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ABSTRACT

This paper aims at providing insight on the transferability of deep CNN features to unsupervised

problems. We study the impact of different pretrained CNN feature extractors on the problem

of image set clustering for object classification as well as fine-grained classification. We propose

a rather straightforward pipeline combining deep-feature extraction using a CNN pretrained on

ImageNet and a classic clustering algorithm to classify sets of images. This approach is compared to

state-of-the-art algorithms in image-clustering and provides better results. These results strengthen

the belief that supervised training of deep CNN on large datasets, with a large variability of classes,

extracts better features than most carefully designed engineering approaches, even for unsupervised

tasks. We also validate our approach on a robotic application, consisting in sorting and storing

objects smartly based on clustering.
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1. Introduction

In a close future, it is likely to see industrial robots performing tasks requiring to make
complex decisions. In this perspective, we have developed an automatic sorting and storing
application (see section 1.1.2) consisting in clustering images based on semantic content
and storing the objects in boxes accordingly using a serial robot (https://youtu.be/
NpZIwY3H-gE). This application can have various uses in shopfloors (workspaces can be
organized before the workday, unsorted goods can be sorted before packaging, ...), which
motivated this study of image-set clustering.

As of today, deep convolutional neural networks (CNN) [1] are the method of choice for
supervised image classification. Since [2] demonstrated astounding results on ImageNet,
all other methods have rapidly been abandoned for ILSVRC [3]. As suggested by [4], per-
formances of CNN are highly correlated to the amount of labeled training data available.
Nevertheless, even when few labels are available, several recent papers [5, 6, 7] have shown
that CNN can still outperform any other approach by transferring knowledge learned on
large datasets. In particular, [5] has shown that extracting features from OverFeat [8] pre-
trained on ImageNet, and training a simple Support Vector Machine (SVM) [9] classifier
on these features to fit the new dataset provides better results than many more complex
approaches for supervised classification. These results demonstrate that a CNN, trained
on a large and versatile dataset, learns information about object characteristics that is
generic enough to transfer to objects that are not in the original dataset.

While developing the automatic robotic sorting and storing application, we needed to
classify sets of images based on their content, in an unsupervised way. Multiple papers
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introduced methods to solve unsupervised object classification from sets of images (see
section 1.1.1), producing relatively good results. However, we wanted to know if the
information from a large and versatile dataset, stored in the weights of a CNN, could be
used straightforwardly to outperform state-of-the-art algorithms at unsupervised image-
set classification. The goal of this paper is to answer the following question: How good
are features extracted with a CNN pretrained on a large dataset, for unsupervised image
classification tasks? To do so, we use a similar approach to [5], consisting in applying
classic clustering methods to features extracted from the final layers of a CNN (see section
2 for more details) and comparing it with state-of-the-art image set clustering algorithms
[10, 11] on several public datasets.

The intuition behind such approach for unsupervised object classification is that, as it
works with SVM [5], the CNN must project data in a feature space where they are somehow
linearly separable. Thus, simple clustering algorithms such as K-means might be working
well. However, this study is interesting as the performance of such simple clustering
algorithms often depends on the notion of distance between points, on which we remain
uncertain.

1.1. Previous work

1.1.1. Image-set clustering

Given a set of unlabeled images, the image-set clustering problem consists in finding
subsets of images based on their content: two images representing the same object should
be clustered together and separated from images representing other objects. Figure 1
illustrates the expected output from an image-set clustering algorithm in the case of our
robotics application. This problem should not be confused with image segmentation [12],
which is also sometimes called image clustering.

Image-set clustering has been widely studied for two decades. It has applications for
searching large image database [13, 14, 15], concept discovery in images [16], storyline
reconstruction [17], medical images classification [18], ... The first successful methods
focused on feature selection and used sophisticated algorithms to deal with complex fea-
tures. For instance, [19] represents images by Gaussian Mixture Models fitted to the pixels
and clusters the set using the Information Bottleneck (IB) method [20]. [21] uses features
resulting from image joint segmentation and sequential IB for clustering. [11] uses Bags of
Features with local representations (SIFT, SURF, ...) and defines commonality measures
used for agglomerative clustering. Recently, image-set clustering algorithms have shifted
towards using deep features. [10] uses deep auto-encoders combined with ensemble clus-
tering to generate feature representations suitable for clustering. [22, 18] learns jointly the
clusters and the representation using alternating optimization [23].

