
HAL Id: hal-03153525
https://hal.science/hal-03153525v3

Preprint submitted on 22 Nov 2021 (v3), last revised 24 May 2022 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FISTA restart using an automatic estimation of the
growth parameter

Jean-François Aujol, Charles H Dossal, Hippolyte Labarrière, Aude
Rondepierre

To cite this version:
Jean-François Aujol, Charles H Dossal, Hippolyte Labarrière, Aude Rondepierre. FISTA restart using
an automatic estimation of the growth parameter. 2021. �hal-03153525v3�

https://hal.science/hal-03153525v3
https://hal.archives-ouvertes.fr


FISTA restart using an automatic estimation of
the growth parameter

J.-F. Aujol∗ Ch. Dossal† H. Labarrière†

A. Rondepierre†‡

Jean-Francois.Aujol@math.u-bordeaux.fr,

{Charles.Dossal,Hippolyte.Labarriere,Aude.Rondepierre}@insa-toulouse.fr

October 5, 2021

Abstract

In this paper, we propose a restart scheme for FISTA (Fast Iterative
Shrinking-Threshold Algorithm) [12]. This method which is a generaliza-
tion of Nesterov’s accelerated gradient algorithm [29] is widely used in the
field of large convex optimization problems and it provides fast convergence
results under a strong convexity assumption. These convergence rates can
be extended for weaker hypotheses such as the  Lojasiewicz property but it
requires prior knowledge on the function of interest. In particular, most of
the schemes providing a fast convergence for non-strongly convex functions
satisfying a quadratic growth condition involve the growth parameter which
is generally not known. Recent works [2, 1] show that restarting FISTA
could ensure a fast convergence for this class of functions without requiring
any knowledge on the growth parameter. We improve these restart schemes
by providing a better asymptotical convergence rate and by requiring a lower
computation cost. We present numerical results emphasizing the efficiency
of this method.
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1 Introduction

Let N ∈ N∗ and consider a composite optimization problem:

min
x∈RN

F (x). (1)

The objective function F : RN → R∪{+∞} belongs to the class HL of composite
functions: F = f + h where f is a convex, differentiable function having a L-
Lipschitz gradient and h is a convex function whose proximal operator is known.
The set of minimizers of F denoted by X∗ is assumed to be non empty.

For the class HL of composite functions, a classical minimization algorithm is
the Forward-Backward algorithm (FB) that produces a sequence (xk)k>1 ensuring
F (xk)− F ∗ = O

(
1
k

)
[16] where F ∗ = inf F . Under the same assumptions, FISTA

(Fast Iterative Shrinkage-Thresholding Algorithm) [12], based on the ideas of accel-
eration of Nesterov [29], ensures a better asymptotic bound: F (xk)−F ∗ = O

(
1
k2

)
.

In many optimization problems, as for instance in statistics or in image pro-
cessing, the objective function F naturally satisfies some additional geometry as-
sumptions such as a quadratic growth condition:

∀x ∈ RN ,
µ

2
d(x,X∗)2 6 F (x)− F ∗, (2)

which allows to reach better decay rates. Note that in the convex setting, the
quadratic growth condition (2) is equivalent to a  Lojasiewicz property with an
exponent 1

2
[26, 27, 14]. This set of functions includes the set of strongly convex

functions but it is much larger. For example, it contains functions associated to the
mean square problem and the LASSO [15, Corollary 9]. Note that the uniqueness
of the minimizer of F is not required.

On this set of functions, FB reaches an exponential decay rate: O
(
e−κk

)
where

κ := µ
L

is the ratio between the growth parameter µ defined in (2) and the Lipschitz
constant L of ∇f [19]. It turns out that this exponential decay cannot be observed
in many numerical experiments because the condition number κ = µ

L
� 1 can be

very small, especially in large dimension problems. Most of the time, up to a large
accuracy, the quadratic bound of FISTA is numerically better than the theoretical
exponential decay of FB. Indeed the number of iterations required to reach a

precision ε is proportional to L
µ

for FB while it is proportional to
√

L
µ

for FISTA.

Assuming that F has a unique minimizer, the variation of Polyak’s Heavy

Ball method [32] introduced in [8] reaches a better decay rate: O
(
e−(2−

√
2)
√
κk
)

.

Unfortunately, this scheme requires an accurate a priori estimation of the growth
parameter µ to get this fast decay. Moreover, in many situations, µ is small and
unknown. An incorrect estimation of µ may significantly reduce the speed of the
algorithm.
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In this paper, we introduce a new algorithm to minimize efficiently composite
functions of the class HL having additionally the quadratic growth property (2).
More precisely this new algorithm is based on an original restart rule of FISTA
ensuring:

F (xk)− F ∗ = O
(
e−

1
12

√
κk
)

(3)

without any a priori knowledge of µ, and relies on an iterative estimation of µ
comparing some values F (xk). The restart rule is inspired by the one proposed
by Alamo et al [2]. Compared to [2], we improve the decay rate and reduce the
number of estimations of F (xk) during the iterations (notice that these evaluations
may heavily impact the numerical cost and calculation time).

The article is organized as follows. Section 2 provides a state of the art of
this optimization problem. Section 3 is then devoted to the definition and the
properties of our restart algorithm. We also propose some numerical experiments
and comparisons. The proofs of the results of Section 3 are postponed to Section 4.

2 State of the art

2.1 Framework

We introduce some notations. Given a differentiable function f , ∇f denotes the
gradient of f . Given a convex lower semicontinuous function h, ∂h denotes the
convex subgradient of h defined by:

∀x ∈ RN , ∂h(x) =
{
s ∈ RN | ∀y ∈ RN , h(y) > h(x) + 〈s, y − x〉

}
. (4)

Given a vector x, ‖x‖ and ‖x‖1 respectively denote its Euclidean norm and its
1-norm.

