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 show that restarting FISTA could ensure a fast convergence for this class of functions without requiring any knowledge on the growth parameter. We improve these restart schemes by providing a better asymptotical convergence rate and by requiring a lower computation cost. We present numerical results emphasizing the efficiency of this method.

Introduction

Let N ∈ N * and consider a composite optimization problem:

min x∈R N F (x). (1) 
The objective function F : R N → R ∪ {+∞} belongs to the class H L of composite functions: F = f + h where f is a convex, differentiable function having a L-Lipschitz gradient and h is a convex function whose proximal operator is known.

The set of minimizers of F denoted by X * is assumed to be non empty.

For the class H L of composite functions, a classical minimization algorithm is the Forward-Backward algorithm (FB) that produces a sequence (x k ) k 1 ensuring

F (x k ) -F * = O 1
k [START_REF] Chen | Convergence rates in Forward-Backward splitting[END_REF] where F * = inf F . Under the same assumptions, FISTA (Fast Iterative Shrinkage-Thresholding Algorithm) [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF], based on the ideas of acceleration of Nesterov [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate o(1/k 2 )[END_REF], ensures a better asymptotic bound:

F (x k ) -F * = O 1 k 2 .
In many optimization problems, as for instance in statistics or in image processing, the objective function F naturally satisfies some additional geometry assumptions such as a quadratic growth condition:

∀x ∈ R N , µ 2 d(x, X * ) 2 F (x) -F * , (2) 
which allows to reach better decay rates. Note that in the convex setting, the quadratic growth condition ( 2) is equivalent to a Lojasiewicz property with an exponent 1 2 [START_REF] Lojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF][START_REF] Lojasiewicz | Sur la géométrie semi-et sous-analytique[END_REF][START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF]. This set of functions includes the set of strongly convex functions but it is much larger. For example, it contains functions associated to the mean square problem and the LASSO [15, Corollary 9]. Note that the uniqueness of the minimizer of F is not required.

On this set of functions, FB reaches an exponential decay rate: O e -κk where κ := µ L is the ratio between the growth parameter µ defined in [START_REF] Alamo | Restart FISTA with global linear convergence[END_REF] and the Lipschitz constant L of ∇f [START_REF] Garrigos | Convergence of the Forward-Backward algorithm: Beyond the worst case with the help of geometry[END_REF]. It turns out that this exponential decay cannot be observed in many numerical experiments because the condition number κ = µ L 1 can be very small, especially in large dimension problems. Most of the time, up to a large accuracy, the quadratic bound of FISTA is numerically better than the theoretical exponential decay of FB. Indeed the number of iterations required to reach a precision ε is proportional to L µ for FB while it is proportional to L µ for FISTA. Assuming that F has a unique minimizer, the variation of Polyak's Heavy Ball method [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF] introduced in [START_REF] Aujol | Convergence rates of the Heavy-Ball method with Lojasiewicz property[END_REF] reaches a better decay rate:

O e -(2- √ 2) √ κk .
Unfortunately, this scheme requires an accurate a priori estimation of the growth parameter µ to get this fast decay. Moreover, in many situations, µ is small and unknown. An incorrect estimation of µ may significantly reduce the speed of the algorithm.

In this paper, we introduce a new algorithm to minimize efficiently composite functions of the class H L having additionally the quadratic growth property [START_REF] Alamo | Restart FISTA with global linear convergence[END_REF]. More precisely this new algorithm is based on an original restart rule of FISTA ensuring:

F (x k ) -F * = O e -1 12 √ κk (3) 
without any a priori knowledge of µ, and relies on an iterative estimation of µ comparing some values F (x k ). The restart rule is inspired by the one proposed by Alamo et al [START_REF] Alamo | Restart FISTA with global linear convergence[END_REF]. Compared to [START_REF] Alamo | Restart FISTA with global linear convergence[END_REF], we improve the decay rate and reduce the number of estimations of F (x k ) during the iterations (notice that these evaluations may heavily impact the numerical cost and calculation time). The article is organized as follows. Section 2 provides a state of the art of this optimization problem. Section 3 is then devoted to the definition and the properties of our restart algorithm. We also propose some numerical experiments and comparisons. The proofs of the results of Section 3 are postponed to Section 4.

State of the art 2.1 Framework

We introduce some notations. Given a differentiable function f , ∇f denotes the gradient of f . Given a convex lower semicontinuous function h, ∂h denotes the convex subgradient of h defined by:

∀x ∈ R N , ∂h(x) = s ∈ R N | ∀y ∈ R N , h(y) h(x) + s, y -x . (4) 
Given a vector x, x and x 1 respectively denote its Euclidean norm and its 1-norm. We define the proximal operator of h : R N → R ∪ {+∞} a convex lower semicontinuous function as follows:

∀x ∈ R N , prox h (x) = argmin y∈R N h(y) + 1 2 y -x 2 . (5) 
In this paper we focus on the class H L of composite functions defined as: F = f +h where f is a convex, differentiable function having a L-Lipschitz gradient and h is a convex function whose proximal operator is known. The set X * of minimizers of F is assumed to be non empty.

