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Abstract

In this paper, we propose a novel restart scheme for FISTA (Fast Iterative
Shrinking-Threshold Algorithm) [12]. This method which is a generaliza-
tion of Nesterov’s accelerated gradient algorithm [22] is widely used in the
field of large convex optimization problems and it provides fast convergence
results under a strong convexity assumption. These convergence rates can
be extended for weaker hypotheses such as the  Lojasiewicz property but it
requires prior knowledge on the function of interest. In particular, most of
the schemes providing a fast convergence for non-strongly convex functions
satisfying a quadratic growth condition involve the growth parameter which
is generally not known. Recent works [2, 1] show that restarting FISTA
could ensure a fast convergence for this class of functions without requiring
any geometry parameter. We improve these restart schemes by providing a
better asymptotical convergence rate and by requiring a lower computation
cost. We present numerical results emphasizing that our method is efficient
especially in terms of computation time.
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1 Introduction

This article introduces a new algorithm to minimize efficiently a large set of convex
functions with a quadratic growth. It achieves the best decay rate on this class of
functions, in the case when the quadratic growth constant is not known.

We are interested in the minimization of a function F defined as follows. Let
F = f + h a convex function with F : RN → R ∪ {+∞} with N > 0. The
function f is assumed to be convex, differentiable and with L-Lipschitz gradient,
while h is assumed to be a convex function whose proximal operator is known.
The set of minimizers of F denoted X∗ is non empty. The Forward-Backward
algorithm (FB) produces a sequence (xk)k>1 ensuring F (xk) − F ∗ = O

(
1
k

)
[16]

where F ∗ = inf F . Under the same assumptions, the FISTA Algorithm [12], based
on the ideas of acceleration of Nesterov [22], ensures a better asymptotical bound:
F (xk)− F ∗ = O

(
1
k2

)
.

In numerous optimization problems, as for instance in statistics or in image
processing, the function F to minimize satisfies more hypotheses, which allows to
reach better decay rates. This paper focuses on the set of functions satisfying a
quadratic growth condition, i.e such that it exists µ > 0 such that the following
inequality holds:

∀x ∈ RN ,
µ

2
d(x,X∗)2 6 F (x)− F ∗. (1)

This set of functions includes the set of strongly convex functions, but it is much
larger. For example, it contains functions F associated to the mean square problem
and the LASSO [15]. Note that the uniqueness of the minimizer of F is not
required. Recall that under a convexity assumption this set is equal to the set of
functions satisfying a global  Lojasiewicz property of parameter 1

2
[14].

On this set of functions, FB reaches an exponential decay rate: O
(
e−κk

)
where

κ := µ
L

is the ratio between the growth parameter µ defined in (1) and the Lipschitz
constant L of ∇f [17]. It turns out that this exponential decay cannot be observed
in many numerical experiments because the condition number κ = µ

L
<< 1 can

be very small, especially in large dimension problems. Most of the time, up to
a large accuracy, the quadratic bound of FISTA is numerically better than the
theoretical exponential decay of FB. Indeed FB needs at least several times L

µ

iterations to provide good results while FISTA provides interesting ones as soon

as k is proportional to
√

L
µ

.

Under additional hypotheses, some inertial algorithms such as the Heavy Ball
of Polyak [25] and its numerous variants [18, 10, 9] reach a better decay rate:
O
(
e−c
√
κk
)

where c depends on the regularity hypotheses of F and on the variant
of the algorithm.

Unfortunately, these inertial algorithms need an accurate a priori estimation of
the growth parameter µ to get these fast decays. Moreover, in many situations, µ
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is small and unknown. An incorrect estimation of µ may significantly reduce the
speed of the algorithm.