We define the proximal operator of h : RN → R ∪ {+∞} a convex lower
semicontinuous function as follows:

∀x ∈ RN , proxh(x) = argmin
y∈RN

h(y) +
1

2
‖y − x‖2. (5)

In this paper we focus on the class HL of composite functions defined as:
F = f+h where f is a convex, differentiable function having a L-Lipschitz gradient
and h is a convex function whose proximal operator is known. The set X∗ of
minimizers of F is assumed to be non empty.

Definition 1 (Quadratic growth condition G2µ). Let F : RN → R ∪ {+∞} be a
proper lower semicontinuous convex function with a non empty set of minimizers
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X∗. Let F ∗ = inf F . The function F satisfies a quadratic growth condition G2µ for
some µ > 0 if it satisfies:

∀x ∈ RN ,
µ

2
d(x,X∗)2 6 F (x)− F ∗. (6)

Classically the quadratic growth condition G2µ can be seen as a relaxation of
the strong convexity. In the convex setting, the condition G2µ is equivalent to a
global  Lojasiewicz property with an exponent 1

2
[14, 19]:

Lemma 1. Let F : RN → R ∪ {+∞} be a proper lower semicontinuous convex
function with a non empty set of minimizers X∗. Let F ∗ = inf F . If F satisfies
a quadratic growth condition G2µ for some µ > 0, then F has a global  Lojasiewicz
property with an exponent 1

2
:

∀x ∈ RN , 2µ (F (x)− F ∗) 6 d(0, ∂F (x))2. (7)

To set some definitions we say that:

Definition 2. An optimization algorithm provides a fast exponential decay on the
class of functions F satisfying a growth condition G2µ with parameter µ and having
a L-Lipschitz gradient if there exists a constant K > 0 independent of µ and L
such that the sequence (xk)k∈N provided by this algorithm satisfies

F (xk)− F ∗ = O
(
e−K
√

µ
L
k
)
.

Definition 3. An optimization algorithm provides a low exponential decay on the
class of functions F satisfying a growth condition G2µ with parameter µ and having
a L-Lipschitz gradient if there exists a constant K > 0 independent of µ and L
such that the sequence (xk)k∈N provided by this algorithm satisfies

F (xk)− F ∗ = O
(
e−K

µ
L
k
)
.

In most practical cases the function F is ill-conditioned i.e µ� L. The differ-
ence between a fast and a low exponential decay is then significant since µ

L
�
√

µ
L

.

2.2 Literature review

Let L > 0. Let F : Rn → R be a composite function of the class HL satisfying
additionally a growth condition for some parameter µ > 0, namely µ-strong con-
vexity or the quadratic growth condition G2µ. The Lipschitz constant L is assumed
to be known.
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A classical method to minimize such a function is the Forward-Backward al-
gorithm which is an adaptation of Gradient Descent method. If F is µ-strongly
convex or satisfies G2µ for some µ > 0, this scheme provides a low exponential decay

F (xk)− F ∗ = O
(
e−

µ
L
k
)

[19].
Polyak introduces in [32] the Heavy-Ball method which ensures a fast conver-

gence for µ-strongly convex functions that are twice differentiable. There exist
many variations of this scheme and [8] proposes a Heavy-Ball method adapted to
composite functions satisfying G2µ for some µ > 0. This scheme provides a fast

exponential decay O
(
e−(2−

√
2)
√

µ
L
k
)

for this set of functions under a uniqueness

of minimizers assumption. This method requires a prior estimate of the growth
parameter µ.

Restarting schemes of FISTA [12] are efficient methods in this setting. FISTA
is an inertial first order algorithm adapted from Nesterov accelerated gradient in-
troduced in [29] which ensures that F (xk)−F ∗ = O(k−2). Inertia generated in this
scheme allows a fast convergence but also produces oscillations. Restarting FISTA
is equivalent to set inertia to zero which helps to reduce oscillating behavior. A
classical strategy introduced in [29] is to restart the algorithm at regular intervals.

[28] show that restarting Nesterov accelerated gradient every b2e
√

L
µ
c iterations

ensures that F (xk) − F ∗ = O
(
e−

1
e

√
µ
L
k
)

for µ-strongly convex functions. This

restart scheme and its convergence rate can be extended to FISTA and composite
functions satisfying G2µ [31, 28]. Note that an estimate of the growth parameter
µ is required. This may be restrictive in numerical experiments since the growth
parameter is rarely known.

O’Donoghue and Candès propose heuristic restart rules for accelerated gradient
method and FISTA in [31]. These rules are based on empirical observations and
they give highly effective numerical results especially for functions satisfying G2µ.
However, no improved convergence rates was theoretically found so far.

Adaptive restart schemes take advantage of each iteration to estimate the ge-
ometry of F . This approach enables to fit the parameters of the algorithm progres-
sively. [30, 22, 23] propose non restart schemes based on this strategy to compute
an estimate of the strong convexity parameter. [17] provides an adaptive restart
scheme for FISTA for the set of functions satisfying G2µ which builds a sequence
of estimates of the growth parameter µ. It requires a prior estimate µ0 and the

convergence rate of the method is given by O

(
e
−

√
2−1

2
√
e(2−
√

µ
µ0

)

√
µ
L
k
)

if µ0 > µ. As

this rate significantly depends on µ
µ0

this method might be less effective if µ0 is

highly overestimated. This rate is faster than O
(
e
− 1

12

√
L
µ

)
as long as µ0 < 4µ.