Definition 1 (Quadratic growth condition G 2 µ ). Let F : R N → R ∪ {+∞} be a proper lower semicontinuous convex function with a non empty set of minimizers X * . Let F * = inf F . The function F satisfies a quadratic growth condition G 2 µ for some µ > 0 if it satisfies:

∀x ∈ R N , µ 2 d(x, X * ) 2 F (x) -F * . (6) 
Classically the quadratic growth condition G 2 µ can be seen as a relaxation of the strong convexity. In the convex setting, the condition G 2 µ is equivalent to a global Lojasiewicz property with an exponent 1 2 [START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF][START_REF] Garrigos | Convergence of the Forward-Backward algorithm: Beyond the worst case with the help of geometry[END_REF]: Lemma 1. Let F : R N → R ∪ {+∞} be a proper lower semicontinuous convex function with a non empty set of minimizers X * . Let F * = inf F . If F satisfies a quadratic growth condition G 2 µ for some µ > 0, then F has a global Lojasiewicz property with an exponent 1 2 :

∀x ∈ R N , 2µ (F (x) -F * ) d(0, ∂F (x)) 2 . ( 7 
)
To set some definitions we say that:

Definition 2.
An optimization algorithm provides a fast exponential decay on the class of functions F satisfying a growth condition G 2 µ with parameter µ and having a L-Lipschitz gradient if there exists a constant K > 0 independent of µ and L such that the sequence (x k ) k∈N provided by this algorithm satisfies

F (x k ) -F * = O e -K √ µ L k .
Definition 3. An optimization algorithm provides a low exponential decay on the class of functions F satisfying a growth condition G 2 µ with parameter µ and having a L-Lipschitz gradient if there exists a constant K > 0 independent of µ and L such that the sequence (x k ) k∈N provided by this algorithm satisfies

F (x k ) -F * = O e -K µ L k .
In most practical cases the function F is ill-conditioned i.e µ L. The difference between a fast and a low exponential decay is then significant since µ L µ L .

Literature review

Let L > 0. Let F : R n → R be a composite function of the class H L satisfying additionally a growth condition for some parameter µ > 0, namely µ-strong convexity or the quadratic growth condition G 2 µ . The Lipschitz constant L is assumed to be known.

A classical method to minimize such a function is the Forward-Backward algorithm which is an adaptation of Gradient Descent method. If F is µ-strongly convex or satisfies G 2 µ for some µ > 0, this scheme provides a low exponential decay

F (x k ) -F * = O e -µ
L k [START_REF] Garrigos | Convergence of the Forward-Backward algorithm: Beyond the worst case with the help of geometry[END_REF]. Polyak introduces in [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF] the Heavy-Ball method which ensures a fast convergence for µ-strongly convex functions that are twice differentiable. There exist many variations of this scheme and [START_REF] Aujol | Convergence rates of the Heavy-Ball method with Lojasiewicz property[END_REF] proposes a Heavy-Ball method adapted to composite functions satisfying G 2 µ for some µ > 0. This scheme provides a fast exponential decay

O e -(2- √ 2) √ µ L k
for this set of functions under a uniqueness of minimizers assumption. This method requires a prior estimate of the growth parameter µ.

Restarting schemes of FISTA [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] are efficient methods in this setting. FISTA is an inertial first order algorithm adapted from Nesterov accelerated gradient introduced in [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate o(1/k 2 )[END_REF] which ensures that F (x k )-F * = O(k -2 ). Inertia generated in this scheme allows a fast convergence but also produces oscillations. Restarting FISTA is equivalent to set inertia to zero which helps to reduce oscillating behavior. A classical strategy introduced in [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate o(1/k 2 )[END_REF] is to restart the algorithm at regular intervals. [START_REF] Necoara | Linear convergence of first order methods for non-strongly convex optimization[END_REF] show that restarting Nesterov accelerated gradient every 2e L µ iterations ensures that

F (x k ) -F * = O e -1 e √ µ L k
for µ-strongly convex functions. This restart scheme and its convergence rate can be extended to FISTA and composite functions satisfying G 2 µ [START_REF] Candes | Adaptive restart for accelerated gradient schemes[END_REF][START_REF] Necoara | Linear convergence of first order methods for non-strongly convex optimization[END_REF]. Note that an estimate of the growth parameter µ is required. This may be restrictive in numerical experiments since the growth parameter is rarely known.

O'Donoghue and Candès propose heuristic restart rules for accelerated gradient method and FISTA in [START_REF] Candes | Adaptive restart for accelerated gradient schemes[END_REF]. These rules are based on empirical observations and they give highly effective numerical results especially for functions satisfying G 2 µ . However, no improved convergence rates was theoretically found so far.

Adaptive restart schemes take advantage of each iteration to estimate the geometry of F . This approach enables to fit the parameters of the algorithm progressively. [START_REF] Nesterov | Gradient methods for minimizing composite functions[END_REF][START_REF] Gonzaga | Fine tuning nesterov's steepest descent algorithm for differentiable convex programming[END_REF][START_REF] Gonzaga | An optimal algorithm for constrained differentiable convex optimization[END_REF] propose non restart schemes based on this strategy to compute an estimate of the strong convexity parameter. [START_REF] Fercoq | Adaptive restart of accelerated gradient methods under local quadratic growth condition[END_REF] provides an adaptive restart scheme for FISTA for the set of functions satisfying G 2 µ which builds a sequence of estimates of the growth parameter µ. It requires a prior estimate µ 0 and the convergence rate of the method is given by O e