1.1.2. Robotic automatic sorting application

Together with showing that deep features + simple clustering outperforms other ap-
proaches on unsupervised object classification, we apply this pipeline to solve an auto-
matic smart robot sorting application first introduced in [24]. The idea is that the robot,
equipped with a camera, visualizes a set of objects placed on a table. Given the number
of storage boxes available, it needs to figure out the best way of sorting and storing the
objects before physically doing it. The approach proposed in this paper exploits semantic
information (deep features) while [24] uses a computer vision algorithm to extract shapes
and colors. A video of the application can be seen at (https://youtu.be/NpZIwY3H-gE).
An example of inputs/output of the application is shown in Figure 1. The robustness of

https://youtu.be/NpZIwY3H-gE


Clustering

+ Robot sorting

Figure 1: Robotic application description

this application is also investigated in section 4 by changing the lighting conditions, the
position and orientation of the objects as well as the background. For this robustness
validation, we built a dataset that appears to be a challenging one for image-set clustering
(https://github.com/jorisguerin/toolClustering_dataset).

1.2. Contributions

The main contribution of this paper is to convey further insight into deep CNN features
by showing their scalability to unsupervised classification problems. We also propose a
new baseline on several image clustering tasks.

Other contributions include the implementation of an application combining unsupervised
image classification with robotic sorting. The method proposed to solve this problem, con-
stitutes a new step towards autonomous decision-making robots. The dataset introduced
in this paper, which is relatively challenging for image-set clustering, is also a contribution
that can be used in further research to investigate robustness to background and lighting
conditions for image clustering algorithms.

2. Clustering images with deep feature extraction

2.1. Pipeline description

The pipeline we propose for image set clustering is fairly straightforward. It consists in
extracting deep features from all the images in the set, by using a deep convolutional
neural network pretrained on a large dataset for image classification and then apply a
”standard” clustering algorithm to these features. We initially tried this approach as a
first step towards developing a better clustering algorithm, however, it appears that this
simple approach outperforms state-of-the-art algorithm at image-set clustering.

To implement this unsupervised image classification pipeline, we first need to answer four
questions:

• What dataset should be used for pretraining?
• What CNN architecture should we use?
• Which layer output should be chosen for feature extraction?
• What clustering algorithm should be used?

As of today, ImageNet is the only very large labelled public dataset which has enough
variety in its classes to be a good feature extractor for a variety of tasks. Moreover, there
are plenty of CNN pretrained on ImageNet already available online. Hence, we will use
a CNN pretrained on ImageNet. The three other questions are answered experimentally.
We use the VOC2007 [25] test set without labels, which is new for the pretrained net, to
compare performances of the different options.

https://github.com/jorisguerin/toolClustering_dataset


To ease development and accelerate implementation, we compare the Keras [26] imple-
mentations of ResNet50 [27], InceptionV3 [28], VGG16, VGG19 [29] and Xception [30]
with the pretrained weights provided by Keras. For the clustering algorithms, we use the
scikit-learn [31] implementations of K-means (KM) [32], Minibatch K-means (MBKM)
[33], Affinity Propagation (AP) [34], Mean Shift (MS) [35], Agglomerative Hierarchical
Clustering (AC) [36], DBScan (DBS) [37] and Birch (Bi) [38]. For each CNN, the layers
after which the features are extracted can be found in Table 1 (Layers names are the same
as in the Keras implementations).

In the image-set clustering problem, the expected classes are represented by objects present
on the picture and for this reason we need semantic information, which is present in the
final layers of the network. Thus, we only choose layers among the last layers of the
networks. On the one hand, the last one or two layers might provide better results as
their goal is to separate the data (at least for the fully-connected layers). On the other
hand, the opposite intuition is also relevant as we can imagine that these layers are too
specialized to be transferable. These two contradictory arguments motivated the following
experiment.

We also note that the test set of VOC2007 has been modified for this validation. We
removed all the images presenting two or more labels in order to have ground truth to
compute Normalized Mutual Information (NMI) scores. Indeed, if an image possesses
several labels we cannot judge if the clustering pipeline classified it properly or not. We
note VOC2007-SL (single label) the modified VOC2007 test set.