In this paper, we propose an algorithm based on an original restart rule of
FISTA ensuring:

F (xk)− F ∗ = O
(
e−

1
12

√
κk
)

(2)

wihthout any a priori knowledge of µ. This algorithm relies on an iterative esti-
mation of µ comparing some values F (xk). The restart rule is inspired by the one
proposed by Alamo et al [2]. With respect to [2], we improve the decay rate and we
reduce the number of estimations of F (xk) during the iterations (notice that these
evaluations may heavily impact the numerical cost and the time of computation).

As a consequence, our algorithm provides the best decay rate on the set of
convex functions satisfying the quadratic growth condition (1), in the case when
the growth parameter µ is not known.

The article is structured as follows. In Section 2, a state of the art of this
optimization problem is given. Section 3 is then devoted to the definition and the
properties of our restart algorithm. We also propose some numerical experiments
and comparisons. The proofs of the results of Section 3 are postponed to Section
4.

2 State of the art

2.1 Framework

We consider a composite function F : RN → R ∪ {+∞} defined as F = f + h
where f is a convex differentiable function having a L-Lipschitz gradient and h
is a convex proper lower semicontinuous function. We suppose that F has a non
empty set of minimizers. The focus of this paper lies in the efficient minimization
problem:

min
x∈RN

F (x). (3)

We introduce some notations that will be needed later on. The set of minimizers
of F is denoted X∗ and F ∗ = inf F . The gradient of f is denoted by ∇f and the
convex subdifferential of h is denoted by ∂h. We recall that:

∀x ∈ RN , ∂h(x) =
{
s ∈ RN | ∀y ∈ RN , h(y) > h(x) + 〈s, y − x〉

}
. (4)

This paper focuses on the set of functions which have a global  Lojasiewicz
property [19, 20, 13] with an exponent 1

2
. This assumption is equivalent to a

global quadratic growth condition around the set of minimizers of F .
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Definition 1. Let F : RN → R∪ {+∞} be a proper lower semicontinuous convex
function with a non empty set of minimizers X∗. Let F ∗ = inf F . The function F
satisfies the growth condition G2µ for some µ > 0 if we have:

∀x ∈ RN ,
µ

2
d(x,X∗)2 6 F (x)− F ∗. (5)

or equivalently F has a global  Lojasiewicz property with an exponent 1
2

if there
exists c > 0 such that:

∀x ∈ RN , F (x)− F ∗ 6 cd(0, ∂F (x))2. (6)

This inequality is valid for c = 1
2µ

.

This property is sufficiently weak to gather a large set of functions. The class
of functions satisfying the growth condition G2µ includes quadratic functions as well
as µ-strongly convex functions and µ-quasi-strongly convex functions introduced
by Necoara et al. in [21]. We give a special interest to this assumption as it is
satisfied by many functions that are widely used in statistics and image processing.
A well-known example of such a function is the LASSO function:

F (x) =
1

2
‖Ax− y‖2 + λ‖x‖1. (7)

Bolte et al. prove in [15, Corollary 9] that the LASSO function (7) has a  Lojasiewicz
property of exponent 1

2
.

This paper focuses on the functions satisfying the hypothesis H defined as
follows:

Definition 2. Let F : RN → R ∪ {+∞}. The function F satisfies the hypothesis
H(µ) if:

i. it can be written F = f + h where f is a convex differentiable function
having a L-Lipschitz gradient and h is a convex proper lower semicontinuous
function.

ii. it has a non-empty set of minimizers X∗.

iii. it satisfies the growth condition G2µ.

2.2 Literature review

Studying the convergence rate of first order algorithms is a great point of interest
in current research. A common way to get convergence results is to analyze an
ODE associated to the algorithm of interest. For example, Su et al. bring out in
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[31] that Nesterov’s accelerated gradient method can be seen as a discretization of
an ODE (8) modeling a dynamical system:

∀t ≥ t0, ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0. (8)

In many recent works, convergence results in a continuous setting are obtained by
using a Lyapunov analysis, see e.g. [31, 7, 4, 5, 6, 8, 9, 10, 28, 29, 27].