- √ 2-1 2 √ e(2- √ µ µ 0 ) √ µ L k if µ 0 µ.
As this rate significantly depends on µ µ 0 this method might be less effective if µ 0 is highly overestimated. This rate is faster than O e as long as µ 0 < 4µ. [START_REF] Alamo | Restart FISTA with global linear convergence[END_REF] and [START_REF] Alamo | Gradient based restart FISTA[END_REF] adaptive restart schemes for FISTA under a G 2 µ assumption on F where no prior estimate of µ > 0 is required. The method proposed in [START_REF] Alamo | Restart FISTA with global linear convergence[END_REF] provides a fast exponential decay O e -1 16

Alamo et al. introduce in

√ µ L k
and it relies on computations of F (x k ) at least at half of the iterations. There exist techniques that reduce the computational cost of these evaluations. In [START_REF] Goldstein | A field guide to forward-backward splitting with a fasta implementation[END_REF] the authors introduce FASTA which is an adaptation of FISTA optimized for composite functions satisfying H L such that f (x) = f (Ax) for some function f and some operator A. In this setting, this scheme reduces the computational cost of f and therefore of F . However in some common cases computing F is expensive despite these strategies. In these cases additional calculations may significantly slow down the method. The scheme introduced in [START_REF] Alamo | Gradient based restart FISTA[END_REF] is based on gradient information and therefore it does not require to compute F . It provides the convergence rate O e

- 1 4e(1+ √ µ+1) µ L k which
can be seen as a low exponential decay as e 

- 1 4e(1+ √ µ+1) µ L k > e -1 8e µ L k for all k > 0.
O       e - √ 2-1 2 √ e(2- √ µ µ 0 ) √ µ L k      
Requires an estimate µ 0 of µ

FISTA restart by

Alamo et al.

Alamo et al. [2]

O e -1 16

√ µ L k Requires to compute F regularly Gradient based FISTA restart Alamo et al. [1] O e - 1 4e(1+ √ µ+1) µ L k - Adaptive restart Theorem 1 O e -1 12 √ µ L k -
We propose a restart scheme of accelerated gradient method and FISTA which provides a fast exponential decay in O e -1 12 √ µ L k . This algorithm does not require to estimate the growth parameter µ. Moreover, the value of F (x k ) is computed for a reduced number of iterations. As a consequence, this method has a fast convergence rate in terms of iterations and computational time as well.

Contributions

In this section we introduce a restart scheme for FISTA in order to minimize a composite function F satisfying H L and the growth condition G 2 µ for some L > 0 and µ > 0. We give a convergence rate and we describe the underlying strategy.

Adaptive FISTA restart scheme

Let us introduce some notations to simplify the writing of the algorithm. Let:

y + = prox 1 L h (y - 1 L ∇f (y)) (8) 
be the vector given by a step of the Forward-Backward algorithm on y with s = 1 L . The composite gradient mapping g is then defined as follows:

g(y) = L(y -y + ). ( 9 
)
Given initial condition z ∈ R N and a number of iterations n, FISTA [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] can be written as Algorithm 1.

Algorithm 1 : FISTA Require: z ∈ R N , n ∈ N y 0 = x 0 = z, k = 0 repeat k = k + 1 x k = y + k-1 y k = x k + k-1 k+2 (x k -x k-1 ) until k n return r = x k
We introduce a restart scheme which aims to accelerate the convergence of FISTA. Algorithm 2 relies on a few sequences:

• the sequence (r j ) j∈N corresponds to the iterates of the algorithm. For all j > 0, r j is the output of the jth execution of FISTA.

• the sequence (n j ) j∈N refers to the number of iterations of FISTA following the j-th restart. Namely, for all j 0 we have:

r j+1 = FISTA(r j , n j ),
• the sequence (μ j ) j 2 estimates the growth parameter µ at each restart. This estimation is built from the known convergence results of FISTA and considering a comparison of the cost function F computed at three iterates.

For all j 2, the number of iterations n j is defined according to n j-1 , μj and the predefined parameter C > 0. The algorithm verifies if a condition called doubling condition is fulfilled. If the condition holds true, then n j-1 is considered too small and n j is set to 2n j-1 . In the other case, the number of iterations is not increased. The exit condition g(r j ) ε is motivated by the following lemma which is proven in Section 4.5: Lemma 2. Let F be a function satisfying H L and G 2 µ for some L > 0 and µ > 0. Then for all x ∈ R N we have:

F (x + ) -F * 2 µ g(x) 2 . ( 10 
)
The exit criteria combined to the inequality [START_REF] Aujol | Convergence rates of the Heavy-Ball method for quasi-strongly convex optimization[END_REF] enable the algorithm to ensure that the vector r j satisfies:

F (r + j ) -F * 2ε 2 µ , (11) 
without computing F * . For a given initial condition r 0 ∈ R N , we propose the algorithm shown in Algorithm 2.

Algorithm 2 : Restart scheme Require: r 0 ∈ R N , j = 1 n 0 = 2C r 1 = FISTA(r 0 , n 0 ) n 1 = 2C repeat j = j + 1 r j = FISTA(r j-1 , n j-1 ) μj = min i∈N * i<j 4L (n i-1 + 1) 2 F (r i-1 ) -F (r j ) F (r i ) -F (r j ) if n j-1 C L μj then n j = 2n j-1 else n j = n j-1 end if until g(r j ) ε return r = r j Theorem 1.
Let F be a function satisfying H L and G 2 µ for some L > 0 and µ > 0. Let (r j ) j∈N and (n j ) j∈N be the sequences provided by Algorithm 2 with parameters C > 4 and ε > 0. Then the number of iterations 1 + j i=0 n i required to guarantee g(r j )