5



Alamo et al. introduce in [2] and [1] adaptive restart schemes for FISTA under
a G2µ assumption on F where no prior estimate of µ > 0 is required. The method

proposed in [2] provides a fast exponential decay O
(
e−

1
16

√
µ
L
k
)

and it relies on

computations of F (xk) at least at half of the iterations. There exist techniques
that reduce the computational cost of these evaluations. In [21] the authors intro-
duce FASTA which is an adaptation of FISTA optimized for composite functions
satisfying HL such that f(x) = f̃(Ax) for some function f̃ and some operator A.
In this setting, this scheme reduces the computational cost of f and therefore of F .
However in some common cases computing F is expensive despite these strategies.
In these cases additional calculations may significantly slow down the method. The
scheme introduced in [1] is based on gradient information and therefore it does not

require to compute F . It provides the convergence rate O
(
e
− 1

4e(1+
√
µ+1)

µ
L
k
)

which

can be seen as a low exponential decay as e
− 1

4e(1+
√
µ+1)

µ
L
k
> e−

1
8e

µ
L
k for all k > 0.
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Table 1: Convergence rates of classical algorithms for a possibly non differentiable
function F satisfying HL and G2µ for some L > 0 and µ > 0.

Algorithm References Convergence
rate

Limitations

Forward-
Backward

Garrigos et al.
[19]

O
(
e−

µ
L
k
)

-

Heavy-Ball
variation

Aujol et al. [8] O
(
e−(2−

√
2)
√

µ
L
k
)

Requires an
estimate of µ and

uniqueness of
minimizer

Optimal FISTA
restart

Necoara et al.
[28]

O
(
e−

1
e

√
µ
L
k
)

Requires an
estimate of µ

Empirical FISTA
restart

O’Donoghue and
Candès [31]

O(k−2) Numerically fast
but no improved

theoretical
convergence rate

FISTA restart by
Fercoq and Qu

Fercoq and Qu
[17]

O

e
−

√
2−1

2
√
e(2−
√

µ
µ0

)

√
µ
L
k
 Requires an

estimate µ0 of µ

FISTA restart by
Alamo et al.

Alamo et al. [2] O
(
e−

1
16

√
µ
L
k
)

Requires to
compute F
regularly

Gradient based
FISTA restart

Alamo et al. [1] O
(
e
− 1

4e(1+
√
µ+1)

µ
L
k
)

-

Adaptive restart Theorem 1 O
(
e−

1
12

√
µ
L
k
)

-

We propose a restart scheme of accelerated gradient method and FISTA which

provides a fast exponential decay inO
(
e−

1
12

√
µ
L
k
)

. This algorithm does not require

to estimate the growth parameter µ. Moreover, the value of F (xk) is computed
for a reduced number of iterations. As a consequence, this method has a fast
convergence rate in terms of iterations and computational time as well.

3 Contributions

In this section we introduce a restart scheme for FISTA in order to minimize a
composite function F satisfying HL and the growth condition G2µ for some L > 0
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and µ > 0. We give a convergence rate and we describe the underlying strategy.

3.1 Adaptive FISTA restart scheme

Let us introduce some notations to simplify the writing of the algorithm. Let:

y+ = prox 1
L
h(y −

1

L
∇f(y)) (8)

be the vector given by a step of the Forward-Backward algorithm on y with s = 1
L

.
The composite gradient mapping g is then defined as follows:

g(y) = L(y − y+). (9)

Given initial condition z ∈ RN and a number of iterations n, FISTA [12] can
be written as Algorithm 1.

Algorithm 1 : FISTA

Require: z ∈ RN , n ∈ N
y0 = x0 = z, k = 0
repeat
k = k + 1
xk = y+k−1
yk = xk + k−1

k+2
(xk − xk−1)

until k > n
return r = xk

We introduce a restart scheme which aims to accelerate the convergence of
FISTA. Algorithm 2 relies on a few sequences:

• the sequence (rj)j∈N corresponds to the iterates of the algorithm. For all
j > 0, rj is the output of the jth execution of FISTA.

• the sequence (nj)j∈N refers to the number of iterations of FISTA following
the j-th restart. Namely, for all j > 0 we have:

rj+1 = FISTA(rj, nj),

• the sequence (µ̃j)j>2 estimates the growth parameter µ at each restart. This
estimation is built from the known convergence results of FISTA and con-
sidering a comparison of the cost function F computed at three iterates.
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For all j > 2, the number of iterations nj is defined according to nj−1, µ̃j and the
predefined parameter C > 0. The algorithm verifies if a condition called doubling
condition is fulfilled. If the condition holds true, then nj−1 is considered too small
and nj is set to 2nj−1. In the other case, the number of iterations is not increased.

The exit condition ‖g(rj)‖ 6 ε is motivated by the following lemma which is
proven in Section 4.5:

Lemma 2. Let F be a function satisfying HL and G2µ for some L > 0 and µ > 0.
Then for all x ∈ RN we have:

F (x+)− F ∗ 6 2

µ
‖g(x)‖2. (10)

The exit criteria combined to the inequality (10) enable the algorithm to ensure
that the vector rj satisfies:

F (r+j )− F ∗ 6 2ε2

µ
, (11)

without computing F ∗.
For a given initial condition r0 ∈ RN , we propose the algorithm shown in

Algorithm 2.

