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Argus: Interactive a priori Power Analysis

Xiaoyi Wang, Alexander Eiselmayer, Wendy E. Mackay, Kasper Hornbæk, Chat Wacharamanotham
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Fig. 1: Argus interface: (A) Expected-averages view helps users estimate the means of the dependent variables through interactive
chart. (B) Confound sliders incorporate potential confounds, e.g., fatigue or practice effects. (C) Power trade-off view simulates
data to calculate statistical power; and (D) Pairwise-difference view displays confidence intervals for mean differences, animated as
a dance of intervals. (E) History view displays an interactive power history tree so users can quickly compare statistical power with
previously explored configurations.

Abstract— A key challenge HCI researchers face when designing a controlled experiment is choosing the appropriate number of
participants, or sample size. A priori power analysis examines the relationships among multiple parameters, including the complexity
associated with human participants, e.g., order and fatigue effects, to calculate the statistical power of a given experiment design.
We created Argus, a tool that supports interactive exploration of statistical power: Researchers specify experiment design scenarios
with varying confounds and effect sizes. Argus then simulates data and visualizes statistical power across these scenarios, which
lets researchers interactively weigh various trade-offs and make informed decisions about sample size. We describe the design and
implementation of Argus, a usage scenario designing a visualization experiment, and a think-aloud study.

Index Terms—Experiment design, power analysis, simulation

1 INTRODUCTION

Determining sample size is a major challenge when designing experi-
ments with human participants, e.g., in Information Visualization (VIS)
and Human-Computer Interaction (HCI) [20, 30, 42]. Researchers want
to save time and resources by choosing the minimum number of par-
ticipants that let them reliably detect an effect that truly exists in the
population. However, if they underestimate the sample size, i.e. the
experiment lacks statistical power, they risk missing the effect – a Type
II error. Researchers are also less likely to publish these negative or
null results, the so-called “file drawer problem” [54]. Researchers
cannot simply add participants until the results are significant, which is
considered a malpractice, and are strongly encouraged to preregister
the sample size to increase the credibility of the investigation [11].

The sample size can be determined statistically with an a priori
power analysis. However, this requires approximating the effect size,
which quantifies the strength and consistency of the influences of the
experimental conditions on the measure of interest. Estimating an
effect size must account for the relationships between experimental
conditions; the inherent variability of the measures, e.g., differences
among study participants; and variation in the structure of the experi-
ment conditions, e.g., blocking and order effects. This complexity acts
as a major barrier to performing power analysis [45, 50].
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Studies in the natural sciences can rely on meta-analyses of multiple
replication studies to suggest effect and sample sizes. However, in VIS
and HCI, such replications are rare [31, 38] and not highly valued [28].
Sample sizes (N) are often chosen based on rules of thumb e.g., N ≥
12 [20], or drawn from small numbers of studies [7,31,35]. Studies with
human participants also risk confounding effects such as fatigue, carry-
over, and learning effects. Analytical methods implemented with power
analysis tools such as pwr [9] or G*Power [23], are not usually sophis-
ticated enough to account for these effects. Furthermore, researchers
must often weigh the benefit of statistical power against high recruit-
ment costs, overly long experiment duration, and the inconvenience
of switching between experiment conditions [46]. Although several
interactive tools help explore trade-offs among plausible experiment
design configurations [20,46,47], few address the complex relationship
between statistical power and relevant experiment parameters.

Existing power analysis tools are designed as calculators: The user
specifies acceptable Type I and Type II error rates, test statistics, ex-
perimental design, and an approximate size of the effect. The tool
then produces either a single sample size or a chart showing how sta-
tistical power increases in conjunction with the sample size, at several
effect sizes. We argue that researchers need tools for exploring possible
trade-offs between statistical power and the costs of other experimental
parameters, especially when the effect size is uncertain.

We propose Argus, an interactive tool for exploring the relationship
between sample size and statistical power, given particular configu-
rations of the experimental design. Users can estimate parameters –
effect sizes, confounding effects, the number of replications, and the
number of participants – and see how they influence statistical power
and the likely results in an interactive data simulation.

Contributions: We identify challenges and analyze the tasks involved
in a priori power analysis. We propose Argus—which combines interac-
tive visualization and simulation to aid exploration and decision-making
in experiment design and power analysis. To demonstrate its efficacy,
we describe a use case and a think-aloud study.



2 BACKGROUND AND TASK ANALYSIS

When planning an experiment, researchers use a strategy called a priori
power analysis1 to choose which sample size will allow the experiment
to detect an expected effect. Power analysis uses the relationship
between the sample size and the following parameters:

ααα is the probability of detecting an effect from an experiment when
it is actually absent in the population (Type I error: false alarm).
Researchers usually set α based on the convention of each academic
field, typically .05 for VIS, HCI, psychology, and the social sciences.

1−β1−β1−β , or statistical power, is the probability that a long run of experi-
ments will successfully detect an effect that is true in the population.
(β is the probability of a Type II Error: missing the true effect.) If no
existing basis exists, Cohen proposed a convention of 0.8 [13, p.56].

Effect size is the difference across means calculated from data under
each condition. Researchers make an educated guess of the effect
size based on previous research or their experience. Effect sizes are
standardized for the calculation, as described in C3 below.

The sample size can be calculated with these parameters, either
with software or from a statistics textbook e.g. [13]. When facing
resource constraints, such as personpower, time or budget, researchers
sometimes sacrifice statistical power in exchange for a more attainable
sample size. In cases where access to participants is limited e.g. patients,
children or other special populations, power analysis may be skipped
altogether. Even if the power analysis suggests an unrealistic sample
size, it might still offer a useful cost-benefit assessment. In any case,
researchers who choose to conduct a power analysis still face the
following challenges:

C1: Estimating a reasonable effect size is difficult. Researchers
who wish to estimate the effect size face a paradox: The goal of conduct-
ing the experiment is to discover the true effect size in the population,
but selecting the correct sample size for revealing that effect requires
an initial estimate of the effect size. Overestimating the effect size
often leads to a sample size that exceeds available resources. Even for
studies that can easily scale up the sample size, using an overly large
sample size is “wasteful” and an “unethical” use of study participants’
time [6]. Although researchers can conduct pilot studies, finding a large
effect size in a pilot with few participants may be misleading and result
in an underpowered final experiment [40, p. 280]. Cohen proposed
a guideline for standardized effect sizes derived from data on human
heights and intelligence quotients [12]. However, reviews in domains
such as software engineering [37] found that the distribution of effect
sizes from experiments differ from Cohen’s guideline. Therefore, many
researchers recommend against using guidelines that are not specific to
the domain of study [1, 18, 43]. In fields where replication studies are
scarce, e.g., VIS and HCI [32, 38]), researchers must generate possible
effect-size scenarios.