ε is bounded and satisfies

j i=0 n i 4C log C 2 4 -1 L µ 2 log C 2 4 -1 + log 1 + 16 C 2 -16 2L(F (r 0 ) -F * ) ε 2 . ( 12 
)
Corollary 1. Let F be a function satisfying H L and G 2 µ for some L > 0 and µ > 0. If C > 4 and ε > 0, then the sequences (r j ) j∈N and (n j ) j∈N provided by Algorithm 2 satisfy

F (r + j ) -F * = O       e - log C 2 4 -1 4C √ µ L j i=0 n i       . ( 13 
)
Specifically, if C is chosen to maximize

log C 2 4 -1 4C
, namely C ≈ 6.38, then there exists K > 1 12 such that the sequences (r j ) j∈N and (n j ) j∈N provided by Algorithm 2 satisfy

F (r + j ) -F * = O       e -K √ µ L j i=0 n i       . ( 14 
)
Corollary 1 states that Algorithm 2 provides asymptotically a fast exponential decay. This convergence rate is faster than any method when considering a function F satisfying H L and G 2 µ where the parameter µ cannot be estimated. In this setting, Forward-Backward algorithm provides a low exponential decay and FISTA has no improved theoretical convergence rate. The variation of Heavy-Ball method introduced in [8], the FISTA restart scheme introduced in [START_REF] Fercoq | Adaptive restart of accelerated gradient methods under local quadratic growth condition[END_REF] and fixed restart of FISTA require to estimate the growth parameter to ensure a fast exponential decay.

The restart scheme introduced by Alamo et al. in [START_REF] Alamo | Restart FISTA with global linear convergence[END_REF] ensures the following rate:

F (r + j ) -F * = O       e -1 16 
√ µ L j i=0 n i       , (15) 
which is slightly slower than [START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF]. The gradient based FISTA restart proposed in [START_REF] Alamo | Gradient based restart FISTA[END_REF] guarantees the theoretical rate O e

- 1 4e(1+ √ µ+1) µ L k
which can be considered as an low exponential decay. As a consequence, this decay may be significantly slower than the decay of Algorithm 2 when µ L µ L which is the case in numerous practical examples.

We recall that convergence results such as ( 14) and ( 15) are worst-case bounds. Consequently a faster theoretical rate does not necessarily guarantee a faster algorithm in general.

Structure of the algorithm

Algorithm 2 is an adaptive restart scheme based on FISTA [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]. At each step j, FISTA is restarted for n j-1 iterations and it gives the vector r j :

r j = FISTA(r j-1 , n j-1 ).
The key parameter of such an algorithm is the sequence (n j ) j∈N . The strategy behind Algorithm 2 is to estimate the growth parameter µ > 0 satisfying (6) at each step j. The estimation of µ denoted μj is then used to define n j .

The estimation of µ is based on well-known convergence results on FISTA stated in Proposition 1 and proven in Section 4.4. This proposition is adapted from [2, Property 2] and introduces slightly more general claims leading to the estimate μj [START_REF] Kim | Optimized first-order methods for smooth convex minimization[END_REF]. Proposition 1. Let F be a function satisfying H L and G 2 µ for some L > 0 and µ > 0. Then the sequence (x k ) k∈N provided by Algorithm 1 satisfies

(i) ∀k ∈ N * , F (x k ) -F * 4L µ(k + 1) 2 (F (x 0 ) -F * ) , (16) 
(ii) ∀k ∈ N * , F (x k ) F (x 0 ), (17) 
(iii) ∀k ∈ N, F (x k ) -F * > γ (F (x 0 ) -F (x k )) =⇒ (k + 1) 2 < 4L µ 1 + 1 γ . (18) 
Given the first claim of Proposition 1, the most direct strategy to estimate µ is to compare F (r j ) -F * and F (r j-1 ) -F * at each step j as we have:

∀j ∈ N * , F (r j ) -F * 4L µ(n j-1 + 1) 2 (F (r j-1 ) -F * ) , (19) 
which is equivalent to:

∀j ∈ N * , µ 4L (n j-1 + 1) 2 F (r j-1 ) -F * F (r j ) -F * . ( 20 
)
In many cases the optimal value F * is not known and µ cannot be estimated in this way. This issue can be avoided by rewriting [START_REF] Garrigos | Convergence of the Forward-Backward algorithm: Beyond the worst case with the help of geometry[END_REF] and by considering a third point r j+1 . For all j ∈ N * ,

F (r j ) -F * > F (r j ) -F (r j+1 ) = γ(F (r j-1 ) -F (r j )), (21) 
where γ = F (r j ) -F (r j+1 ) F (r j-1 ) -F (r j ) . The third claim of Proposition 1 gives us that:

µ 4L (n j-1 + 1) 2 1 + 1 γ . (22) 
Thus,

∀j ∈ N * , µ 4L (n j-1 + 1) 2 F (r j-1 ) -F (r j+1 ) F (r j ) -F (r j+1 ) . (23) 
In this way, it is possible to get an estimation of µ at each restart for j 2 by comparing F (r j-1 ) -F (r j ) and F (r j-2 ) -F (r j ). This strategy is implemented in Algorithm 2 to build the sequence (μ j ) j 2 :

∀j 2, μj = min i∈N * i<j 4L (n i-1 + 1) 2 F (r i-1 ) -F (r j ) F (r i ) -F (r j ) . (24) 
This sequence satisfies the following property proven in Section 4.6:

Lemma 3. Let F be a function satisfying H L and G 2 µ for some L > 0 and µ > 0. Then the sequence (μ j ) j 2 provided by Algorithm 2 satisfies ∀j 2, μj μj+1 > µ.