Algorithm 2 : Restart scheme

Require: r0 ∈ RN , j = 1
n0 = b2Cc
r1 = FISTA(r0, n0)
n1 = b2Cc
repeat
j = j + 1
rj = FISTA(rj−1, nj−1)

µ̃j = min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)

if nj−1 6 C
√

L
µ̃j

then

nj = 2nj−1
else
nj = nj−1

end if
until ‖g(rj)‖ 6 ε
return r = rj

9



Theorem 1. Let F be a function satisfying HL and G2µ for some L > 0 and µ > 0.
Let (rj)j∈N and (nj)j∈N be the sequences provided by Algorithm 2 with parameters
C > 4 and ε > 0. Then the number of iterations 1 +

∑j
i=0 ni required to guarantee

‖g(rj)‖ 6 ε is bounded and satisfies

j∑
i=0

ni 6
4C

log
(
C2

4
− 1
)√L

µ

(
2 log

(
C2

4
− 1

)
+ log

(
1 +

16

C2 − 16

2L(F (r0)− F ∗)
ε2

))
.

(12)

Corollary 1. Let F be a function satisfying HL and G2µ for some L > 0 and µ > 0.
If C > 4 and ε > 0, then the sequences (rj)j∈N and (nj)j∈N provided by Algorithm 2
satisfy

F (r+j )− F ∗ = O

e
−

log

(
C2

4 −1

)
4C

√
µ
L

j∑
i=0

ni

 . (13)

Specifically, if C is chosen to maximize
log
(
C2

4
−1
)

4C
, namely C ≈ 6.38, then there

exists K > 1
12

such that the sequences (rj)j∈N and (nj)j∈N provided by Algorithm 2
satisfy

F (r+j )− F ∗ = O

e
−K
√

µ
L

j∑
i=0

ni

 . (14)

Corollary 1 states that Algorithm 2 provides asymptotically a fast exponential
decay. This convergence rate is faster than any method when considering a function
F satisfyingHL and G2µ where the parameter µ cannot be estimated. In this setting,
Forward-Backward algorithm provides a low exponential decay and FISTA has
no improved theoretical convergence rate. The variation of Heavy-Ball method
introduced in [8], the FISTA restart scheme introduced in [17] and fixed restart
of FISTA require to estimate the growth parameter to ensure a fast exponential
decay.

The restart scheme introduced by Alamo et al. in [2] ensures the following rate:

F (r+j )− F ∗ = O

e
− 1

16

√
µ
L

j∑
i=0

ni

 , (15)
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which is slightly slower than (14). The gradient based FISTA restart proposed

in [1] guarantees the theoretical rate O
(
e
− 1

4e(1+
√
µ+1)

µ
L
k
)

which can be considered

as an low exponential decay. As a consequence, this decay may be significantly
slower than the decay of Algorithm 2 when µ

L
�
√

µ
L

which is the case in numerous
practical examples.

We recall that convergence results such as (14) and (15) are worst-case bounds.
Consequently a faster theoretical rate does not necessarily guarantee a faster al-
gorithm in general.

3.2 Structure of the algorithm

Algorithm 2 is an adaptive restart scheme based on FISTA [12]. At each step j,
FISTA is restarted for nj−1 iterations and it gives the vector rj:

rj = FISTA(rj−1, nj−1).

The key parameter of such an algorithm is the sequence (nj)j∈N. The strategy
behind Algorithm 2 is to estimate the growth parameter µ > 0 satisfying (6) at
each step j. The estimation of µ denoted µ̃j is then used to define nj.

The estimation of µ is based on well-known convergence results on FISTA
stated in Proposition 1 and proven in Section 4.4. This proposition is adapted
from [2, Property 2] and introduces slightly more general claims leading to the
estimate µ̃j (24).

Proposition 1. Let F be a function satisfying HL and G2µ for some L > 0 and
µ > 0. Then the sequence (xk)k∈N provided by Algorithm 1 satisfies

(i) ∀k ∈ N∗, F (xk)− F ∗ 6
4L

µ(k + 1)2
(F (x0)− F ∗) , (16)

(ii) ∀k ∈ N∗, F (xk) 6 F (x0), (17)

(iii) ∀k ∈ N, F (xk)− F ∗ > γ (F (x0)− F (xk)) =⇒ (k + 1)2 <
4L

µ

(
1 +

1

γ

)
.

(18)

Given the first claim of Proposition 1, the most direct strategy to estimate µ
is to compare F (rj)− F ∗ and F (rj−1)− F ∗ at each step j as we have:

∀j ∈ N∗, F (rj)− F ∗ 6
4L

µ(nj−1 + 1)2
(F (rj−1)− F ∗) , (19)

which is equivalent to:

∀j ∈ N∗, µ 6
4L

(nj−1 + 1)2
F (rj−1)− F ∗

F (rj)− F ∗
. (20)

11



In many cases the optimal value F ∗ is not known and µ cannot be estimated in
this way. This issue can be avoided by rewriting (19) and by considering a third
point rj+1. For all j ∈ N∗,

F (rj)− F ∗ > F (rj)− F (rj+1) = γ(F (rj−1)− F (rj)), (21)

where γ =
F (rj)− F (rj+1)

F (rj−1)− F (rj)
. The third claim of Proposition 1 gives us that:

µ 6
4L

(nj−1 + 1)2

(
1 +

1

γ

)
. (22)

Thus,

∀j ∈ N∗, µ 6
4L

(nj−1 + 1)2
F (rj−1)− F (rj+1)

F (rj)− F (rj+1)
. (23)

In this way, it is possible to get an estimation of µ at each restart for j > 2 by
comparing F (rj−1)− F (rj) and F (rj−2)− F (rj). This strategy is implemented in
Algorithm 2 to build the sequence (µ̃j)j>2:

∀j > 2, µ̃j = min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
. (24)

This sequence satisfies the following property proven in Section 4.6:

Lemma 3. Let F be a function satisfying HL and G2µ for some L > 0 and µ > 0.
Then the sequence (µ̃j)j>2 provided by Algorithm 2 satisfies

∀j > 2, µ̃j > µ̃j+1 > µ. (25)

It is worth noticing that this strategy could be adapted to other schemes than
FISTA as long as theoretical convergence bounds are known. The estimate of the
growth parameter indeed relies only on (16).