2.2. Hyperparameters choice

To answer the questions stated above, we try to cluster the VOC2007-SL set using all
combinations of CNN architectures, layer choices and clustering algorithms. To compare
performances, we use NMI scores. We also report clustering time for completeness. Only
scikit-learn default hyperparameters of the different clustering algorithms are used, which
illustrate the simplicity of this approach. For KM and MBKM, as the results depend on
random initialization, experiments are run ten times and reported results are averaged
over the different runs.

Looking at the results, we choose Agglomerative Clustering on features extracted from
the final layer of an Xception CNN pretrained on ImageNet for image-set clustering. This
pipeline is then compared to state-of-the-art methods in the next section in order to see
how transferable CNN ImageNet features are for unsupervised categorization.

3. Validation on several public datasets

3.1. Datasets description

The efficiency of the proposed method is demonstrated by comparing it to other recent
successful methods (see section 3.2) on several public datasets which characteristics are
described in Table 2.

The clustering tasks involved by these datasets are different from each others (Face recog-
nition, grouping different objects, recognizing different pictures of the same object). In

1The poor results with DB-Scan might come from the default parameters. We might get better
results using different configurations, but this is out of the scope of this paper.

2The data used for VOC2007 in [10] are irrelevant for clustering with hard assignment. The
VOC2007 subset used in [10] contains images with several objects but only one label. However, we
still ran our clustering method on this data to be able to compare results. This second modified
VOC2007 set is denoted VOC2007-5-ML (5 classes - multiple labels)



Table 1: NMI scores (in black) and time in seconds (in blue, italics) on Pascal
VOC2007-SL test set using different CNN, different output layers and different clustering

algorithms. (Layers names are the same as in the Keras implementations).

KM MBKM AP MS AC DBS 1 Bi

Inception V3

mixed9
0.108 0.105 0.219 0.153 0.110 0 0.110
374 7.3 12.7 16281 525 138 577

mixed10
0.468 0.401 0.442 0.039 0.595 0 0.595
609 5.1 8.5 12126 525 119 567

avg˙pool
0.674 0.661 0.621 0.024 0.686 0 0.686
6.3 0.2 7.7 230 8.5 1.8 8.9

Resnet 50 avg˙pool
0.6748 0.641 0.587 0.043 0.640 0 0.640

7.0 0.1 4.6 197 8.0 1.9 8.9

VGG 16

block4˙pool
0.218 0.085 0.133 0.124 0.277 0 0.277
278 3.6 6.0 10010 391 82.8 436

block5˙pool
0.488 0.048 0.262 0.194 0.530 0 0.530

78 1.1 9.3 2325 99 21 107

fc1
0.606 0.458 0.421 0.187 0.617 0 0.617

17 0.2 4.8 365 17 3.8 19

fc2
0.661 0.611 0.551 0.085 0.673 0 0.673

16 0.2 4.3 373 15.9 3.8 19.7

VGG 19

block4˙pool
0.203 0.139 0.124 0.135 0.234 0 0.234
220 3.7 6.3 10298 388 83 435

block5˙pool
0.522 0.321 0.250 0.198 0.540 0 0.540

74 0.9 9.3 2353 97 20 106

fc1
0.607 0.471 0.449 0.188 0.628 0 0.628

17 0.2 9.3 365 17 3.9 18

fc2
0.672 0.615 0.557 0.083 0.671 0 0.671

15 0.2 5.6 391 17 3.9 18

Xception

block13˙pool
0.376 0.264 0.351 0.044 0.473 0 0.473
410 4.8 10 9677 403 87 444

block14˙act
0.574 0.428 0.584 0.071 0.634 0 0.634
935 10 10 24809 820 180 901

avg˙pool
0.692 0.636 0.636 0.052 0.726 0 0.726
7.1 0.1 4.9 201 8.5 5.5 9.1

Table 2: Several key features about the datasets used for method validation.

Problem type Image Size # Classes # Instances

COIL100 [39] Object recognition 128 × 128 100 7201

Nisters [40] Object recognition 640 × 480 2550 10200

ORL [41] Face recognition 92 × 112 40 400

VOC2007-5-ML 2 Object recognition variable 5 3376

addition, the content of the classes differs from the ones in ImageNet. For these rea-
sons, the four datasets constitute a good benchmark to quantify the robustness of transfer
learning for unsupervised object categorization.