(

) 25 
It is worth noticing that this strategy could be adapted to other schemes than FISTA as long as theoretical convergence bounds are known. The estimate of the growth parameter indeed relies only on [START_REF] Chen | Convergence rates in Forward-Backward splitting[END_REF].

Once the growth parameter µ is estimated it is possible to set the number of iterations accordingly. It is known [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate o(1/k 2 )[END_REF][START_REF] Necoara | Linear convergence of first order methods for non-strongly convex optimization[END_REF][START_REF] Candes | Adaptive restart for accelerated gradient schemes[END_REF] that the optimal number of iterations before a restart of FISTA is k * = 2e L µ . However, considering μ an upper estimation of µ, the growth condition G 2 μ is not satisfied by F . Consequently, setting k * = 2e L μ does not ensure a fast exponential decay. Since μj µ for all j 2, setting n j = 2e L μj may not be efficient. The strategy of Algorithm 2 is to reset n j by using a doubling condition that depends on the parameter C > 0. At each step the doubling condition n j C L μj is evaluated. If the condition is satisfied then the number of iterations n j is considered too small and it is doubled before the next restart. This process ensures that (n j ) j∈N is an increasing and bounded sequence which satisfies the following lemma. Its proof can be found in Section 4.7.

Lemma 4. Let F be a function satisfying H L and G 2 µ for some L > 0 and µ > 0. Then the sequence (n j ) j∈N provided by Algorithm 2 satisfies

∀j ∈ N, n j 2C L µ . ( 26 
)
Remark 1. An alternative approach would be to multiply the number of iterations n j by γ > 1 instead of 2 when n j C L μj . In that case the upper bound of n j becomes

∀j ∈ N, n j γC L µ . ( 27 
)
The fastest asymptotical convergence rate is obtained for the choice γ = 2 (Algorithm 2).

Numerical experiments

In this section we illustrate the convergence results stated in previous sections with numerical experiments. We compare Algorithm 2 to the following set of methods:

1. The Forward-backward algorithm, 2. FISTA [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF],

3. Empirical restart scheme of FISTA by O'Donoghue and Candès [START_REF] Candes | Adaptive restart for accelerated gradient schemes[END_REF] with the restart condition:

F (x k ) > F (x k-1 ), (28) 
4. Empirical restart scheme of FISTA by O'Donoghue and Candès [START_REF] Candes | Adaptive restart for accelerated gradient schemes[END_REF] with the restart condition: 

g(y k-1 ), x k -x k-1 > 0, ( 29 

L 1 -regularized least squares problem

The problem considered reads as follows:

min x∈R N F (x) = 1 2 Ax -b 2 + ρ x 1 , (30) 
where

A ∈ M N,N (R), b ∈ R N , ρ > 0 and N 1.
The function F is a composite function satisfying H L where L > 0 can easily be computed. The L 1 -regularization prevents F to be strongly convex but it satisfies the assumption G 2 µ for some µ > 0. There exists no explicit formula for the growth parameter µ. Experiments are carried out by setting A as a random matrix of size N × N . Results are provided for N = 1000 which ensures that the problem is ill-conditioned. The computational cost of F is negligible as optimization techniques such as FASTA [START_REF] Goldstein | A field guide to forward-backward splitting with a fasta implementation[END_REF] or speculative estimations [START_REF] Florea | A generalized accelerated composite gradient method: Uniting nesterov's fast gradient method and fista[END_REF] can be applied.

Figure 1 shows the decrease of the error according to the number of iterations. One can observe that Algorithm 2 and the restart scheme introduced by Alamo et al. in [START_REF] Alamo | Restart FISTA with global linear convergence[END_REF] provide similar precision with equal number of iterations. In this example additional computations of F are not expensive and consequently both methods perform similarly. This figure also illustrates the low exponential decay provided by Gradient based restart [START_REF] Alamo | Gradient based restart FISTA[END_REF] as this scheme is significantly slower. Note that both empirical restart schemes provide significantly fast decay. 

Inpainting

Consider an image x 0 and a masking operator M . Let y = M x 0 be the damaged version of x 0 . The objective is to get an approximation of x 0 knowing y and M . This problem can be written as follows:

min x F (x) = 1 2 M x -y 2 + λ T x 1 , (31) 
where T is an orthogonal transformation ensuring that T x 0 is sparse. In this example, x 0 is piecewise smooth so T is set as an orthogonal wavelet transform. In this setting, the objective function F satisfies H L and G 2 µ where L = 1 and µ > 0 cannot be computed directly. This inpainting problem [START_REF] Candes | Adaptive restart for accelerated gradient schemes[END_REF] is an example of a highly expensive function F to compute. As shown in Figure 3 and Figure 4, this high cost significantly penalizes restart schemes that rely on regular computations of F . It appears that Algorithm 2 is still efficient in this situation as its additional computations of the cost function are reduced. 

Proofs

Sketch of proof

As the proof of Theorem 1 is technical, it is split into the following parts:

1. We show that there is at least one doubling step every T iterations for a well-chosen T .

(a) We suppose that there is no doubling step from j = s + 1 to j = s + T .

(b) We exhibit the geometrical decrease of (F (r j-1 )-F (r j )) j∈ s+1,s+T which represents the gain of the j-th execution of FISTA.