Once the growth parameter µ is estimated it is possible to set the number
of iterations accordingly. It is known [29, 28, 31] that the optimal number of

iterations before a restart of FISTA is k∗ = b2e
√

L
µ
c. However, considering µ̃ an

upper estimation of µ, the growth condition G2µ̃ is not satisfied by F . Consequently,

setting k∗ = b2e
√

L
µ̃
c does not ensure a fast exponential decay. Since µ̃j > µ for

all j > 2, setting nj = b2e
√

L
µ̃j
c may not be efficient.

The strategy of Algorithm 2 is to reset nj by using a doubling condition that
depends on the parameter C > 0. At each step the doubling condition nj 6

12



C
√

L
µ̃j

is evaluated. If the condition is satisfied then the number of iterations nj is

considered too small and it is doubled before the next restart. This process ensures
that (nj)j∈N is an increasing and bounded sequence which satisfies the following
lemma. Its proof can be found in Section 4.7.

Lemma 4. Let F be a function satisfying HL and G2µ for some L > 0 and µ > 0.
Then the sequence (nj)j∈N provided by Algorithm 2 satisfies

∀j ∈ N, nj 6 2C

√
L

µ
. (26)

Remark 1. An alternative approach would be to multiply the number of iterations

nj by γ > 1 instead of 2 when nj 6 C
√

L
µ̃j

. In that case the upper bound of nj

becomes

∀j ∈ N, nj 6 γC

√
L

µ
. (27)

The fastest asymptotical convergence rate is obtained for the choice γ = 2 (Algo-
rithm 2).

3.3 Numerical experiments

In this section we illustrate the convergence results stated in previous sections with
numerical experiments. We compare Algorithm 2 to the following set of methods:

1. The Forward-backward algorithm,

2. FISTA [12],

3. Empirical restart scheme of FISTA by O’Donoghue and Candès [31] with the
restart condition:

F (xk) > F (xk−1), (28)

4. Empirical restart scheme of FISTA by O’Donoghue and Candès [31] with the
restart condition:

〈g(yk−1), xk − xk−1〉 > 0, (29)

5. Adaptive restart scheme introduced by Alamo et al. in [2],

6. Gradient based restart scheme introduced by Alamo et al. in [1].

Note that methods 3, 4, 5 and 6 are respectively refered as Empirical restart
scheme 1, Empirical restart scheme 2, Restart scheme 1 by Alamo et al. and
Restart scheme 2 by Alamo et al. in the following figures.
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3.3.1 L1-regularized least squares problem

The problem considered reads as follows:

min
x∈RN

F (x) =
1

2
‖Ax− b‖2 + ρ‖x‖1, (30)

where A ∈ MN,N(R), b ∈ RN , ρ > 0 and N > 1. The function F is a composite
function satisfying HL where L > 0 can easily be computed. The L1-regularization
prevents F to be strongly convex but it satisfies the assumption G2µ for some µ > 0.
There exists no explicit formula for the growth parameter µ. Experiments are
carried out by setting A as a random matrix of size N ×N . Results are provided
forN = 1000 which ensures that the problem is ill-conditioned. The computational
cost of F is negligible as optimization techniques such as FASTA [21] or speculative
estimations [18] can be applied.

Figure 1 shows the decrease of the error according to the number of iterations.
One can observe that Algorithm 2 and the restart scheme introduced by Alamo et
al. in [2] provide similar precision with equal number of iterations. In this example
additional computations of F are not expensive and consequently both methods
perform similarly. This figure also illustrates the low exponential decay provided
by Gradient based restart [1] as this scheme is significantly slower. Note that both
empirical restart schemes provide significantly fast decay.

Figure 1: Comparison of several algorithms in terms of iterations for a L1-
regularized least squares problem with N = 1000.

3.3.2 Inpainting

Consider an image x0 and a masking operator M . Let y = Mx0 be the damaged
version of x0. The objective is to get an approximation of x0 knowing y and M .
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This problem can be written as follows:

min
x
F (x) =

1

2
‖Mx− y‖2 + λ‖Tx‖1, (31)

where T is an orthogonal transformation ensuring that Tx0 is sparse. In this
example, x0 is piecewise smooth so T is set as an orthogonal wavelet transform. In
this setting, the objective function F satisfies HL and G2µ where L = 1 and µ > 0
cannot be computed directly.

Figure 2: Example of image inpainting: the damaged image y is on the left and
an approximation of the solution of (31) is on the right.

This inpainting problem (31) is an example of a highly expensive function
F to compute. As shown in Figure 3 and Figure 4, this high cost significantly
penalizes restart schemes that rely on regular computations of F . It appears that
Algorithm 2 is still efficient in this situation as its additional computations of the
cost function are reduced.
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Figure 3: Comparison of several algorithms in terms of iterations for an inpainting
problem.

Figure 4: Comparison of several algorithms in terms of computation time for an
inpainting problem.

4 Proofs

4.1 Sketch of proof

As the proof of Theorem 1 is technical, it is split into the following parts:

1. We show that there is at least one doubling step every T iterations for a
well-chosen T .
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(a) We suppose that there is no doubling step from j = s+ 1 to j = s+ T .