3.2. Results comparison

We propose a comparison with the results reported in the following papers dealing with
image set clustering:

• [11] proposes different clustering algorithms applied on bags of features. In Table 3,
we note ”BoF” the best results obtained by such pipeline on the different datasets.

• [10] proposes a method called infinite ensemble clustering (IEC). In the paper, IEC
algorithm is compared to several other deep clustering algorithms and ensemble
clustering algorithms. In Table 3, we report the best results obtained using Deep
Clustering (DC) and Ensemble Clustering (EC) for each datasets. We note that for
VOC2007-5-ML, [10] also uses deep features as clustering inputs (the CNN used is
not reported).

• [22] proposes a method called Joint Unsupervised Learning (JULE) of Deep Repre-
sentations and Image Clusters, based on Alternating optimization between clustering
and weight optimization of the CNN feature extractor. Results from this work are
reported in Table 3.

For each dataset groundtruth is known as they are intended for supervised classification.
We compute both NMI scores and purity for each dataset/method pair.

Table 3: NMI scores and purity comparison on various public datasets. (A result that is
not reported in the papers cited above is denoted N.R.)

NMI scores

DC EC BoF JULE Ours (Xception + AC)

COIL100 0.779 0.787 N.R. 0.985 0.951

Nisters N.R. N.R. 0.918 N.R. 0.991

ORL 0.777 0.805 0.878 N.R. 0.93

VOC2007-5-ML 0.265 0.272 N.R. N.R. 0.367

Purity

DC EC Ours (Xception + AC)

COIL100 0.535 0.546 0.882

Nisters N.R. N.R. 0.988

ORL 0.578 0.630 0.875

VOC2007-5-ML 0.513 0.536 0.622

Table 3 shows that features extracted by the final layer of Xception combined with Ag-
glomerative Clustering performs better than or close to state-of-the-art methods at unsu-
pervised object classification as well as fine-grained image clustering (ORL). Results on
the ORL dataset are interesting as they show that pretrained Xception is able to classify
different faces without supervision, although ImageNet does not deal with human faces at
all.

This is an important result as it shows that, with today’s methods, given an unlabeled
image-set, we can extract more information from a large labeled dataset, with a large vari-
ety of classes, than from the set itself. It is better than hand-engineered approaches (BoF)
as well as unsupervised trained deep networks (Deep clustering and Ensemble clustering).
It also raises the question of how the representation learning problem should be handled.
Indeed, although less satisfactory from a research perspective, it might be more appropri-
ate to work on the creation of a larger database and train networks on it so that it can be
used as a knowledge base for many other problems.



We underline the very good results of JULE ([22]) at clustering COIL100. Regarding the
results of this methodology on Scene clustering [18], it appears that fine tuning feature
extraction using alternating optimization is a good way of improving clustering results.
However, the simple approach proposed here still keeps the advantage of being very fast
(as it only requires to evaluate the network once for each sample and apply AC), which is
useful for our application for instance.

It is also interesting to notice that [10] is also using CNN features for clustering VOC2007-
5-ML. The fact that our pipeline outperform largely DC and EC for this dataset illustrate
that when using transfer learning for a new problem, careful selection of the CNN used is
important, which is often neglected.

3.3. A word on scene clustering

The problem studied in this paper is the one raised by the robotic application, unsupervised
objects sorting. For this reason, we compared our result at different object categoriza-
tion tasks as well as fine-grained classification for clustering of similar objects. Another
interesting image classification problem is the one of scene clustering, studied in [18] on
two datasets ([42, 43]). For this task, the pipeline proposed in this paper cannot perform
as well as for object classification. Indeed, ImageNet does not contain any class which
requires to group objects together. Thus, although the features are good at supervised
scene classification, without further training they are not able to group objects together
as such behaviour is not encoded in the final layers of the CNN. However, this issue is
not inherent to the method defined and we believe that with bigger and more versatile
datasets, results would be as good as any other method.

4. Application validation

In the setting tested initially (Figure 1), where the set of objects to cluster is composed
of screw drivers, flat keys, allen keys and clamps, and where the background is a table,
the success rate of the application described in section 1.1.2 is 100%. Although for certain
classes (flat and allen keys) the intra-cluster similarity is high, it is not the case for the
two others. This task is also difficult to solve because we carried out the experiments in
a shopfloor under unmastered lighting.

For further testing of the application robustness, we have built a dataset for pixel-based
object clustering. The full dataset, together with its description, can be found at (https:
//github.com/jorisguerin/toolClustering_dataset) and example images can be seen
on Figure 2. The dataset statistics are reported in table 4. This dataset is difficult
because some classes have low intra-cluster similarity (usb) and extra-cluster similarity
between some classes is relatively high (pens/screws). The lighting conditions as well as
the background also change within the dataset, which makes the task even harder.

Table 4: Several key features about the constructed dataset.

Problem type Image Size # Classes # Instances

Object recognition 640 × 480 7 560

For each conditions, we randomly pick one out of the several pictures (different posi-
tion/orientation) of each object. The results reported in the top subtable of Table 5 are
averaged over 100 random combinations. The clustering results are not perfect, looking at
the misclassifications, the main source of error comes from classes with low intra-cluster
similarity (pens, usb) and from background containing sharp edges (conditions 4 and 5).

https://github.com/jorisguerin/toolClustering_dataset
https://github.com/jorisguerin/toolClustering_dataset


Figure 2: Example images from the robustness validation dataset. Objects in the same
row are expected to be clustered in the same group. The five different

background/lighting conditions are represented in this figure.

We also carry out an experiment of fine grained classification with this dataset. Within
each class, we try to group together the pictures representing the exact same object.
Purity results can be found in the bottom subtable of Table 5. An interesting fact can be
noticed about object recognition within a category. Classes responsible for decreasing the
clustering quality in the first subtable are objects with the highest purity in the second
table. Such remark makes sens as low intra-cluster similarity is good for the second task
but harmful for the first one.

Looking at the results, this robustness validation dataset appears to be a challenging one
for image-set clustering and could be used to validate further research in the field.

Table 5: Clustering accuracies for different background, lighting and orientation
conditions on the tool clustering dataset.

Grouping by category

Metric
Condition

1 2 3 4 5 Mixed

Purity 0.85 0.94 0.84 0.69 0.79 0.58

NMI score 0.87 0.94 0.83 0.71 0.82 0.54

Recognizing object inside a category

Object
Condition

1 2 3 4 5

Allen 0.58 0.58 0.67 0.67 0.67

Clamp 0.83 0.92 0.67 0.58 0.67

Driver 0.75 0.75 0.75 0.63 0.75

Flat 0.58 0.83 0.67 0.58 0.58

Pen 1.0 1.0 0.75 0.69 1.0

Screws 0.5 0.56 0.75 0.50 0.56

USB 0.80 0.65 0.85 0.55 0.65



5. Conclusion and perspectives

5.1. Conclusive remarks

This paper extends the interesting work of [5, 6, 7] about the transferability of CNN fea-
tures. It shows that, even for unsupervised classification tasks, features extracted from
deep CNN trained on large and diverse datasets, combined with classic clustering algo-
rithms, can compete with more sophisticated and tuned image-set clustering methods.
The fairly simple and naive pipeline proposed outperforms the best results reported in
recent work, which raises the question of which research direction should be chosen to
reach generic knowledge. Are efforts spent in developing image representation extractors
more useful than simply building larger and more diverse datasets?

This approach is used to implement a robotic application using unsupervised image clas-
sification to store objects smartly. To validate this application, we also built a challenging
dataset for image clustering that is made available to the research community.

5.2. Future work

The proposed improvements mainly go in the direction of the robotics application, which
is still not robust enough to adapt perfectly to very different looking objects within a
cluster and to difficult backgrounds and lighting conditions. If we want to make it work in
difficult environments, the clustering pipeline needs to be improved. One possible direction
is to tune the final clustering algorithm, indeed, the scikit clustering algorithms are used
without any parameter tuning, setting hyperparameters to their default values.

The sorting application can also be improved by introducing automatic image segmenta-
tion, which would make it more suitable for practical uses. To do this, we could use a
pretrained region proposal network [44] and cluster objects in the proposed regions.
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