(c) We apply Lemma 5 to show that we can find an upper bound of g(r j-1 ) which depends on F (r j-1 ) -F (r j ) for all j ∈ s + 1, s + T .

(d) We exploit the geometrical decrease (F (r j-1 )-F (r j )) j∈ s+1,s+T to show that the exit condition is satisfied for j = s + T .

2. We use the first point to show that the number of iterations j i=0 n i is necessarily bounded by 2T n j . The conclusion of Theorem 1 comes from Lemma 4 which gives an upper bound of n j .

Proof of Theorem 1

Let C > 4 and ε > 0. We define

T = 1 + log 1+ 16 C 2 -16 2L(F (r 0 )-F * ) ε 2 log C 2 4 -1
where • is the ceiling function. We show that there is a doubling step at least every T iterations. Assume that there is no doubling step from j = s + 1 to j = s + T where s 1 which means that for a given s 1:

∀j ∈ s + 1, s + T , n j-1 > C L μj , (32) 
and consequently:

∀j ∈ s + 1, s + T , n j = n s . (33) 
Hence:

∀j ∈ s + 2, s + T , μj = min i∈N * i<j 4L (n i-1 + 1) 2 F (r i-1 ) -F (r j ) F (r i ) -F (r j ) min i∈N * s<i<j 4L (n i-1 + 1) 2 F (r i-1 ) -F (r j ) F (r i ) -F (r j ) min i∈N * s<i<j 4L n i-1 2 F (r i-1 ) -F (r j ) F (r i ) -F (r j ) min i∈N * s<i<j 4L n s 2 F (r i-1 ) -F (r j ) F (r i ) -F (r j ) 4L n s 2 min i∈N * s<i<j F (r i-1 ) -F (r j ) F (r i ) -F (r j ) , ( 34 
)
as there is no doubling step for j s. This then implies

∀j ∈ s + 2, s + T , μj 4L n s 2 F (r j-2 ) -F (r j ) F (r j-1 ) -F (r j ) . (35) 
Combining [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF] with [START_REF] Polyak | Introduction to optimization. optimization software[END_REF] and [START_REF] Roulet | Sharpness, restart, and acceleration[END_REF] we get that:

n s > C L 4L ns 2 F (r j-2 )-F (r j ) F (r j-1 )-F (r j ) = n s C 2 
F (r j-1 ) -F (r j ) F (r j-2 ) -F (r j ) . ( 36 
)
This leads to the following inequality

F (r j-2 ) -F (r j ) > C 2 4 (F (r j-1 ) -F (r j )), (37) 
and then,

F (r j-2 ) -F (r j-1 ) > C 2 4 -1 (F (r j-1 ) -F (r j )). ( 38 
)
Since C > 2 we get that

F (r j-1 ) -F (r j ) < 4 C 2 -4 (F (r j-2 ) -F (r j-1 )). (39) 
We consider the case j = s + 1:

μs+1 = min i∈N * i<s+1 4L (n i-1 + 1) 2 F (r i-1 ) -F (r s+1 ) F (r i ) -F (r s+1 ) 4L (n s-1 + 1) 2 F (r s-1 ) -F (r s+1 ) F (r s ) -F (r s+1 ) 4L ( ns 2 + 1) 2 F (r s-1 ) -F (r s+1 ) F (r s ) -F (r s+1 ) 16L n s 2 F (r s-1 ) -F (r s+1 ) F (r s ) -F (r s+1 ) , (40) 
as n s 2n s-1 .

By similar computations we get

F (r s ) -F (r s+1 ) < 16 C 2 -16 (F (r s-1 ) -F (r s )). ( 41 
)
Since C > 4 we finally obtain the following inequalities

F (r s ) -F (r s+1 ) < 16 C 2 -16 (F (r s-1 ) -F (r s )). ( 42 
) ∀j ∈ s + 2, s + T , F (r j-1 ) -F (r j ) < 4 C 2 -4 (F (r j-2 ) -F (r j-1 )). ( 43 
)
We introduce Lemma 5 which links the composite gradient mapping g to the function F . This lemma is proven in Section 4.8:

Lemma 5. Let F satisfy the assumption H L for some L > 0. Then the sequence (r j ) j∈N provided by Algorithm 2 satisfies

∀j 1, 1 2L g(r j-1 ) 2 F (r j-1 ) -F (r j ). ( 44 
)
From Lemma 5 and inequalities ( 42) and ( 43) we obtain the following sequence of inequalities

1 2L g(r s+T -1 ) 2 F (r s+T -1 ) -F (r s+T ) 4 C 2 -4 (F (r s+T -2 ) -F (r s+T -1 )) 4 C 2 -4 T -1 16 C 2 -16 (F (r s-1 ) -F (r s )) 4 C 2 -4 T -1 16 C 2 -16 (F (r 0 ) -F * ) 4 C 2 -4     log 1+ 16 C 2 -16 2L(F (r 0 )-F * ) ε 2 log ( C 2 4 -1 )     16 C 2 -16 (F (r 0 ) -F * ) 4 C 2 -4 log 1+ 16 C 2 -16 2L(F (r 0 )-F * ) ε 2 log ( C 2 4 -1 ) 16 C 2 -16 (F (r 0 ) -F * ) 1 1 + 16 C 2 -16 2L(F (r 0 )-F * ) ε 2 16 C 2 -16 (F (r 0 ) -F * ) ε 2 2L .
As a consequence, if there are T consecutive steps of Algorithm 2 without doubling the number of iterations, then the exit condition g(r j ) ε is eventually satisfied. This means that there is a doubling step at least every T steps and for all s 1 there exists j ∈ s + 1, s + T such that