(b) We exhibit the geometrical decrease of (F (rj−1)−F (rj))j∈Js+1,s+T K which
represents the gain of the j-th execution of FISTA.

(c) We apply Lemma 5 to show that we can find an upper bound of
‖g(rj−1)‖ which depends on F (rj−1)− F (rj) for all j ∈ Js+ 1, s+ T K.

(d) We exploit the geometrical decrease (F (rj−1)−F (rj))j∈Js+1,s+T K to show
that the exit condition is satisfied for j = s+ T .

2. We use the first point to show that the number of iterations
∑j

i=0 ni is
necessarily bounded by 2Tnj. The conclusion of Theorem 1 comes from
Lemma 4 which gives an upper bound of nj.

4.2 Proof of Theorem 1

Let C > 4 and ε > 0. We define T = 1 +

⌈
log
(
1+ 16

C2−16

2(F (r0)−F
∗)

Lε2

)
log
(
C2

4
−1
)

⌉
where d·e is the

ceiling function. We show that there is a doubling step at least every T iterations.
Assume that there is no doubling step from j = s+ 1 to j = s+T where s > 1

which means that for a given s > 1:

∀j ∈ Js+ 1, s+ T K, nj−1 > C

√
L

µ̃j
, (32)

and consequently:
∀j ∈ Js+ 1, s+ T K, nj = ns. (33)

Hence:

∀j ∈ Js+ 2, s+ T K, µ̃j = min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)

6 min
i∈N∗
s<i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)

6 min
i∈N∗
s<i<j

4L

ni−12
F (ri−1)− F (rj)

F (ri)− F (rj)

6 min
i∈N∗
s<i<j

4L

ns2
F (ri−1)− F (rj)

F (ri)− F (rj)

6
4L

ns2
min
i∈N∗
s<i<j

F (ri−1)− F (rj)

F (ri)− F (rj)
, (34)

17



as there is no doubling step for j > s. This then implies

∀j ∈ Js+ 2, s+ T K, µ̃j 6
4L

ns2
F (rj−2)− F (rj)

F (rj−1)− F (rj)
. (35)

Combining (32) with (33) and (35) we get that:

ns > C

√
L

4L
ns2

F (rj−2)−F (rj)

F (rj−1)−F (rj)

= ns
C

2

√
F (rj−1)− F (rj)

F (rj−2)− F (rj)
. (36)

This leads to the following inequality

F (rj−2)− F (rj) >
C2

4
(F (rj−1)− F (rj)), (37)

and then,

F (rj−2)− F (rj−1) >

(
C2

4
− 1

)
(F (rj−1)− F (rj)). (38)

Since C > 2 we get that

F (rj−1)− F (rj) <
4

C2 − 4
(F (rj−2)− F (rj−1)). (39)

We consider the case j = s+ 1:

µ̃s+1 = min
i∈N∗
i<s+1

4L

(ni−1 + 1)2
F (ri−1)− F (rs+1)

F (ri)− F (rs+1)

6
4L

(ns−1 + 1)2
F (rs−1)− F (rs+1)

F (rs)− F (rs+1)

6
4L

(ns
2

+ 1)2
F (rs−1)− F (rs+1)

F (rs)− F (rs+1)

6
16L

ns2
F (rs−1)− F (rs+1)

F (rs)− F (rs+1)
, (40)

as ns 6 2ns−1.
By similar computations we get

F (rs)− F (rs+1) <
16

C2 − 16
(F (rs−1)− F (rs)). (41)

Since C > 4 we finally obtain the following inequalities

F (rs)− F (rs+1) <
16

C2 − 16
(F (rs−1)− F (rs)). (42)
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∀j ∈ Js+ 2, s+ T K, F (rj−1)− F (rj) <
4

C2 − 4
(F (rj−2)− F (rj−1)). (43)

We introduce Lemma 5 which links the composite gradient mapping g to the
function F . This lemma is proven in Section 4.8:

Lemma 5. Let F satisfy the assumption HL for some L > 0. Then the sequence
(rj)j∈N provided by Algorithm 2 satisfies

∀j > 1,
1

2L
‖g(rj−1)‖2 6 F (rj−1)− F (rj). (44)

From Lemma 5 and inequalities (42) and (43) we obtain the following sequence
of inequalities

1

2L
‖g(rs+T−1)‖2 6 F (rs+T−1)− F (rs+T )

6
4

C2 − 4
(F (rs+T−2)− F (rs+T−1))

6

(
4

C2 − 4

)T−1(
16

C2 − 16

)
(F (rs−1)− F (rs))

6

(
4

C2 − 4

)T−1(
16

C2 − 16

)
(F (r0)− F ∗)

6

(
4

C2 − 4

) log

(
1+ 16

C2−16

2L(F (r0)−F
∗)

ε2

)
log(C2

4 −1)

( 16

C2 − 16

)
(F (r0)− F ∗)

6

(
4

C2 − 4

) log

(
1+ 16

C2−16

2L(F (r0)−F
∗)

ε2

)
log(C2

4 −1)
(

16

C2 − 16

)
(F (r0)− F ∗)

6
1

1 + 16
C2−16

2L(F (r0)−F ∗)
ε2

(
16

C2 − 16

)
(F (r0)− F ∗)

6
ε2

2L
.