To set some definitions we would say that:

Definition 3. An optimization algorithm provides a fast exponential decay on the
class of functions F satisfying a growth condition with parameter µ and having a
L-Lipschitz gradient if there exists K > 0 such that the sequence (xk)k∈N provided
by this algorithm satisfies

F (xk)− F ∗ = O
(
e−K
√

µ
L
k
)
.

Definition 4. An optimization algorithm provides a low exponential decay on the
class of functions F satisfying a growth condition with parameter µ and having a
L-Lipschitz gradient if there exists K > 0 such that the sequence (xk)k∈N provided
by this algorithm satisfies

F (xk)− F ∗ = O
(
e−K

µ
L
k
)
.

In most practical cases the function F is ill-conditioned i.e. µ � L. The
difference between a fast and a low exponential decay is then significant since
µ
L
�
√

µ
L

.
If F is supposed to have a  Lojasiewisz property with an exponent 1

2
, several

classical first-order methods provide a low exponential decay. Let F be differen-
tiable with a L-Lipschitz gradient. The Gradient Descent is a classical algorithm
defined by:

∀k > 0, xk+1 = xk − s∇F (xk), s > 0, (9)

which ensures that F (xk) − F ∗ = O
(
e−

µ
L
k
)

in this setting. Polyak proves in [26]
that the best rate is obtained for s = 2

L+µ
.

In [26], Polyak introduces the Heavy-Ball method (10) defined by:

∀k > 0,

{
xk = yk−1 − s∇F (xk−1)

yk = xk + α(xk − xk−1)
, s > 0, (10)

which is a discretization of the Heavy-Ball ODE defined by:

∀t ≥ t0, ẍ(t) + αẋ(t) +∇F (x(t)) = 0. (11)
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This algorithm is designed to reach a fast exponential decay for C2 strongly-convex
functions. In [18], Ghadimi et al. get a low exponential decay if F is C1 with L-
Lipschitz gradient and Siegel proves in [30] that a fast exponential decay can be
found in the same setting. In [10], Aujol et al. show that this method gives a low
exponential decay for functions satisfying the growth condition G2µ.

A variation of the Heavy-Ball method is proposed in [10] by using an other
discretization of the ODE (11). This scheme provides a fast exponential decay in

O
(
e−(2−

√
2)
√

µ
L
k
)

for the set G2µ assuming the uniqueness of the minimizer.

Necoara et al. observe in [21] that the classical accelerated gradient algorithm
introduced by Nesterov (12) in [22] can have a fast exponential decay by restarting
it in a specific way.

∀k > 0,


xk = yk−1 − s∇F (yk−1)

yk = xk +
k − 1

k + 2
(xk − xk−1)

, s > 0. (12)

The authors prove that if F is µ-strongly convex and the algorithm (12) is restarted

every k∗ = b2e
√

L
µ
c iterations, we get that F (xk)−F ∗ = O

(
e−

1
e

√
µ
L
k
)

. This result

holds if F has a  Lojasiewisz property of exponent 1
2

by replacing the parameter
of strong convexity by the growth parameter µ satisfying (5). This scheme has a
fast convergence rate but it requires to know or to estimate the growth parameter
µ beforehand. This may be restrictive in numerical experiments since the growth
parameter is rarely known. Moreover, this convergence rate does not hold if µ is
overestimated. A possibility is to underestimate µ which causes the algorithm to
slow down.

O’Donoghue and Candès propose heuristic restart rules for accelerated gradient
method in [24]. These rules are based on empirical observations and they give
efficient numerical results. For example, the first scheme consists in restarting the
algorithm each iterations where F (xk+1) > F (xk) holds. This scheme is a way to
avoid the oscillations of Nesterov’s accelerated gradient method and is particularly
efficient on the set G2µ but it requires to compute F (xk) at each iteration and no
convergence rate has been found. Beck and Teboulle use a similar strategy in
[11] to build a monotone version of Nesterov’s accelerated gradient method. This
scheme provides the same convergence rate as the original version.