n j-1 < C L μj . (45) 
This implies that n j = 2n j-1 . As (n j ) j∈N is an increasing sequence, we get that n s+T n j = 2n j-1 2n s . And thus

n s n s+T 2 , ∀s 1. ( 46 
)
Let us rewrite j as j = m + nT where 0 m < T and n 0. The increasing nature of (n j ) j∈N gives us that

j i=0 n i = m+nT i=0 n i = m i=0 n i + n-1 l=0 T i=1 n m+i+lT (47) T n m + T n l=1 n m+lT = T n l=0 n m+lT = T n l=0 n j-lT . (48) 
According to equation ( 46) we have n j-T n j 2 and therefore

n j-lT 1 2 l n j , ∀l ∈ [[0, n]]. (49) 
We obtain the following inequalities

j i=0 n i T n l=0 n j-lT T n l=0 1 2 l n j T ∞ l=0 1 2 l n j = 2T n j . (50) 
From (50) and Lemma 4 we get that for j > 0

j i=0 n i 2T n j 4C L µ T 4C L µ   1 +     log 1 + 16 C 2 -16 2L(F (r 0 )-F * ) ε 2 log C 2 4 -1       (51) 4C log C 2 4 -1 L µ 2 log C 2 4 -1 + log 1 + 16 C 2 -16 2L(F (r 0 ) -F * ) ε 2 .
(52)

Proof of Corollary 1

Let F satisfy H L and G 2 µ for some L > 0 and µ > 0. Let (r j ) j∈N and (n j ) j∈N be the sequences provided by Algorithm 2 with C > 4 and ε > 0.

Minimizing the function

C → 4C log( C 2 4 -1)
gives us the optimal value Ĉ ≈ 6.38. This choice leads to the following rate:

F (r + j ) -F * = O e -1 12 √ µ L j i=0 n i . (62) 
4.4 Proof of Proposition 1

(i) It is well known (see [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF][START_REF] Nesterov | Gradient methods for minimizing composite functions[END_REF][START_REF] Alamo | Restart FISTA with global linear convergence[END_REF]) that as F satisfies H L for some L > 0, the sequence (x k ) k∈N provided by FISTA (Algorithm 1) satisfies

∀k ∈ N * , F (x k ) -F * 2L (k + 1) 2 x 0 -x * 2 , (63) 
where x * is any minimizer of F . This inequality is true for all x * ∈ X * so (63) can be rewritten

∀k ∈ N * , F (x k ) -F * 2L (k + 1) 2 d(x 0 , X * ) 2 . ( 64 
)
Furthermore, F satisfies the growth condition G 2 µ so we can conclude by combining ( 6) and ( 64). (ii) We first prove the following claim. Let y ∈ R N . Then we have

∀x ∈ R N , F (y + ) + L 2 y + -x 2 F (x) + L 2 x -y 2 . ( 65 
)
By definition of the proximal operator (5), y + is the unique minimizer of the function defined by

x → h(x) + ∇f (y), x -y + L 2 x -y 2 . ( 66 
)
As this function is L-strongly convex we get that for all x ∈ R N ,

h(y + )+ y + -y, ∇f (y) + L 2 y + -y 2 + L 2 y + -x 2 h(x)+ x-y, ∇f (y) + L 2 x-y 2 .
(67) f has a L-Lipschitz gradient which implies that

∀(x, y) ∈ R N × R N , f (x) f (y) + x -y, ∇f (y) + L 2 x -y 2 . ( 68 
)
Thus we get that

h(y + ) + f (y + ) -f (y) + L 2 y + -x 2 h(x) + x -y, ∇f (y) + L 2 x -y 2 . ( 69 
)
The convexity of f gives us that f (x) f (y) + x -y, ∇f (y) and then

F (y + ) + L 2 y + -x 2 F (x) + L 2 x -y 2 . ( 70 
)
By applying this inequality to y = y k = x k + k-1 k+2 (x k -x k-1 ), y + = x k+1 and x = x k for k 1 we have

F (x k+1 ) + L 2 x k+1 -x k 2 F (x k ) + L 2 k -1 k + 2 2 x k -x k-1 2 
(71)

F (x k ) + L 2 x k -x k-1 2 . ( 72 
)
Moreover, if we apply (65) to y = x = x 0 and y + = x 1 we get that

F (x 1 ) + L 2 x 1 -x 0 2 F (x 0 ). ( 73 
)
This implies that 

∀k ≥ 1, F (x k ) + x k -x k-1 2 F (x 0 ), (74) 
As a consequence, we have that for all k > 0 such that (k + 1)

2 4L µ 1 + 1 γ , F (x k ) -F * γ (F (x 0 ) -F (x k )) . (76) 
The contraposite of this proposition leads us to the expected conclusion.

Proof of Lemma 2

Suppose that F satisfies H L and G 2 µ for some L > 0 and µ > 0. Then Lemma 1 states that there exists c > 0 such that ∀x ∈ R N , F (x) -F * cd(0, ∂F (x)) 2 .

(77)

In particular, this assertion is true for c = 1 2µ .

Thus:

µ < 4L 1 + F (r i-1 )-F (r i ) F (r i )-F (r i+k )

(n i-1 + 1) 2 = 4L (n i-1 + 1) 2 F (r i-1 ) -F (r i+k ) F (r i ) -F (r i+k ) .