C2: Comparing power at multiple effect size scenarios is nec-
essary. Instead of estimating a single value for the effect size, some
researchers estimate the upper-bound––to represent the best case––and
the lower-bound––below which the effect is too small to be practi-
cally meaningful [43, 45, p. 57]––which results in a range of sample
sizes to consider (Fig. 2, A–D). However, in many experiments, the
largest attainable sample size may be lower than the one required by the
lower-bound effect size (Fig. 2, C). Researchers must then weigh the
benefit of further mitigating risk by increasing the power and the cost
of a larger sample size. Because the function between the power and
sample size is concave, improving power is increasingly costly [39, p.
702] (Fig. 2, A–B vs. B–C). Among existing software for calculating
statistical power, only a few plot the statistical power and the sample
size at different effect sizes (see Related Work).

1 Although one can calculate achieved power from data collected during an
experiment, such post-hoc analysis is impractical for planning experiments or
interpreting the results [8, p. 110] and [63, section 5.9.4]. This paper thus uses
the term ‘power analysis’ to refer to a priori power analysis.
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Fig. 2: Determining power and sample size with effect-size uncertainty
and resource constraints.

C3: Standardized effect sizes are not intuitive. The difference be-
tween means is an example of a simple effect size, which is based on the
original unit of the dependent variable and thus has intuitive meaning
for researchers. However, power calculation requires a standardized
effect size, which is calculated by dividing the simple effect size with a
standardizer. The formula for the standardized effect size depends on
how the sources of the variances are structured, which in turn depends
on the experiment design. (See Appendix A for an example on how
blocking influences calculation of effect size.) Note how an estimate
in the form of a simple effect size may yield different standardized
effect sizes. Researchers often have difficulty using standardized effect
sizes when choosing their sample size, since these are “not meaningful
to non-statisticians” [1].

C4: Power analysis excludes the temporal aspect of experiment
design. Power analysis simplifies sources of variations into a few
standard deviations within effect size formulæ. (See Appendix A
for an example.) Potential confounds—e.g., the fatigue effect or the
practice effect—lose their temporality once encoded into standard
deviations. This loss could be a reason that separates power analysis
from the rest of the experiment design process [20]. Better integration
of temporal effects and design parameters—e.g., number of replications
and how conditions are presented to study participants—could allow
better exploration of trade-offs.

2.1 Task Analysis

Under the What-Why-How framework [4, 49], the task abstraction
could be described as follows. All of the attributes below are quantita-
tive unless stated otherwise.

T1: Come up with an effect size estimate. Simple effect
sizes—the difference in the responses between conditions—could have
been estimated directly. Alternatively, the estimation can be simplified
by first estimating the mean in a baseline experimental condition, and
then deriving the value of other conditions by comparing each with
the baseline. The conversion from the simple effect size to the standard-
ized effect size (C3) could be automated when the information about
experiment design is available in a computable form.

T2: Check the potential outcome effect size. For experiments
with two independent variables or more, the possibilities of the interac-
tion effects could obfuscate how the a priori effect sizes influence the
final results. (More details in Sect. 4.2.) A data simulation could allow
the users to compare the simulated effect sizes among themselves or
to compare them with the specified input—especially in the presence
of interaction effects.

T3: Determine candidate sample sizes. Researchers browse for
the sample size with a reasonable trade-off within a set of constraints
(e.g., resources for participant recruitment). To facilitate efficient brows-
ing, they identify features of the relationship between power and
sample sizes, e.g., where the power-gain is steep or where it plateaus.
Multiple scenarios (C2) of effect sizes could also generate different
relationships, leading to the need to compare their trends.

T4: Try out potential scenarios. Due to uncertainties in effect size
estimation (C1), researchers need to be able to explore the depen-
dency between their effect size estimates and other parameters—e.g.,



the fatigue effect (C4)—to the power-sample size relationship. Thus,
they need to be able to record and review the scenarios. Some changes
to the scenarios are categorical—e.g., different choices of counterbal-
ancing strategies. Others are quantitative—e.g., different amounts of
the fatigue effect. The abstract data type of the scenarios could be
a multidimensional table with each input parameter as a key and the
resulting power as an attribute. However, this abstraction does not
capture researchers’ exploration traces. Such traces could be abstracted
as a tree in which each child node is a scenario that is derived based on
its parent node.

3 RELATED WORK

Before the prevalence of personal computers, researchers used look-up
tables [13, pp. 28—39]) and charts [57]) in textbooks to determine
the relationship between sample size, effect size, statistical power, and
Type I error rate, usually fixed at .05. Early software packages sim-
plified the process by providing command-line or menu interfaces to
specify parameters, and displayed a single value for statistical power.
Goldstein [26] surveyed 13 power analysis software packages and high-
lighted the lack of two key functions: plotting a chart of the trade-offs
between parameters, and capturing intermediate results for comparison.
Borenstein et al. [3] pioneered the use of visualization to specify input
parameters and inspect relationships among parameters. For input, the
tool shows a box plot of the dependent variable by condition on the
screen. The simple effect size can be specified by moving the mean
and standard deviation of each group with arrow keys or function keys.
The software then outputs the effect size and power in real-time. It also
produces a chart showing the relationship between power and sample
size under multiple effect-size scenarios (see Fig. 2, left). Nevertheless,
due to the low screen resolution, the relationship chart is presented on
a separate screen from the input specification, hindering interactive ex-
ploration. This tool also restricts analysis to between-subjects designs
with two conditions and does not support exploration of the impact of
choices in experimental design.

G*Power [21–23] is one of the most widely used power analysis
software tools today. G*Power developers prioritize covering multiple
types of statistical tests and high-precision calculation rather then fa-
cilitating exploration [21]. G*Power calculates power from one set of
input parameters at a time. This forces them to record parameters and
output at each step of the exploration process. G*Power generates a
static chart from a given range of standardized effect sizes.

Some software packages integrate power analysis with experiment
design. JMP’s design of experiment (DOE) function [56] provides a
menu interface for power calculation and generates static charts similar
to those of G*Power. The R package skpr [48] provides a menu-
based interface for generating experiment designs. However, it only
calculates and shows a single power estimate at a time. To explore
different effect size scenarios, users must manually save and restore
states via their web browser’s bookmark function. skpr provides a
menu interface for generating experiment trial tables and calculating
power. However, it provides only the power of the entire experiment
design: all variables that take part in the counterbalancing contributes
to the power analysis. Touchstone2 [20] provides a direct manipulation
interface for specifying experiment design and displays an interactive
chart that visualizes the relationship between the number of participants
and power. Unlike skpr, users can select a subset of independent
variables to include in the power calculation. This lets researchers
include nuisance variables in the counterbalancing design, without
affecting power calculation. Even so, Touchstone2 does not include
confounding effects and relies on menus to specify effect size.

Several researchers have shown that graphical user interfaces (GUI)
are better than menus for specifying estimations. Goldstein & Roth-
schild [25] compared numerical and graphical interfaces to elicit laypeo-
ple’s intuitions about the probability distributions of events. They show
that users achieve greater accuracy when they can specify distributions
graphically. Hullman et al. [34] support these results in the context
of estimating effect sizes for experiments. We argue that power anal-
ysis software would benefit from such graphical representations of
relationships among parameters, with a GUI to manipulate them.

4 ARGUS USER INTERFACE DESIGN

The Argus interface is organized into: parameter specification (A–E),
simulation output (F–G), and the history view (H) (Fig. 3). Users
begin by specifying metadata about the independent variables in a
pop-up window (Sect. 4.1). They can then explore various effect-size
scenarios by manipulating the means of the dependent variables for
each condition (A). They can also estimate potential confounds (B); and
explore how different experiment designs (C–E) influence the outcome
(F–G). The history view (H) automatically saves the exploration process
and lets users re-load previous scenarios. The rest of this section
describes the interface using the example of a 2 × 2 experiment on
how MEDIUM (PAPER vs. SCREEN) and LAYOUT (ONE_COLUMN vs.
TWO_COLUMN) influences READINGTIME.

4.1 Metadata

To facilitate interpretation of simple effect sizes (C3), Argus needs the
semantics of the dependent variables. Researchers supply this informa-
tion once, at the start of the session. Note that, since many domains use
a common set of dependent variables, such as time and error for VIS
and HCI, in future, we expect researchers to select relevant dependent
variables retrieved automatically from a public domain ontology. Simi-
lar ontologies already exist in bioinformatics [60] , and Papadopoulos
et al. [52] have proposed an ontology that specifies dependent variables
for VIS and HCI. The current metadata interface is thus a makeshift.

Argus requests the name, unit, expected range, interpretation, and
the variability of each dependent variable (DV). Argus computes initial
ranges for both axes of the interactive charts (Sect. 4.2), and the sliders
that adjust various confounds (Sect. 4.4.1). Argus uses the natural-
language interpretation, e.g., “30 minutes is faster than 50 minutes”, to
make it easier to read the pairwise plot (Sect. 4.3).

4.2 Expected-averages View

Argus uses a direct manipulation interface to determine effect sizes,
which lets users work with simple effect sizes (T1) and explore multiple
effect-size scenarios. Instead of specifying mean differences, Argus
lets users specify the expected mean of each experimental condition.
This condition-mean specification lowers user’s cognitive load because
they can flexibly estimate each condition individually.

Argus presents the condition-mean relationship as a bar chart
(Fig. 3.A), and the bar colors are drawn from the 2D colormap of
Bremm et al. [5] by assigning one dimension per variable2. Users can
estimate each condition-mean by dragging the bar vertically. Horizontal
lines encode the group-mean — calculated from all conditions of an
independent variable — and the grand-mean — calculated from all
independent variables (Fig. 4.left). Despite the potential for within-the-
bar bias [14], encoding the bars keeps condition-mean visually distinct
from the group-means and the grand-mean. Users can switch the hier-
archy level of the condition axis in the bar chart via radio buttons. We
describe two common use cases for expressing effect size:

Main effects occur when a particular level of an independent vari-
able causes the same change in the dependent variable, regardless of
the level of other independent variables. For example, a main effect
of MEDIUM on READINGTIME could be that reading on a SCREEN
is generally slower than reading on PAPER. To specify this as a
main effect, the user would have to drag two bars (ONE_COLUMN
and TWO_COLUMN of the SCREEN condition) upward by equivalent
amounts. This becomes tedious when the independent variable has
many levels.

Interaction effects occur when the mean within each group differs
according to the level of another independent variable. Suppose we
want to express how the LAYOUT affects READINGTIME. As above,
we register MEDIUM as a main effect, but ensure that the group means
for SCREEN and PAPER remain the same.

If the user changes the ⟨ONE_COLUMN, SCREEN ⟩ bar, the group-
mean of the SCREEN condition will also change. To keep the same

2 We use the Color2D library: dominikjaeckle.com/projects/color2d/

http://dominikjaeckle.com/projects/color2d/
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group mean, the user must first remember the group-mean prior, and
then adjust the other bars to compensate.

Both scenarios involve manipulating multiple conditions simultane-
ously by dragging group-means and the grand-mean. Users can also
lock some means while changing the rest, and the system automatically
propagates the changes. However, enabling this interaction technique
is tricky because of the hierarchical dependency among these values.

Argus implements a propagation algorithm (Appendix B and Fig. 4,
right). The relationship between the hierarchy of means is represented
as a tree rooted at the grand-mean. A change to a parent node–––the
grand-mean–––is first recursively propagated to the children, e.g. group-
means and then the condition-mean. The amount of change is dis-
tributed evenly to all unlocked children. After finishing the change
propagation, the update moves upward. If the update reaches a locked
parent, the change is distributed to any unlocked siblings. The propaga-
tion algorithm offers users flexibility, letting them switch seamlessly
through different representations at different levels, not only individual
conditions, but also main and interaction effects.

4.3 Pairwise-difference View

To help users evaluate the consequences of their effect size estimates
(T2), we simulate the data and show the difference between means
and their confidence intervals in the Pairwise-difference view (Fig. 5).
The horizontal axis shows the difference in the original unit of the
dependent variable—a simple effect size (C3). The horizontal axis lists
all possible comparison pairs. An independent variable with m levels
can accommodate (m2) pairwise comparisons. For each pair, we show
the mean difference, displayed as a black dot, together with its 95%
confidence interval, displayed as a black line. Unlike the bar charts used
for input (Sect. 4.2) this reduces bias [14]. Although violin plots reduce
bias somewhat, we chose the dot-and-line display because they can fit
more lines into a limited space. This is crucial when comparing two
sets of parameters side-by-side with the history function (Sect. 4.4.4).