In [2], Alamo et al. propose an adaptative restart scheme of accelerated gra-
dient method with a fast exponential decay. This method does not require any
estimation of µ and relies on a restart condition and a doubling condition. The
combination of these two conditions enables to estimate µ at each restart. This

strategy allows this method to ensure that F (xk)−F ∗ = O
(
e−

1
16

√
µ
L
k
)

. However,

F (xk) has to be evaluated at least at half of the iterations. Thus, this algorithm
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may not be efficient in terms of calculation time if computing F is expensive which
is mostly the case in practice.

These schemes can be adapted to a non differentiable setting and some conver-
gence results hold for such functions. Let F be a convex proper lower semicontin-
uous function which has a non-empty set of minimizers X∗ and which satisfies the
growth condition G2µ. We define the proximal operator of h : RN → R ∪ {+∞} a
convex semicontinuous function as follows:

∀x ∈ RN , proxh(x) = argmin
y∈RN

h(y) +
1

2
‖y − x‖2. (13)

The Forward-Backward algorithm can be seen as a Gradient Descent method
in a non differentiable setting. If F is defined such that F = f + h where f is
a convex differentiable function having a L-Lipschitz gradient and h is a convex
proper lower semicontinuous function, then this scheme is defined by

∀k > 0, xk = proxsh(xk−1 − s∇f(xk−1)), s > 0. (14)

The convergence results obtained for a differentiable function hold in this set-
ting and this algorithm provides a low exponential decay. Similarly, the Heavy-Ball
method can be adapted to non differentiable functions and Nesterov’s accelerated
gradient is generalized to this setting in [12] resulting in FISTA. The convergence
rates stated previously are still valid, and they are summarized in Table 1.
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Algorithm References Convergence
rate

Limitations

Forward-
Backward

Garrigos et al.
[17]

O
(
e−

µ
L
k
)

-

Heavy-Ball
method

Polyak [26] O
(
e
−4

√
µ√

L+
√
µ
k
)

Requires µ-strong
convexity, a C2

assumption and
an estimation of

µ

Heavy-Ball
variation

Aujol et al. [10] O
(
e−(2−

√
2)
√

µ
L
k
)

Requires an
estimation of µ

and uniqueness of
minimizer

Optimal FISTA
restart

Necoara et al.
[21]

O
(
e−

1
e

√
µ
L
k
)

Requires an
estimation of µ

Monotone FISTA Beck and
Teboulle [11]

O (k−2) Requires to
compute F
regularly

Empirical FISTA
restart

O’Donoghue and
Candès [24]

- Numerically fast
but no

convergence rate

FISTA restart by
Alamo et al.

Alamo et al. [2] O
(
e−

1
16

√
µ
L
k
)

Requires to
compute F
regularly

Adaptative
restart

Theorem 1. O
(
e−

1
12

√
µ
L
k
)

-

Table 1: Convergence rates of classical algorithms for a possibly non differentiable
function F satisfying H(µ) for some µ > 0.

We propose a novel restart scheme of accelerated gradient method and FISTA

which provides a fast exponential decay in O
(
e−

1
12

√
µ
L
k
)

. This algorithm does

not require to estimate the growth parameter µ. Moreover, the value of F (xk) is
computed for a reduced number of iterations. As a consequence, this method has
a fast convergence rate in terms of iterations and computational time as well.
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3 Contributions

In this section we introduce a restart scheme for FISTA in order to minimize a
convex function F satisfying a  Lojasiewisz property with an exponent 1

2
. We give

a convergence rate and describe the underlying strategy.

3.1 Adaptative FISTA restart scheme

We give some notations in order to simplify the writing of the algorithm. Let
y+ be the vector given by a step of Forward-Backward algorithm (14) on y with
s = 1

L
. Namely, y+ is defined by:

y+ = prox 1
L
h(y −

1

L
∇f(y)), (15)

We define the composite gradient mapping g as follows:

g(y) = y − y+. (16)

Given initial condition z ∈ RN and a number of iterations n, FISTA [12] can
be written as Algorithm 1.

Algorithm 1 : FISTA

Require: z ∈ RN , n ∈ N
y0 = x0 = z+, k = 0
repeat
k = k + 1
xk = y+k−1
yk = xk + k−1

k+2
(xk − xk−1)

until k > n
return r = xk

We introduce a restart scheme which aims to accelerate the convergence of
FISTA. This algorithm involves several variables of interest:

• the sequence (rj)j∈N corresponds to the iterates of the algorithm. For all
j > 0, rj is obtained from j − 1 consecutive restarts of FISTA.

• the sequence (nj)j∈N refers to the number of iterations of FISTA following
the j-th restart. Namely, for all j > 0 we have:

rj+1 = FISTA(rj, nj),

9



• the sequence (µ̃j)j>2 estimates the growth parameter µ at each restart. This
estimation is built from the known convergence results of FISTA and con-
sidering a comparison of the cost function F computed at three iterates.

For all j > 2, the number of iterations nj is defined according to nj−1, µ̃j and the
predefined parameter C > 0. The algorithm verifies if a condition called doubling
condition is fulfilled. If the condition holds true, then nj−1 is considered too small
and nj is set to 2nj−1. In the other case, the number of iterations is not increased.

The exit condition ‖g(rj)‖ 6 ε is motivated by the following lemma which is
proven in Section 4.5:

Lemma 1. Let F be a function satisfying H(µ) for some µ > 0. Then for all
x ∈ RN we have:

F (x+)− F ∗ 6 2L2

µ
‖g(x)‖2. (17)

The exit criteria combined to the inequality (17) enable the algorithm to ensure
that the vector rj satisfies:

F (r+j )− F ∗ 6 2L2ε2

µ
, (18)

without computing F ∗.
For a given initial condition r0 ∈ RN , we propose the algorithm shown in

Algorithm 2.

Algorithm 2 : Restart scheme

Require: r0 ∈ RN , j = 1
n0 = b2Cc
r1 = FISTA(r0, n0)
n1 = b2Cc
repeat
j = j + 1
rj = FISTA(rj−1, nj−1)

µ̃j = min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)

if nj−1 6 C
√

L
µ̃j

then

nj = 2nj−1
end if

until ‖g(rj)‖ 6 ε
return r = rj

10



Theorem 1. Let F be a function satisfying H(µ) for some µ > 0. Let (rj)j∈N
and (nj)j∈N be the sequences provided by Algorithm 2 with parameters C > 4 and
ε > 0. Then the number of iterations required to guarantee ‖g(rj)‖ 6 ε is bounded
and satisfies

j∑
i=0

ni 6
4C

log
(
C2

4
− 1
)√L

µ

(
2 log

(
C2

4
− 1

)
+ log

(
1 +

16

C2 − 16

2(F (r0)− F ∗)
Lε2

))
.

(19)

Corollary 1. Let F be a function satisfying H(µ) for some µ > 0. If C > 4 and
ε > 0, then the sequences (rj)j∈N and (nj)j∈N provided by Algorithm 2 satisfy

F (r+j )− F ∗ = O

e
−

log

(
C2

4 −1

)
4C

√
µ
L

j∑
i=0

ni

 . (20)

Specifically, if C is chosen to maximize
log
(
C2

4
−1
)

4C
, namely C ≈ 6.38, then there

exists K > 1
12

such that the sequences (rj)j∈N and (nj)j∈N provided by Algorithm 2
satisfy

F (r+j )− F ∗ = O

e
−K
√

µ
L

j∑
i=0

ni

 . (21)

Corollary 1 states that Algorithm 2 provides asymptotically a fast exponential
decay. We recall that under our assumptions, the Forward-Backward algorithm
and the Gradient Descent method (if F is differentiable) ensure that F (xk)−F ∗ =
O
(
e−

µ
L
k
)
. As µ

L
�
√

µ
L

when µ
L

is small, the convergence rate of Algorithm 2 is
much better than the convergence rate of these two methods. Similarly, if we do
not consider that F has a unique minimizer, Algorithm 2 has a better convergence
rate than any Heavy-Ball method in the literature so far.

Elementary computations [21, 24] show that restarting FISTA every k∗ =

b2e
√

L
µ
c iterations ensures a faster convergence than Algorithm 2. However it

requires a low estimation of the growth parameter µ. Applying this method to
a function whose growth parameter can not be estimated may not be relevant.
Algorithm 2 is slightly slower but it is applicable to a larger spectrum of problems.

11



The empiric restart schemes introduced by O’Donoghue and Candès in [24]
can not be compared theoretically to Algorithm 2 since no convergence rate has
been proven so far. However, the rate given in Corollary 1 is significantly faster
than the rate of the monotone version of FISTA (O (k−2)) introduced by Beck and
Teboulle in [11].

Algorithm 2 has been inspired by the adaptative restart scheme of Alamo et al.
[2] and its convergence rate (21) provided by Corollary 1 is slightly faster. Under
the same assumptions, the method introduced in [2] ensures that:

F (r+j )− F ∗ = O

e
− 1

16

√
µ
L

j∑
i=0

ni

 . (22)

Moreover, both schemes rely on exit and doubling conditions which require to
compute F . The restart scheme of Alamo et al. [2] requires a computation of F at
least one iteration out of two. These computations are significantly less numerous
in Algorithm 2 as it occurs every b2Cc iterations in the worst case. This difference
between the two schemes has a major impact on their performance in terms of
computing time. Computing F can be really expensive in some numerical cases
and reducing these computations is crucial.

3.2 Structure of the algorithm

Algorithm 2 is an adaptative restart scheme based on FISTA [12]. At each step j,
FISTA is restarted for nj−1 iterations and it gives the vector rj:

rj = FISTA(rj−1, nj−1).

The key parameter of such an algorithm is the sequence (nj)j∈N. The strategy
behind Algorithm 2 is to estimate the growth parameter µ > 0 satisfying (5) at
each step j. The estimation of µ denoted µ̃j is then used to define nj.

The estimation of µ is based on well-known convergence results on FISTA
stated in Proposition 1 and proven in Section 4.4.

Proposition 1. Let F be a function satisfying H(µ) for some µ > 0. Then the
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sequence (xk)k∈N provided by Algorithm 1 satisfies

(i) ∀k ∈ N∗, F (xk)− F ∗ 6
4L

µ(k + 1)2
(F (x0)− F ∗) , (23)

(ii) ∀k ∈ N∗, F (xk) 6 F (x0), (24)

(iii) ∀k ∈ N, F (xk)− F ∗ > γ (F (x0)− F (xk)) =⇒ k < 2

√
L

µ

√
1 +

1

γ
− 1.

(25)

Given the first claim of Proposition 1, the most direct strategy to estimate µ
is to compare F (rj)− F ∗ and F (rj−1)− F ∗ at each step j as we have:

∀j ∈ N∗, F (rj)− F ∗ 6
4L

µ(nj−1 + 1)2
(F (rj−1)− F ∗) , (26)

which is equivalent to:

∀j ∈ N∗, µ 6
4L

(nj−1 + 1)2
F (rj−1)− F ∗

F (rj)− F ∗
. (27)

In many cases the optimal value F ∗ is not known and µ cannot be estimated in
this way. This issue can be avoided by rewriting (26) and by considering a third
point rj+1. For all j ∈ N∗,

F (rj)− F ∗ > F (rj)− F (rj+1) = γ(F (rj−1)− F (rj)), (28)

where γ =
F (rj)− F (rj+1)

F (rj−1)− F (rj)
. The third claim of Proposition 1 gives us that:

µ 6
4L

(nj−1 + 1)2

(
1 +

1

γ

)
. (29)

Thus,

∀j ∈ N∗, µ 6
4L

(nj−1 + 1)2
F (rj−1)− F (rj+1)

F (rj)− F (rj+1)
. (30)

In this way, it is possible to get an estimation of µ at each restart for j > 2 by
comparing F (rj−1)− F (rj) and F (rj−2)− F (rj). This strategy is implemented in
Algorithm 2 to build the sequence (µ̃j)j>2:

∀j > 2, µ̃j = min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
. (31)

This sequence satisfies the following property proven in Section 4.6:
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Lemma 2. Let F be a function satisfying H(µ) for some µ > 0. Then the sequence
(µ̃j)j>2 provided by Algorithm 2 satisfies

∀j > 2, µ̃j > µ̃j+1 > µ. (32)

It is worth noticing that this strategy is not inherent to FISTA or Nesterov’s
accelerated gradient scheme. It relies on the fact that an upper bound of F (xk)−F ∗
is known for all k > 0. Note that a similar approach could be applied for the Heavy-
ball method (10) as the growth parameter µ has to be known to get an optimal
decay rate.

Once the growth parameter µ is estimated it is possible to set the number of
iterations accordingly. It is known that the optimal number of iterations before a

restart of FISTA is k∗ = b2e
√

L
µ
c. However, considering µ̃ an upper estimation

of µ, the growth condition G2µ̃ is not satisfied by F . Consequently, setting k∗ =

b2e
√

L
µ̃
c does not ensure a fast exponential decay. Since µ̃j > µ for all j > 2,

setting nj = b2e
√

L
µ̃j
c may not be efficient.

The strategy of Algorithm 2 is to reset nj by using a doubling condition that
depends on the parameter C > 0. At each step the doubling condition nj 6

C
√

L
µ̃j

is evaluated. If the condition is satisfied then the number of iterations nj is

considered too small and it is doubled before the next restart. This process ensures
that (nj)j∈N is an increasing and bounded sequence which satisfies the following
lemma.

Lemma 3. Let F be a function satisfying H(µ) for some µ > 0. Then the sequence
(nj)j∈N provided by Algorithm 2 satisfies

∀j ∈ N, nj 6 2C

√
L

µ
. (33)

Remark 1. An alternative approach would be to multiply the number of iterations

nj by γ > 1 instead of 2 when nj 6 C
√

L
µ̃j

. In that case the upper bound of nj

becomes

∀j ∈ N, nj 6 γC

√
L

µ
. (34)

However, calculations show that γ = 2 is the optimal choice in order to get faster
asymptotical convergence rates.
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3.3 Numerical experiments

In this section we illustrate the convergence results stated beforewise with numeri-
cal experiments. We compare Algorithm 2 to the state of the art for some classical
minimization problems.

3.3.1 Least squares problem

We first solve a classical least squares problem. This minimization problem reads
as follows:

min
x∈RN

F (x) =
1

2
‖Ax− b‖2, (35)

where A ∈ MN,N(R), b ∈ RN and N ≥ 1. F is a convex, differentiable function
with a continuous L-Lipschitz gradient. Moreover, F has the  Lojasiewicz property
with an exponent 1

2
[15, Corollary 9] and the growth parameter µ can easily be

computed. However, we compare algorithms which do not require to know this
parameter. Computations are indeed done for the following methods:

1. Gradient descent (9),

2. Nesterov’s accelerated gradient algorithm without restart (12),

3. Empirical restart scheme of Nesterov’s accelerated gradient algorithm by
O’Donoghue and Candès [24] with the following restart condition:

F (xk) > F (xk−1), (36)