(89)

As a consequence, µ < μj . Furthermore, we have 

The second claim of Proposition 1 implies that F (r j+1 ) F (r j ). As a consequence the function defined by y → F (r i-1 )-y F (r i )-y is an increasing homographic function and we get that ∀j 2, μj+1 min

i∈N * i<j 4L (n i-1 + 1) 2 F (r i-1 ) -F (r j+1 ) F (r i ) -F (r j+1 ) (92) min i∈N * i<j 4L (n i-1 + 1) 2 F (r i-1 ) -F (r j ) F (r i ) -F (r j ) (93) μj . 
(94)

Proof of Lemma 4

The sequence (n j ) j∈N is defined such that for all j 2, n j = 2n j-1 if the following condition is satisfied:

n j-1 C L μj . (95) 
The second claim of Proposition 1 implies that

n j-1 C L µ . (96) 
This inequality ensures n j 2C L µ if j 2. For j = 0 and j = 1, n j 2C

2C L µ and we get the final conclusion.

Proof of Lemma 5

Let j 1. We can rewrite the inequality (65) for x = y ∈ R N :

L 2 y + -y 2 F (y) -F (y + ). ( 97 
)
By setting y = r j-1 and as F (r + j-1 ) F (r j ) we conclude that 1 2L g(r j-1 ) 2 F (r j-1 ) -F (r j ).

(98)

Conclusions

We introduced an adaptive FISTA restart scheme for convex composite functions satisfying a quadratic growth condition around their minimizers. This method relies on an automatic estimation of the growth parameter which is generally not known in practice. The theoretical convergence rate provided is the fastest in the literature so far if the growth parameter cannot be estimated. Numerical experiments emphasize the efficiency of this method especially in the case when computing the function to minimize is expensive.
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 56 Adaptive restart scheme introduced by Alamo et al. in [2], Gradient based restart scheme introduced by Alamo et al. in [1]. Note that methods 3, 4, 5 and 6 are respectively refered as Empirical restart scheme 1, Empirical restart scheme 2, Restart scheme 1 by Alamo et al. and Restart scheme 2 by Alamo et al. in the following figures.

Figure 1 :

 1 Figure 1: Comparison of several algorithms in terms of iterations for a L 1regularized least squares problem with N = 1000.

Figure 2 :

 2 Figure 2: Example of image inpainting: the damaged image y is on the left and an approximation of the solution of (31) is on the right.

Figure 3 :

 3 Figure 3: Comparison of several algorithms in terms of iterations for an inpainting problem.

Figure 4 :

 4 Figure 4: Comparison of several algorithms in terms of computation time for an inpainting problem.

  and thus we can conclude. (iii) By rewriting the first claim of Proposition 1 we get that∀k ∈ N * , F (x k ) -F * 4L µ(k + 1) 2 -4L (F (x 0 ) -F (x k )) .

2 F 2 F

 22 (r i-1 ) -F (r j+1 ) F (r i ) -F (r j+1 ) (r i-1 ) -F (r j+1 ) F (r i ) -F (r j+1 ).

Table 1 :

 1 Convergence rates of classical algorithms for a possibly non differentiable function F satisfying H L and G 2 µ for some L > 0 and µ > 0.

	Algorithm	References	Convergence	Limitations
			rate	
	Forward-	Garrigos et al.	O e -µ L k	-
	Backward Heavy-Ball	[19] Aujol et al. [8]	O e -(2-√	2)	√ µ L k	Requires an
	variation						estimate of µ and
							uniqueness of
	Optimal FISTA	Necoara et al.	O e -1 e	√ µ L k	minimizer Requires an
	restart	[28]					estimate of µ
	Empirical FISTA	O'Donoghue and	O(k -2 )	Numerically fast
	restart	Candès [31]					but no improved
							theoretical
							convergence rate
	FISTA restart by	Fercoq and Qu				
	Fercoq and Qu	[17]				

Acknowledgements J-F Aujol acknowledges the support of the European Union's Horizon 2020 research and innovation program under the Marie Sk lodowska-Curie grant agreement No777826. The authors acknowledge the support of the French Agence Nationale de la Recherche (ANR) under reference ANR-PRC-CE23 Masdol and the support of FMJH Program PGMO 2019-0024 and from the support to this program from EDF-Thales-Orange.

We consider the case in which the exit condition g(r j ) ε is satisfied at first for at least 8C L µ iterations. We define the function ψ µ : R * + → 8C L µ , +∞ such that:

γ .

(53) According to Theorem 1, the number of iterations required to ensure that g(r j ) ε satisfies:

As ψ µ is a strictly decreasing function and j i=0 n i > 8C L µ we can write that:

where ψ -1 µ is the inverse function of ψ µ . By applying Lemma 2 we get that:

Elementary computations give us that:

and thus we get:

We can then conclude that

Let x ∈ R N . By definition of the proximal operator (5), x + is the unique minimizer of the function defined by

and thus x + satisfies 0 ∈ ∂h(x

As a consequence we get that

Moreover as f has a L-Lipschitz gradient we have

By combining these inequalities we conclude that

Proof of Lemma 3

The sequence (μ j ) j 2 is defined such that

On the other hand, for all i ∈ N * and k ∈ N * , we have:

where γ = F (r i )-F (r i+k ) F (r i-1 )-F (r i ) . Moreover, the third claim of Proposition 1 gives us that: