
MyFaustSynthPoly myFaustSynth(44100,128);
void setup() {

myFaustSynth.setDevice(0,0);
myFaustSynth.start();

}
void loop() {

int root = random(40,80);
int M3 = root+4; int P5 = root+7;
myFaustSynth.keyOn(root,100);
myFaustSynth.keyOn(M3,100);
myFaustSynth.keyOn(P5,100);
delay(1000);
myFaustSynth.keyOff(root,100);
myFaustSynth.keyOff(M3,100);
myFaustSynth.keyOff(P5,100);
delay(500);

}

Listing 6. Teensy program using a FAUST-generated
polyphonic DSP engine.

Figure 2 gives an overview of the implementation of this
system.

4. USING FAUST TO PROGRAM THE TEENSY

faust2teensy can be used in “standalone mode” to
fully program the Teensy directly from FAUST without
writing a single line of Arduino code. This is done through
the use of specific metadata in the declaration of the name
of the parameters of the FAUST program. Hence, [io:
AN] can be used to connect the N analog pin to the current
parameter. The same approach is used for digital pins us-
ing the [io: DN] metadata.

Global metadata can be declared as well to configure the
sampling rate (declare SR), the block size (declare
BS), and the audio input and output (declare device –
see Tables 1 and 2 for a list of available inputs and outputs)
of the Teensy.

Code Listing 7 presents a FAUST program where analog
pins 0 and 1 of the Teensy control respectively the fre-

https://faust.grame.fr/doc/manual/index.html#midi-polyphony-support
https://faust.grame.fr/doc/manual/index.html#midi-polyphony-support


quency and the gain of a sawtooth oscillator and digital
pin 0 the fact that it’s on or off.

declare SR "44100";
declare BS "128";
declare device "{0,0}";
import("stdfaust.lib");
f = nentry("f[io: A0]",
300,50,2000,0.01) : si.smoo;

g = nentry("g[io: A1]",
0.5,0,1,0.01) : si.smoo;

t = nentry("t[io: D0]",
0,0,1,1) : si.smoo;

process = os.sawtooth(f)*g*t;

Listing 7. Standalone FAUST Teensy program.

Note that the range of analog pins on the Teensy is auto-
matically mapped to that of the corresponding FAUST pa-
rameter. Hence, in the case of the f parameter in Code
Listing 7, if the Teensy uses 10 bits integers to store the
values of the samples acquired by analog pin 0, 0 will cor-
respond to a value of f of 50 and 1023 to a value of f of
2000. The same is true for digital pins.
faust2teensy can be used in standalone mode simply

by running the following command in the terminal:

faust2teensy MyFaustSynth.dsp

In that case, faust2teensy will automatically call the
Teensy bootloader to upload the generated firmware, so the
Arduino IDE doesn’t have to be used at all! Note that the
-vb option can be added to verbose the output of the com-
pilation process.

5. EVALUATION

The tools presented in §2-4 have been evaluated through
the simple FAUST program presented in Code Listing 8
which implements a sawtooth oscillator from scratch.

import("stdfaust.lib");
freq = hslider("freq",400,50,2000,0.01);
frac(n) = n - floor(n);
sawtooth(f) = +(f/ma.SR)˜frac : *(2)-1;
process = sawtooth(freq) <: _,_;

Listing 8. Standalone FAUST Teensy program.

This algorithm was chosen for its simplicity (only three
additions/subtractions and one multiplication). The corre-
sponding C++ code generated by the FAUST compiler was
used with faust2api in polyphonic mode (see §3.2) to
measure the number of cycles per seconds on the Teensy
under various conditions. This code was re-written “by
hand” to use fixed points instead of floating points with-
out changing the algorithm (the FAUST compiler can only
generate floating point DSP code).

Tests were carried out on a Teensy 3.2
(MK20DX256VLH7 Cortex-M4 72MHz) and a Teensy
3.6 (MK66FX1M0VMD18 Cortex-M4F 180MHz). Since
3.6 has an FPU, floating point instructions were forced by

using the following options during compilation: -mfloat
-abi=hard -mfpu=fpv4-sp-d16 (selects a hardware
floating-point unit conforming to the single precision
variant of the FPv4 architecture) when testing DSP code
using floating points. Since 3.2 doesn’t have an FPU, no
specific C++ compilation options for floating points were
selected (emulated floating points).

The results of our tests are presented in Table 3. All tests
were carried out at a sampling rate of 44.1KHz. We chose
128 samples as our maximum test block size since using
higher block sizes doesn’t seem to impact computation. 8
samples is the smallest block size that we were able to use
on the Teensy. “MaxPoly” corresponds to the maximum
number of voices of polyphony based on Code Listing 8
that we were able to run.

As expected, the Teensy 3.6 outperforms the 3.2 for all
tests. While there’s only a gain factor of ∼2.2 between
these two devices when using fixed point arithmetic, the
3.6 was 15 times more powerful in average than the 3.2
when using floating points. Hence, 63 parallel versions of
the algorithm presented in Code Listing 8 (which corre-
sponds to a total of 64 multiplications and 251 additions/-
subtractions per sample) could be ran in parallel and added
on the 3.6 while the 3.2 only allowed to play 4 voices. An-
other interesting element to note is that the impact of block
size on computation is rather small. Hence, a block size of
8 samples is only 1.2 times more expensive in average than
a block size of 128 samples (or greater) in most cases.

These performances could potentially be improved by
using CMSIS-DSP instructions, 15 but since all the op-
timized math function of this library are vector-based,
they’re only useful for very specific kinds of algorithms.
For instance, they would not help make the program pre-
sented in Code Listing 8 more officient because of its in-
ternal feedback.

More complex algorithms such as the FAUST version of
Zita-Verb (stereo feedback delay network) [8] were also
ran successfully on the Teensy 3.6.

Finally, audio “round-trip” (analog to digital and then
back to analog) latency measurements were carried out
(also using a sampling rate of 44.1KHz). When using a
block size of 128 samples, a latency of 10.5ms was mea-
sured. When using a block size of 8 samples, a latency of
1.2ms was measured!

6. FUTURE DIRECTIONS

The current set of metadata available to produce standalone
Teensy programs with FAUST (see §4) is somewhat limited
and could be easily extended. For example, it is currently
not possible to map sensors using i2s (Integrated Inter-IC
Sound Bus) to the parameters of a FAUST program, etc. We
plan to expand the scope of these metadata in the future
to allow users to program the Teensy in FAUST without
making compromises.

Microcontrollers and CPUs for embedded systems now
offer enough processing power to implement complex real-
time audio signal processing algorithms, but little work has

15 http://www.keil.com/pack/doc/CMSIS/DSP/html

http://www.keil.com/pack/doc/CMSIS/DSP/html


Block Size Teensy 3.2 Teensy 3.6
int16 128 ∼2,004,700 c/s ∼4,801,450 c/s

MaxPoly int16 128 34 (∼32,150 c/s) 75 (∼31,350 c/s)
int32 128 ∼1,113,700 c/s ∼2,402,900 c/s

MaxPoly int32 128 20 (∼23,950 c/s) 33 (∼55,550 c/s)
float32 128 ∼222,650 c/s ∼3,512,600 c/s

MaxPoly float32 128 4 (∼25,700 c/s) 63 (∼31,350 c/s)
int16 8 ∼1,774,000 c/s ∼4,271,300 c/s

MaxPoly int16 8 30 (∼49,050 c/s) 67 (∼59,950 c/s)
int32 8 ∼986,100 c/s ∼2,122,400 c/s

MaxPoly int32 8 17 (∼43,200 c/s) 30 (∼28,300 c/s)
float32 8 ∼196,000 c/s ∼3,109,050 c/s

MaxPoly float32 8 3 (∼70,150 c/s) 60 (∼27,900 c/s)

Table 3. Number of cycles per second and maximum number of voices of polyphony for different data types, block sizes
and Teensy boards based on the FAUST program presented in Code Listing 8.

been done towards bare-metal implementations on more
advanced platforms. Indeed, while we don’t think there’s
more work to be done on the Teensy side, we’d like to im-
plement a series of tools similar to the ones presented in
this paper targeting the Raspberry Pi (RPI). 16 The RPI
3 A+ 17 only costs 25USD and is based on a Broad-
com BCM2837B0 Cortex-A53 with 4 1.4GHz cores and
512MB of RAM. Beside the fact it offers much more pro-
cessing power than the Teensy, the Cortex-A53 microar-
chitecture provides support for Neon, 18 which should al-
low further optimizations for floating points operations.