In Fig. 5.B, the difference appears to the left of the zero indicator.
Had we presented the result on a normal number line, it would have
appeared on the negative side, and the chart could have been interpreted
as: “the difference is around minus 4 minutes”. Since reading double
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negatives is cognitively demanding, we present absolute values on both
sides of zero on the horizontal axis, and add annotations on the left and
the right margin (C and D). This makes it easier for users to interpret,
e.g., “SCREEN is faster for around 4 minutes”. Users can press-and-hold
the shift key to show the normal number line with negative values on the
left of the zero, in Fig. 3.E. This mode lets users change the label on the
left margin to present a mathematical difference (“SCREEN- PAPER”).
For advanced users, Argus also annotates Cohen’s d standardized effect
size above each confidence interval.

In Fig. 3.F, both SCREEN-PAPER and ONE_COLUMN-
TWO_COLUMN are selected. Suppose we are only interested
in comparing reading media because the layouts were included as a
nuisance variable. Deselecting the “ONE_COLUMN- TWO_COLUMN”
checkbox might yield a slightly narrower confidence interval for the
“SCREEN- PAPER” difference. The reason for this improvement is that
the difference between the two layouts is slightly smaller in the PAPER
condition (Fig. 3.A), i.e. there is an interaction effect.

Since Argus shows simulated data instead of real data collected from
an experiment, we need to ensure that users are aware of the uncertainty
generated by the simulation. We thus use the dance of the CIs, a time-
multiplexing approach that shows the results of multiple simulations
in the same figure [16, 19]. The animation runs in 2 fps, to allow the
user to notice changes between frames [61]. An alternative to the dance
animation is a forest plot that displays all confidence intervals from
the simulation next to each other, with a diamond shape to summarize
them [17, Chapter 9].

We chose the dance because it uses less screen space, and motion
is a strong visual cue. Even when the user focuses somewhere else
on the screen, the animation is registered in their peripheral vision. In
addition, users can pause the animation and navigate individual frames
by the left and right arrow keys on the keyboard.

4.4 Exploring Trade-offs

At each effect-size scenario, users can increase power by adding more
participants, increase the number of trial replications in the counter-
balancing design, or both. Some experiments may be constrained by
participant fatigue and need to limit the duration, whereas for other
experiments, the cost of recruiting additional participants may out-
weigh the drawbacks from the fatigue effect. Argus lets users explore
how different experiment design scenarios and confounds can influ-
ence power (T4), as shown in Fig. 3. Users estimate levels for each
potential confounding effect (B) and select an experiment design pa-
rameter accordingly (C–E). They explore how the trade offs change
based on sample size and power (G), and can revisit and compare earlier
explorations with the History view (H).

4.4.1 Confound Sliders

Confounding effects can be specified by sliders (Fig. 3.B). When users
drag a confound slider, Argus shows a pop-up overlay to preview its
effect (Fig. 6). The pop-up is a bar chart showing how the measurement
of the dependent variable (vertical axis) could change along with the
experiment trials (horizontal axis). The order of trials and the effects
are calculated based on the choices in the Experiment-design view
(Sect. 4.4.2).

Four types of confounds are of interest in power analysis [41] . For
readability, we will explain each of them in terms of reading time.
Increasing the fatigue effect (Fig. 6.A) would cumulatively increase
the reading time for each subsequent trial (Fig. 6.B). The carry-over
effect (Fig. 6.C) occurs when the user is unfamiliar with the task itself:
Their performance is worst in the first trial, but gradually improves
over subsequent trials, regardless of the experimental condition. The
practice effect has two variations: The within-condition practice effect
(Fig. 6.D) represents improvements resulting from the participants’
familiarity with each experimental condition. Thus, improvement in
one condition does not influence subsequent trials in other conditions.
The whole-experiment practice effect (Fig. 6.E) results from users’
familiarity with the task, regardless of experimental condition. This is
the opposite of the fatigue effect. A participant in our think-aloud study
(Appendix D) pointed out the difference between these two practice
effects, and we plan to incorporate the whole-experiment practice effect
in the next version of Argus.

The confound pop-ups use a bar chart to encode the level of the
dependent variable. We take advantage of the Gestalt law of similarity
to let the user associate the color-coding of conditions to those in the
Expected-averages view. Future versions of Argus could include a
more advanced interaction technique that lets users specify a range or a
probability distribution for each confounding variable.

Argus uses the dependent variable metadata (Sect. 4.1) to deter-
mine the range for each slider. The direction of the available values
depends upon which direction users specify as the “better” direction.
For example, in Fig. 3.B, the variability is set to ±5 minutes, and the
interpretation is specified as “slower is better”. These settings create
a fatigue-effect slider ranging from 0–15, and a practice-effect slider
ranging from -15–0. All sliders are initially set to zero to represent
no confounding effects. Argus also provides an additional slider for
specifying variations across participants.

4.4.2 Experiment-design View

The effect of confounds such as the fatigue effect could even out across
participants if the experiment is properly counterbalanced. In the
running example, the experiment has four conditions. A complete
counterbalancing would require covering the 4! = 24 possible orderings
of the conditions, which would in turn require recruiting a multiple of 24
participants. Alternatively, users might consider using a standard Latin
Square design, which addresses the order effect between adjacent trials.
This Latin Square design requires only multiples of four participants,
allowing for greater flexibility in the sample size.

Recruiting fewer participants than required multiple may lead to
an imbalanced experiment, and affect both the observed effect and
power. Finally, users could collect several replications of data from



each participant. This number of replications influences the trial table,
and thus influences how the confounding effects contribute to the data.

In the field of HCI, several tools exist for counterbalancing de-
sign [20, 46, 47]. Eiselmayer et al. [20]’s interview study suggests
that counterbalancing design and power analysis are performed in two
separate loops. We envision that users should use one of these tools to
come up with experiment design candidates. Then, these candidates
can be imported to Argus. For these reasons, we present a minimal user
interface for counterbalancing design: a drop down list for selecting
the counterbalancing strategy (Fig. 3.C) and two sliders for the number
of replications (D) and the number of participants (E). These controls
work together with the Power Trade-off view and History view.

4.4.3 Power Trade-off View
The Power Trade-off view (Fig. 3.G) is the heart of power exploration
(T3). It visualizes the outcome of the adjustments in Expected-averages
view, Confound sliders, and Experiment-design view. The visual en-
coding is based on the chart relating power vs. sample size, commonly
used in statistics textbooks, e.g. [57]. The sample size appears on the
horizontal axis and the power on the vertical axis. The current selection
of the sample size is represented as a dot, and the relationship between
these two parameters are displayed as a black curve. We used this en-
coding despite the fact that the underlying data is discrete—the sample
sizes are integer—because curves facilitate interpretation of the local
rate of change [10], which is usually the case when researchers assess
power trade-offs.

Touchstone2 [20] enhanced this textbook chart by automatically
showing the confidence band around the current parameter set, which
was calculated from a single “margin” parameter. In Argus, variations
in power can originate from any of a combination of multiple sources,
e.g., effect size or confounds, making it difficult to determine which
are associated with the confidence band.

Argus enhances this chart in two ways: First, Users can switch the
horizontal axis between the sample size and the number of replications.
Setting the axis to the sample size shows the number of replications
annotated on the right end of the power curve. This switch could be
used when the sample size faces a stricter constraint than the number of
replications, or vice versa. In Fig. 3(G), suppose the resource constraint
allows the recruitment of a maximum of 24 participants, which results
in the power of 0.7. Users can now consider the trade-off between the
number of replications and power.

Second, Argus shows the chart individually for each of the pairs of
independent variable levels, e.g., Fig. 3.G, shows “SCREEN- PAPER
”). Users can change the pair with a drop-down menu. Argus shows a
warning if any pairs produce lower power than the current pair. The
user can also select the “Minimum power” option to always display
the pair with the lowest power. Although this pair-selection is also
present in the Pairwise-difference view, the selection in Power Trade-
off view is independent: Switching it does not trigger a simulation.
This independence allows the user to explore nuisance factors without
changing how the confidence interval of differences is calculated.

4.4.4 History View
The History view (Fig. 3.H) ties together all above-mentioned views to
enable exploration of scenarios in light of uncertainty from effect size
estimation and confounds (T4). Argus thus improves on other power
analysis systems that force users to record each scenario’s output before
manually comparing them. (Sect. 3).

Each step of parameter adjustment is recorded automatically in an
abstract tree. The root of the tree is the initial setting of zero effect
size with no confounding variables. The tree is visualized on a two-
dimensional cartesian coordinate with the vertical axis showing the
power. The horizontal axis shows the depth of the node from the root.
Each node is encoded as a white circle with black outline, and it is
connected to its parent node with a line. The current node is encoded
in a black circle to associate it to the the dot in the Power Trade-off
view with the Gestalt principle of similarity. Adjusting a widgets in
the views mentioned above creates a child node. Clicking on a past
node restores its parameters all other views. The restoration excludes

the selections in the Power Trade-off view to enable users to retain
their current focus, as described in Sect. 4.4.3. During exploration, it is
likely that only a few nodes will be of interest. Users can mark/unmark
a node by clicking a button. An additional concentric outline circle is
added to each of the marked nodes.

In addition to restoring the parameters, users may hover their mouse
cursor over a node to preview its parameters and output. The preview
values are shown in orange, simultaneously with the values of the
current node in black (Fig. 3). We use juxtaposition and superposition
faceting techniques. These two techniques were analyzed in Javed
et al.’s survey of composite visualization [36]. Their analysis found
that for tasks that focus on direct comparison in the same visual space,
superposition is more effective than juxtaposition. For the Power Trade-
off view, since decisions about sample size usually take place around
the few crucial values (see C2 and Fig. 2), we superpose the curves. For
the Confound sliders and Experiment-design view, the sliders and the
drop-down list, preview values are also superposed. For the Expected-
averages view, however, both superposition and juxtaposition would
be appropriate. Here, superposition allows the bars representing the
current state to provide a stable visual anchor.

For the Pairwise-difference view, the uncertainty communicated by
the animation would be muddled when two superposed confidence
intervals overlap. Therefore, we juxtapose the preview error bars side-
by-side (Fig. 3.F). For the History view itself, we highlight nodes and
edges in the current branch during preview.

We also decided to limit the comparison to two nodes—the current
node and the preview node—to reduce visual complexity. A pairwise
comparison of historical nodes together with the marking functions
allows users to gradually narrow down the parameter choices.

4.5 Scaling the Design for More Complex Experiments

Our prototype supports within-participants designs with two indepen-
dent variables. More complex experiment designs may have more than
two independent variables, and each independent variable could have
more levels. Only two views will be affected: The Expected-averages
view could present more levels by incorporating the fish-eye tech-
nique [53]. To address more independent variables, the system should
allow the users to reorder the hierarchy in the horizontal axis—e.g.,
by drag-and-drop. Users should also be able to exclude some of the
independent variables from the axis, which will summarize several bars
of the same level into one, which further reduces the visual complexity.
As for the Pairwise-difference view, scrolling and panning could be
necessary to handle the increased number of pairs. When their effect
sizes are very different in the magnitude or sign, the comparison could
be broken down into subsets, presented in separate windows.

5 IMPLEMENTATION DETAILS

Argus was written in HTML and JavaScript. We used D3.js3 for in-
teractive visualizations. Experiment designs are implemented in the
TSL language and trial tables are generated on the client-side with the
TSL compiler [20]. Statistical calculations are implemented in R4, and
Shiny5. We used a MacBook Pro (2.5GHz, 16GB memory, MacOS
10.14) for all benchmark response times.

To enable interactive exploration in Argus, we make the following
three implementation details that differs from standard statistical proce-
dure for a priori power analysis and post-study statistical analysis.

5.1 Monte Carlo Data Simulation

Power can be calculated from an α probability value, a standardized
effect size, and a sample size. However, incorporating confounds, e.g.,
a fatigue effect, is analytically complex (C4). Instead, we use a Monte
Carlo simulation, based on algorithm 1 of [64]: First, a population
model is created programmatically, based on an estimate of the mean
and the standard deviation (SD) of each condition. From this popu-
lation, we sample data sets and use them to calculate statistics. The
Monte Carlo paradigm has been shown to be robust for tricky cases

3 d3js.org 4 r-project.org 5 shiny.rstudio.com
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Correll et al. Mean  [95% CI]
1 Continuous   0.84   [0.74,     0.96]
2 Discrete   0.64   [0.57,     0.73]
3 Di erence   0.32   [0.18,     0.46]
4 Wedge   0.59   [0.41,     0.77]
5 Square   0.50   [0.36,     0.65]
6 Di erence   0.09   [-0.08,    0.25]
7 Fatigue -0.001 [-0.008, 0.005]
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Fig. 7: (A) Releveant error estimates based on Correll et al.’s data; (B) The power is plotted against the number of participants 1-, 2-, and
3-replication scenarios. (In Argus UI, only the maximum of two curves are shown at a time during interactive comparison.) (C) Power trade-off
curve of three-replication with the fatigue effect of 5 ms (in black) and 7.5 ms (in orange). (D) The History view showing two branches:
three-replication (in orange) and two-replication (in black).

such as data that are not normally distributed, missing data, or mixed
distributions [51, 58, 64].

We extend the algorithm to incorporate confounding variables: First,
we obtain a trial table for the specified experiment design from the
TSL compiler. Based on the trial table’s structure, we generate each
confounding effect specified by the user in the interface (Sect. 4.4.1).
For example, a two-second fatigue effect for movement time cumula-
tively lengthens each subsequent trial by two seconds. All confounding
effects are added to each simulated data set before calculating statis-
tics. Data simulation and confounding calculations are vectorized. On
average, we can generate a data set with 50 participants and 10 replica-
tions with all confounding effects in place, in less than 30 ms on our
benchmark machine.

5.2 Making Power Calculation Responsive
Calculating statistical power is computationally expensive because it
requires a numerical integration between two overlapping probability
distributions (see Fig. 11 of [20]). Furthermore, post-hoc power cal-
culation uses an observed effects size from the data, which may differ
from the input effect size due to confounding effects. To calculate
observed effect sizes, we must fit a general linear model for each data
set. In normal statistical analysis, such model-fitting is done only once,
so results appear almost instantaneously. However, plotting the chart of
sample size and power (Fig. 2) requires one calculation per simulated
data set. By default, Argus generates 1000 data sets for each sample
size. Here, we show the sample size from 6 to 50. On our benchmark
machine, the entire calculation takes around two–three minutes.

To ensure the responsiveness of the user interface, we first approx-
imate the observed effect size with a pairwise Cohen’s d calculated
with the pwr.t.test function from the pwr package [9]. The average
turn-around time is 200 ms. Model-fitting results are sent progressively
to the user interface, which updates accordingly. We further ensure
responsiveness, we also make further tweaks in the communication
between R, Shiny, and Javascript as detailed in Appendix C.

5.3 Statistical Model and Pairwise Difference Calculation
After modeling participants as a random intercept, we derive the ob-
served effect size and the pairwise difference in terms of means and
confidence intervals from mixed-effect models. (See Fry et al.’s [24]
HCI statistics textbook for more details on the model choice.) Argus
automatically formulates a mixed-effect model and a contrast matrix
for generalized linear hypothesis testing, based on the user’s choice of
the condition pairs of interest (Sect. 4.3), We use the lme4 package [2]
for model fitting and the multcomp R package [33] for the test. Confi-
dence intervals are calculated with a single-step adjustment with the
family-wise error rate set at α = .05.

6 USE CASE

To demonstrate how to use Argus, we draw an example from a study on
color ramps from Smart et al. [59]—of which the study plan could have
been informed by a similar study by Correll et al. [15]. Additionally,
both studies made their data publicly available, allowing us to derive

additional information for planning and testing. We first describe the
background of both studies—which constrains the parameter space to
be later explored with Argus. To aid cross-referencing, we highlight
relevant values in bold. Calculation details are provided with R code
in supplementary S2.

6.1 Background

Smart et al. propose to generate color ramps based on a corpus of
expert-designed ramps by using Bayesian-curve clustering and k-means
clustering. Their experiment compared four types of ramps (BAYESIAN,
K-MEANS, DESIGNER, and the baseline LINEAR) in three visualiza-
tion types (scatterplots, heatmaps, choropleth maps), in a total of 12
conditions. In each experimental trial, study participants are asked to
identify a mark on the visualization that matches a given numerical
value. They measured errors and aesthetic ratings. Because a compara-
ble aesthetic data were unavailable in prior works, this use case focus
only on the errors, which is defined as ∣vgiven−vselected∣.

To plan their study, Smart et al.’s study could have leverage infor-
mation from Correll et al.’s experiment6. The latter used the same
identification task, albeit only heatmaps are used as the visualization.
Their study investigated how color ramps can be used to encode both
values and uncertainty. Although their experiments have different con-
ditions compared to Smart et al.’s, two of their results are relevant: (1)
the significant difference between continuous vs. discrete color map,
and (2) the absence of a statistically significant difference between
wedge-shaped vs. square-shaped color legend. The former can be used
as an upper-bound and the latter as a lower-bound for the effect sizes.
Since Correll et al.’s accuracy was defined differently from Smart et
al.’s error, we use Correll et al.’s data to calculate the errors—which
result in the statistics shown in Fig. 7.A.

In addition to the effect sizes, we also retrieved the duration informa-
tion. In each trial of the relevant experimental condition, participants
took 8.5 seconds. Since the stimuli of Smart et al.’s study was four
times larger, we extrapolate each trial to take 34 seconds. In Correll
et al.’s study, the median session duration was 13.5 minutes. We also
analyzed the data for the fatigue effect and found it negligible with the
estimate in Fig. 7.A, row 7.

Smart et al. recruited 35 expert designers as their study partici-
pants; we use this number as a maximum number of participants. On
the opposite, we consider 12 as a minimum number of participants
based on a rule of thumb [20]. Since the participants were experts,
they might be less willing to participate in a long study. Therefore,
we constrained the longest session duration to 30 minutes. Leaving 5
minutes aside for instruction and informed consent, this results in the
maximum of 3 replications ((25 minutes × 60 seconds) ÷ (12 condi-
tions × 34 seconds) = 3.6, rounding down) We used the randomized
counterbalancing according to Correll et al.’s design. We will aim for
power above 0.8—according to Cohen’s recommendation [13, p. 56].

6 Although Smart et al. mentioned that their study was similar to [27], the
latter concerns categorical palettes rather than quantitative color maps.



6.2 A priori Power Analysis

In the following scenario, the goal of the researcher7is to determine
the sample size (number of replications and number of participants) for
his experiment. As mentioned above, these decisions are constrained
by the total duration of the session, maximum number of participants,
and potential for confounding effects. The exploration starts with
the upper-bound and lower-bound scenarios and proceeds to explore a
potential fatigue effect.

6.2.1 Upper-bound Scenario
He started with 12 participants and 1 replication. He moves the grand
mean to 0.64 and the group-means of conditions other than the LINEAR
to 0.32 (T1). These values are from Correll et al. discrete condi-
tions (Fig. 7.A, row 2), and its difference to the continuous conditions
(Fig. 7.A, row 3). On the Power Trade-off view, the researcher sees that
the power of the effect between LINEAR – DESIGNER pair almost 1.0,
which is very high—indicating that if the effect size is large, only 12
participants would be adequate (T3).

6.2.2 Lower-bound Scenarios
He moved the group-mean of the DESIGNER condition to 0.55 (from
Fig. 7.A, row 6). The power drops to around 0.4. One way to address
this is to increase the number of replications to 2 and 3, resulting
in the power of 0.7 and 0.9 respectively (T3). He hovers his mouse
cursor on the history nodes to superpose the power curves in Power
Trade-off trends (Fig. 7.B). According to the curve, for one- and two-
replication designs, adding participants would dramatically increase
power. However, for 3-replication setting already have relatively high
power (T3).

Naturally, the researcher would hope that the BAYESIAN and K-
MEANS will be better than DESIGNER ones. However, he does not
know a priori which of the two algorithmically-generated ramps will
be better. To reflect these beliefs, he moved both BAYESIAN and
K-MEANS to 0.46 (T1). These values reflect a small effect when
comparing with DESIGNER condition. However, when comparing with
LINEAR condition, the difference is sizable. In the Power Trade-off
view, he switches to the pair Designer – Bayesian and found the power
to be above 0.8 (T3). The pair-wise difference (Fig. 8) shows the
difference between all pairs except BAYESIAN vs. K-MEANS to be
larger than zero. Also, the difference between LINEAR and the two
algorithmic conditions is larger than between LINEAR and DESIGNER.
Results like these matches the researcher’s expectation; therefore, he
marked this point in the History view as a plausible design (T2).

6.2.3 Fatigue Effect Scenarios
From the scenario above, the total duration of a study session is 20.4
minutes (3 replications × 12 conditions × 34 seconds/trial). This dura-
tion is longer than Correll et al.’s median of 13.5 minutes. Therefore, it
is possible that the fatigue effect may have influenced the experiment.
To explore its impact, he adjusts the fatigue effect to 5, 7.5, and 10
ms per trial—according to Fig. 7.A, row 7—and found that the power
drops very low (T4). Therefore, he changes his exploration strategy
to determine how much of the fatigue effect could his study design
tolerate at the maximum number of participants of 35.

He set up the 35 participants without any fatigue effect as a starting
point and mark it in the History view. Then, he creates two branches
of scenarios: two- and three-replications. In each branch, the explore
the three levels of fatigue effects mentioned above (T4), resulting in
Fig. 7.D. The two-replication scenarios seem not to change the power
much (T3)—and hence robust to the fatigue effect. However, collecting
two data points per condition could be susceptible to outliers.

On the other hand, in the three-replication branch, the power reduces
dramatically as the fatigue effect increases (T3). By selecting one node
(fatigue: 5 ms/trial) and hovering on another (fatigue: 7.5 ms/trial),
he can compare the two corresponding curves in the Power Trade-off
view (Fig. 7.C). From the orange line in this chart, he can see that if
the fatigue effect is higher than 7.5 ms, the experiment will need more
7 The researcher will be further referred to as a gender-neutral “he”.
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Fig. 8: The pairwise difference plot from the case study.

than 35 participants to achieve power at least 0.8. He could not effort
this scenario (T3).

To decide between the susceptibility to outliers or the fatigue effect,
he could run a pilot study to assess the impact of the fatigue effect with
the three-replication setting. If the fatigue effect is 0.5 ms/trial or lower,
an experiment with only 22 participants would be adequately powerful.
We validated this potential choice by a simulation that resamples data
from Smart et al.’s result and found that recruiting only 22 participants
are likely to generate similar outcome as those reported in Smart et al.’s
paper. The simulation details is provided in supplementary S2.

7 THINK-ALOUD STUDY

To better understand how Argus users could be used in power analysis,
we conducted a formative study that aims to answer the following
research question: What insights can researchers gain from being
able to interactively explore the impact of design choices for their
experiments. The study was preregistered (Anonymized URL) and is
fully described in Appendix D. This section provides a summary.

7.1 Method Summary
Participants: Nine researchers in HCI and/or VIS participated in our
study. Five of them were experienced researchers who has conducted
three or more experiments. They were either senior scientists (post-doc
or higher), and one was a senior-year Ph.D. student. The rest of them
were Ph.D. students or post-docs who had learned about experimental
method, but had planned less than three experiments. Henceforth,
the participants in our study will be referred to as “users” To avoid
confusion with the “number of participants” term in Argus.
Task and procedure: We used a think-aloud protocol where users
voice their observations and reasoning [44]. The users watched a
video explaining Argus and relevant concepts in experiment design and
statistics. Then, they used Argus to determine a sample size for a Fitts’s
law experiment based on a summary of prior findings. At the end of
the session, we interviewed and asked them to rate their experience.
Data analysis: We recorded users’ screen and audio think-aloud and
interview responses. We performed a qualitative analysis with bottom-
up affinity diagramming with the focus on insights [55].

7.2 Selected Results
Overall, the majority of the users reported that they have gained new
insights about experiment design:“the preview is very useful to under-
stand the confound effects.”(P9N). P7N, P8N were not familiar with
carry-over effect and practice effect but they expressed their under-
standing of the difference between these effects when they saw the
previews. Five users applied their experience in conducting experi-
ment to consider potential confounds. For example, P8N said “adding
more replications can yield higher power but participants may be tired
[so] I need to increase the fatigue.” after increased the number of
replications.

The influences of the number of replications and participants to
power were explicitly observed: “The power is very high now. I am
going to tweak replications and participants to see how power is going
to change [...] reduce the number of participants, power drops down. It
makes sense” (P4). Participants also interpret the characteristics of the
curve in Power Trade-off view: “The power get stabled after a certain
number of participants. The current number of participant is a bit too
much. We can reduce the number” (P5).

However, three of the expert users were initially puzzled why chang-
ing the practice effect slider did not influence the mean-differences nor

https://osf.io/2nh4v/?view_only=2207553a2ec94eaa8eeba6f3b9d11e63


the power. The study moderator had to point out that the effect was
prevented by the Latin-square counterbalancing, or because only one
replication was used. This result suggests an opportunity to improve
users’ awareness when causal links are muted by a moderating parame-
ter. (See the transition matrix in Appendix D for how users inferred the
causality between power analysis parameters)

Five users tweaked expected confounds and observe how the power
of adjacent nodes in the History view gradually changes. Four users
repeatedly used the hover function to preview the difference. Two
expert users use the branching to explore multiple strands of parameter
configurations. These behaviors show that the History view successfully
facilitates the exploration of statistical power.

8 LESSONS LEARNED

We have went through many cycles of design, prototyping, and testing.
It was fascinating to see how the context of use (statistics) influence
users’ expectation and behavior when interacting with Argus. We would
like to share three lessons:

L1: Enabling visual exploration and close-loop feedback gener-
ates curiosity about causal relationships. The History view enables
users to compare different scenarios. Our task analysis shows that the
focus of comparison is the relationship between the statistical power
and sample sizes. Therefore, in an early version, hovering the mouse
cursor on a historical node showed the differences only in the Power
Trade-off view and the Pairwise-difference view. For other views, the
input parameters were temporarily reverted back to the state of the
historical node. For example, the knob of confound sliders is posi-
tioned at the state of the historical node. However, users who tested
this version of Argus are curious to see the differences in the input
parameters as well. We surmised that the immediate feedback from
simulated data and the the affordance for parameter exploration piqued
their curiosity of the causal relationship between each of the input pa-
rameter to the power. This evolution of users’ need is another evidence
that visualization design is essentially iterative.

L2: The ease of verbalization could be important for integrat-
ing the domain knowledge to interpret visualized data. In Pairwise-
difference view, we used points and error bars to visualize the results of
simulation. An early version of Argus shows output in terms of arith-
metical difference (Fig. 5, E). Some users struggled to understand the
effect when the difference falls on the left of the zero. To address this
problem, we changed the default display mode to show natural language
labels (Sect. 4.3). After this addition, we did not observe this difficulty.
Automatically-generated verbal description of visualization has been
shown to help users understanding statistical test procedures [62] and to
support understanding of machine-learning models [29]. We conjecture
that, for the tasks that requires users to combine visual interpretation
with their domain knowledge, verbalization is important for the users
to successfully integrate visual processing with their knowledge.

L3: When asking for a ballpark, avoid precise terms. Argus
needs a rough approximation of the standard deviation (SD) of the pop-
ulation of the dependent variable to initialize the range of the confound
sliders. This initial value is important to set an appropriate range and
granularity of the sliders. However, it does not need to be precise. After
the sliders are initialized, users can come back to change this value
any time to expand or contract the range of the slider. In an earlier
version, the UI simply asked the user to input a number into a text
field with the label “Approximated SD”. This question turned out to
be difficult for people we pilot-tested the software with. Some of our
colleagues even invested time to lookup research papers in order to
give an accurate value. In a later version of Argus, we reworded it to

“Variability”, which is a broader term that could be understood as, e.g.,
SD, variance, or simply a range. This change seems to lower the users’
anxiety and proceed to use Argus faster. We conjecture that the context
might have also putting the users unnecessarily on guard. Pilot testing
with users are helpful to identify such unintended barriers, especially
for the choke points of the task flow.

9 DISCUSSION

Argus is another addition to the ecology of tools developed in the VIS
and HCI community aiming to improve practices in experiment design
and statistical analysis. Like previous works [20, 62], Argus demon-
strates the power of direct manipulation interfaces to assist in the tasks
previously dominated by menu- or command-based interfaces. These
works add interactivity to existing domain objects (statistical charts and
trial tables) to allow the users to specify, compare, and explore diverse
outcome possibilities. These common interaction capabilities and the
mappings between abstract concepts in experiment design and statis-
tics to interactive visualizations seems to suggest an emerging design
pattern for a more usable software tools for research scientists.

The challenges that these works—including Argus—face is the lim-
ited user to participate in evaluation studies. In other words, our studies
have low power— while we are advocating for the importance of pow-
erful studies. Specifically, we face a trade-off between the coverage
of use cases (e.g., which experiment designs to support) and real-
ism of the studies. For Argus, we set the scope of use cases by
pre-determining the scenarios for the study participants. Although
this makes the implementation tractable, the participants might be less
motivated to explore—compared to when they design their own exper-
iments. However, researchers usually design and conduct only a few
experiments per year, which imposes a challenge of collecting mean-
ingful longitudinal data. On the other hand, one could assess learning
achievements by novices (e.g., as in [62]), but it is unclear how much
the design implications drawn from such learning studies could apply
to experts. In summary, we need a methodology that allows studying
infrequent knowledge works being conducted by experts.

10 CONCLUSION

Our goal is to help VIS and HCI researchers consider statistical power
when planning their experiments with human participants, which re-
quires performing a priori power analysis. This paper provides four
key contributions. First, we present a detailed analysis of the problems
faced by experimenters and identified key challenges and abstract tasks.

Second, we describe the design and implementation of Argus8, an
interactive tool for exploring statistical power, and illustrate how it
addresses each of the challenges above. Argus is the first direct-
manipulation tool that lets researchers (1) dynamically explore the
relationships among input parameters such as expected averages or
potential confounds, statistical outcome, and power; and (2) evaluate
the trade-offs across different experiment design choices.

Third, we describe a use case of designing a visualization experi-
ment based on real studies published in TVCG and CHI. The use case
illustrates how Argus could be used to incorporate information from
prior work and explore possible outcome and power scenarios, resulting
in an informed decisions for pilot studies and the actual experiment.

Finally, we conducted a think-aloud study to assess how Argus
helps researchers gain insights from exploring relationships among
experiment design concepts and statistical power. We found that Argus
helped both junior and senior researchers to better understand and ap-
preciate the importance of statistical power when conducting controlled
experiments.

We view Argus as a first step towards an ecology of interactive
software tools that improve the rigor of designing and conducting
experiments in VIS, HCI, and beyond.
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