As a consequence, if there are T consecutive steps of Algorithm 2 without doubling
the number of iterations, then the exit condition ‖g(rj)‖ 6 ε is eventually satisfied.
This means that there is a doubling step at least every T steps and for all s > 1
there exists j ∈ Js+ 1, s+ T K such that

nj−1 < C

√
L

µ̃j
. (45)

19



This implies that nj = 2nj−1. As (nj)j∈N is an increasing sequence, we get that
ns+T > nj = 2nj−1 > 2ns. And thus

ns 6
ns+T

2
, ∀s > 1. (46)

Let us rewrite j as j = m + nT where 0 6 m < T and n > 0. The increasing
nature of (nj)j∈N gives us that

j∑
i=0

ni =
m+nT∑
i=0

ni =
m∑
i=0

ni +
n−1∑
l=0

T∑
i=1

nm+i+lT (47)

6 Tnm + T

n∑
l=1

nm+lT = T
n∑
l=0

nm+lT = T
n∑
l=0

nj−lT . (48)

According to equation (46) we have nj−T 6 nj
2

and therefore

nj−lT 6

(
1

2

)l
nj, ∀l ∈ [[0, n]]. (49)

We obtain the following inequalities

j∑
i=0

ni 6 T
n∑
l=0

nj−lT 6 T
n∑
l=0

(
1

2

)l
nj 6 T

∞∑
l=0

(
1

2

)l
nj = 2Tnj. (50)

From (50) and Lemma 4 we get that for j > 0

j∑
i=0

ni 6 2Tnj 6 4C

√
L

µ
T 6 4C

√
L

µ

1 +


log
(

1 + 16
C2−16

2L(F (r0)−F ∗)
ε2

)
log
(
C2

4
− 1
)




(51)

6
4C

log
(
C2

4
− 1
)√L

µ

(
2 log

(
C2

4
− 1

)
+ log

(
1 +

16

C2 − 16

2L(F (r0)− F ∗)
ε2

))
.

(52)

4.3 Proof of Corollary 1

Let F satisfy HL and G2µ for some L > 0 and µ > 0. Let (rj)j∈N and (nj)j∈N be
the sequences provided by Algorithm 2 with C > 4 and ε > 0.
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We consider the case in which the exit condition ‖g(rj)‖ 6 ε is satisfied at first

for at least 8C
√

L
µ

iterations. We define the function ψµ : R∗+ →
(

8C
√

L
µ
,+∞

)
such that:

ψµ : γ 7→ 4C

log
(
C2

4
− 1
)√L

µ

(
2 log

(
C2

4
− 1

)
+ log

(
1 +

16

C2 − 16

2L(F (r0)− F ∗)
γ

))
.

(53)
According to Theorem 1, the number of iterations required to ensure that ‖g(rj)‖ 6
ε satisfies:

j∑
i=0

ni 6 ψµ(ε2). (54)

As ψµ is a strictly decreasing function and
∑j

i=0 ni > 8C
√

L
µ

we can write that:

ψ−1µ

(
j∑
i=0

ni

)
> ε2, (55)

where ψ−1µ is the inverse function of ψµ. By applying Lemma 2 we get that:

F (r+j )− F ∗ 6 2

µ
‖g(rj)‖2 (56)

6
2ε2

µ
(57)

6
2

µ
ψ−1µ

(
j∑
i=0

ni

)
. (58)

Elementary computations give us that:

ψ−1µ : n 7→ 2L
16

C2 − 16

1

e−2 log(
C2

4
−1)e

log(C
2
4 −1)

4C

√
µ
L
n − 1

(F (r0)− F ∗), (59)

and thus we get:

F (r+j )− F ∗ 6 4L

µ

16

C2 − 16

1

e−2 log(
C2

4
−1)e

log(C
2
4 −1)

4C

√
µ
L

∑j
i=0 ni − 1

(F (r0)− F ∗). (60)

We can then conclude that

F (r+j )− F ∗ = O

(
e−

log(C
2

4 −1)

4C

√
µ
L

∑j
i=0 ni

)
. (61)
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Minimizing the function C 7→ log(C
2

4
−1)

4C
gives us the optimal value Ĉ ≈ 6.38. This

choice leads to the following rate:

F (r+j )− F ∗ = O
(
e−

1
12

√
µ
L

∑j
i=0 ni

)
. (62)

4.4 Proof of Proposition 1

(i) It is well known (see [12, 30, 2]) that as F satisfies HL for some L > 0, the
sequence (xk)k∈N provided by FISTA (Algorithm 1) satisfies

∀k ∈ N∗, F (xk)− F ∗ 6
2L

(k + 1)2
‖x0 − x∗‖2, (63)

where x∗ is any minimizer of F . This inequality is true for all x∗ ∈ X∗ so (63) can
be rewritten

∀k ∈ N∗, F (xk)− F ∗ 6
2L

(k + 1)2
d(x0, X

∗)2. (64)

Furthermore, F satisfies the growth condition G2µ so we can conclude by combining
(6) and (64).
(ii) We first prove the following claim. Let y ∈ RN . Then we have

∀x ∈ RN , F (y+) +
L

2
‖y+ − x‖2 6 F (x) +

L

2
‖x− y‖2. (65)

By definition of the proximal operator (5), y+ is the unique minimizer of the
function defined by

x 7→ h(x) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2. (66)

As this function is L-strongly convex we get that for all x ∈ RN ,

h(y+)+〈y+−y,∇f(y)〉+L
2
‖y+−y‖2+L

2
‖y+−x‖2 6 h(x)+〈x−y,∇f(y)〉+L

2
‖x−y‖2.

(67)
f has a L-Lipschitz gradient which implies that

∀(x, y) ∈ RN × RN , f(x) 6 f(y) + 〈x− y,∇f(y)〉+
L

2
‖x− y‖2. (68)

Thus we get that

h(y+) + f(y+)− f(y) +
L

2
‖y+ − x‖2 6 h(x) + 〈x− y,∇f(y)〉+

L

2
‖x− y‖2. (69)
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The convexity of f gives us that f(x) > f(y) + 〈x− y,∇f(y)〉 and then

F (y+) +
L

2
‖y+ − x‖2 6 F (x) +

L

2
‖x− y‖2. (70)

By applying this inequality to y = yk = xk+ k−1
k+2

(xk−xk−1), y+ = xk+1 and x = xk
for k > 1 we have

F (xk+1) +
L

2
‖xk+1 − xk‖2 6 F (xk) +

L

2

(
k − 1

k + 2

)2

‖xk − xk−1‖2 (71)

6 F (xk) +
L

2
‖xk − xk−1‖2. (72)

Moreover, if we apply (65) to y = x = x0 and y+ = x1 we get that

F (x1) +
L

2
‖x1 − x0‖2 6 F (x0). (73)

This implies that

∀k ≥ 1, F (xk) + ‖xk − xk−1‖2 6 F (x0), (74)

and thus we can conclude.
(iii) By rewriting the first claim of Proposition 1 we get that

∀k ∈ N∗, F (xk)− F ∗ 6
4L

µ(k + 1)2 − 4L
(F (x0)− F (xk)) . (75)

As a consequence, we have that for all k > 0 such that (k + 1)2 > 4L
µ

(
1 + 1

γ

)
,

F (xk)− F ∗ 6 γ (F (x0)− F (xk)) . (76)

The contraposite of this proposition leads us to the expected conclusion.

4.5 Proof of Lemma 2

Suppose that F satisfies HL and G2µ for some L > 0 and µ > 0. Then Lemma 1
states that there exists c > 0 such that

∀x ∈ RN , F (x)− F ∗ 6 cd(0, ∂F (x))2. (77)

In particular, this assertion is true for c = 1
2µ

.

23



Let x ∈ RN . By definition of the proximal operator (5), x+ is the unique
minimizer of the function defined by

z 7→ h(z) +
L

2
‖z − x+

1

L
∇f(x)‖2 (78)

and thus x+ satisfies

0 ∈ ∂h(x+) +
{
L(x+ − x) +∇f(x)

}
. (79)

As a consequence we get that

g(x)−∇f(x) +∇f(x+) ∈ ∂F (x+). (80)

Moreover as f has a L-Lipschitz gradient we have

‖g(x)−∇f(x) +∇f(x+)‖ 6 ‖g(x)‖+ ‖∇f(x+)−∇f(x)‖ (81)

6 2‖g(x)‖. (82)

By combining these inequalities we conclude that

F (x+)− F ∗ 6 1

2µ
d(0, ∂F (x+))2 (83)

6
1

2µ
‖g(x)−∇f(x) +∇f(x∗)‖2 (84)

6
2

µ
‖g(x)‖2. (85)

4.6 Proof of Lemma 3

The sequence (µ̃j)j>2 is defined such that

∀j > 2, µ̃j = min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
. (86)

On the other hand, for all i ∈ N∗ and k ∈ N∗, we have:

F (ri)− F ∗ > F (ri)− F (ri+k) = γ(F (ri−1)− F (ri)), (87)

where γ = F (ri)−F (ri+k)

F (ri−1)−F (ri)
. Moreover, the third claim of Proposition 1 gives us that:

ni−1 < 2

√
L

µ

√
1 +

1

γ
− 1. (88)
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Thus:

µ <
4L
(

1 + F (ri−1)−F (ri)
F (ri)−F (ri+k)

)
(ni−1 + 1)2

=
4L

(ni−1 + 1)2
F (ri−1)− F (ri+k)

F (ri)− F (ri+k)
. (89)

As a consequence, µ < µ̃j. Furthermore, we have

∀j > 2, µ̃j+1 = min
i∈N∗
i<j+1

4L

(ni−1 + 1)2
F (ri−1)− F (rj+1)

F (ri)− F (rj+1)
(90)

6 min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj+1)

F (ri)− F (rj+1)
. (91)

The second claim of Proposition 1 implies that F (rj+1) 6 F (rj). As a consequence

the function defined by y 7→ F (ri−1)−y
F (ri)−y is an increasing homographic function and

we get that

∀j > 2, µ̃j+1 6 min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj+1)

F (ri)− F (rj+1)
(92)

6 min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
(93)

6 µ̃j. (94)

4.7 Proof of Lemma 4

The sequence (nj)j∈N is defined such that for all j > 2, nj = 2nj−1 if the following
condition is satisfied:

nj−1 6 C

√
L

µ̃j
. (95)

The second claim of Proposition 1 implies that

nj−1 6 C

√
L

µ
. (96)

This inequality ensures nj 6 2C
√

L
µ

if j > 2. For j = 0 and j = 1, nj 6 2C 6

2C
√

L
µ

and we get the final conclusion.
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4.8 Proof of Lemma 5

Let j > 1. We can rewrite the inequality (65) for x = y ∈ RN :

L

2
‖y+ − y‖2 6 F (y)− F (y+). (97)

By setting y = rj−1 and as F (r+j−1) 6 F (rj) we conclude that

1

2L
‖g(rj−1)‖2 6 F (rj−1)− F (rj). (98)

5 Conclusions

We introduced an adaptive FISTA restart scheme for convex composite functions
satisfying a quadratic growth condition around their minimizers. This method
relies on an automatic estimation of the growth parameter which is generally not
known in practice. The theoretical convergence rate provided is the fastest in
the literature so far if the growth parameter cannot be estimated. Numerical
experiments emphasize the efficiency of this method especially in the case when
computing the function to minimize is expensive.
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