While the PI is not a microcontroller like the Teensy and
therefore doesn’t have any analog inputs for sensors, etc.
it can be easily upgraded with an Analog to Digital Con-
verter (ADC) such as an MCP3008 19 which costs less than
4USD. Similarly, the built-in audio codec of the PI is no-
torious to be low quality. The Fe-Pi Audio Z V2 20 is a
sister board for the PI using the same SGTL5000 Audio
Codec as the Teensy Audio Shield, and its cost is inferior
to 12 USD. Hence, the total cost of this set-up is similar
to the one of a Teensy 3.6 upgraded with an Audio Shield
(∼45USD) but provides much more processing power for
potential bare-metal implementations.

7. CONCLUSIONS

Programming the Teensy for custom real-time audio sig-
nal processing applications is out of reach to most people
in the DIY community. The tools presented in this paper
provide a comprehensive way to carry out this type of task
at a higher level using the FAUST programming language.
Programmers benefit from hundreds of existing DSP func-
tions as well as complex functionalities such as handling
polyphony.

More generally, thanks to its high processing power (at
least considering that it’s a microcontroller) and its FPU,

16 https://www.raspberrypi.org/
17 https://www.raspberrypi.org/products/

raspberry-pi-3-model-a-plus/
18 https://developer.arm.com/technologies/neon
19 8-Channel 10-Bit ADC with SPI interface.
20 https://fe-pi.com/products/fe-pi-audio-z-v2

the Teensy 3.6, when combined with its audio shield pro-
vides a cheap platform (>50USD) for low-latency real-
time audio signal processing involving external sensors
control. The lack of operating system allows for the use
of low block sizes (eight samples) at a minimal computa-
tional cost, and for an extremely fast boot time (less than
one second).

8. REFERENCES

[1] S. Jordà, “Digital lutherie crafting musical comput-
ers for new musics’ performance and improvisation,”
Ph.D. dissertation, Universitat Pompeu Fabra, Spain,
2005.

[2] E. Berdahl and W. Ju, “Satellite ccrma: A musical in-
teraction and sound synthesis platform,” in Proceed-
ings of the New Interfaces for Musical Expression
(NIME’11), Oslo, Norway, June 2011.

[3] A. McPherson, “Bela: An embedded platform for low-
latency feedback control of sound,” The Journal of the
Acoustical Society of America, vol. 141, no. 5, pp.
3618–3618, 2017.

[4] E. Motuk, R. Woods, S. Bilbao, and J. McAllister,
“Design methodology for real-time fpga-based sound
synthesis,” IEEE Transactions on signal processing,
vol. 55, no. 12, pp. 5833–5845, 2007.

[5] F. Pfeifle and R. Bader, “Real-time finite-difference
method physical modeling of musical instruments us-
ing field-programmable gate array hardware,” Journal
of the Audio Engineering Society, vol. 63, no. 12, pp.
1001–1016, 2016.

[6] Y. Orlarey, S. Letz, and D. Fober, New Computational
Paradigms for Computer Music. Paris, France: De-
latour, 2009, ch. “Faust: an Efficient Functional Ap-
proach to DSP Programming”.

[7] R. Michon, J. Smith, C. Chafe, S. Letz, and Y. Orlarey,
“faust2api: a comprehensive api generator for android

https://www.raspberrypi.org/
https://www.raspberrypi.org/products/raspberry-pi-3-model-a-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-a-plus/
https://developer.arm.com/technologies/neon
https://fe-pi.com/products/fe-pi-audio-z-v2


and ios,” in Proceedings of the Linux Audio Conference
(LAC-17), Saint-Etienne, France, May 2017, submitted
for review.

[8] V. Valimaki, J. D. Parker, L. Savioja, J. O. Smith,
and J. S. Abel, “Fifty years of artificial reverberation,”
IEEE Transactions on Audio, Speech, and Language
Processing, vol. 20, no. 5, pp. 1421–1448, 2012.


	 1. Introduction
	 2. Creating New Objects for the Teensy Audio Library
	2.1 Generating DSP Objects With faust2teensy
	2.2 Implementation

	 3. Generating Faust DSP Engines for the Teensy
	3.1 Monophonic DSP Engine
	3.2 Polyphonic DSP Engine

	 4. Using Faust to Program the Teensy
	 5. Evaluation
	 6. Future Directions
	 7. Conclusions
	 8. References