4. Empirical restart scheme of Nesterov’s accelerated gradient algorithm by
O’Donoghue and Candès [24] with the following restart condition:

〈∇F (yk−1), xk − xk−1〉 > 0, (37)

5. Adaptative restart scheme introduced by Alamo et al. in [2],

6. Algorithm 2 with C = 6.38.

Figure 1 shows the evolution of log(F (xn)− F ∗) according to n. It highlights
the fast convergence of the restart schemes in comparison to Gradient descent
and Nesterov’s accelerated gradient method without restart. The restart schemes
proposed by O’Donoghue and Candès provide significantly fast decay despite not
having any theoretical convergence rate. In this example, the adaptative restart
scheme proposed by Alamo et al. is slightly faster than Algorithm 2 in terms of
iterations.
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Figure 1: Comparison of several algorithms in terms of iterations for a least squares
problem with N = 10.

Figure 2 shows that the calculations of F have a great influence on the com-
putational time of each algorithm. The restart condition (36) proposed in [24]
ensures a fast convergence in terms of iterations but it is computationnaly expen-
sive. Similarly, the method introduced by Alamo et al. is slowed down by its
additional computations. As Algorithm 2 does not require many evaluations of F ,
its convergence rate is still fast according to computation time.

Figure 2: Comparison of several algorithms in terms of computation time for a
least squares problem with N = 10.
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3.3.2 Inpainting

Consider an image x0 and a masking operator M . Let y = Mx0 be the damaged
version of x0. The objective is to get an approximation of x0 knowing y and M .
This problem can be written as follows:

min
x
F (x) =

1

2
‖Mx− y‖2 + λ‖Tx‖1, (38)

where T is an orthogonal transformation ensuring that Tx0 is sparse. In this
example, x0 is piecewise smooth so we chose T as an orthogonal wavelet transform.

Figure 3: Example of image inpainting: the damaged image y is on the left and
an approximation of the solution of (38) is on the right.

The objective function F can be rewritten as F = f + h where f is a convex
differentiable function having a L-Lipschitz gradient and h is a convex proper lower
semicontinuous function. We compare the following methods:

1. Forward-backward (14),

2. FISTA without restart,

3. Empirical restart scheme of FISTA by O’Donoghue and Candès [24] with the
restart condition (36),

4. Empirical restart scheme of FISTA by O’Donoghue and Candès [24] with the
adapted restart condition:

〈g(yk−1), xk − xk−1〉 > 0, (39)

5. Adaptative restart scheme introduced by Alamo et al. in [2],

17



6. Algorithm 2 with C = 6.38.

Figure 4: Comparison of several algorithms in terms of iterations for an inpainting
problem.

Figure 4 and Figure 5 show that the restart schemes provide a faster conver-
gence than classical algorithms but the computations of F can significantly slow
down these methods. Moreover, the calculation cost of the function F defined
in (38) is particularly high. As a consequence the restart scheme with (36) as a
restart condition and the method of Alamo et al. are not as efficient as Figure
4 suggests. It appears that Algorithm 2 is a satisfying scheme as it provides a
fast exponential decay which is proved theoretically and it is not affected by the
expensive calculation cost of F .
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Figure 5: Comparison of several algorithms in terms of computation time for an
inpainting problem.

4 Proofs

4.1 Sketch of proof

The proof of Theorem 1 is technical. Therefore we give a structure of it:

1. We show that there is at least one doubling step every T iterations for a
well-chosen T .

(a) We suppose that there is no doubling step from j = s+ 1 to j = s+ T .

(b) We exhibit the geometrical decrease of (F (rj−1)−F (rj))j∈Js+1,s+T K which
represents the gain of the j-th execution of FISTA.

(c) We apply Lemma 4 to show that we can find an upper bound of
‖g(rj−1)‖ which depends on F (rj−1)− F (rj) for all j ∈ Js+ 1, s+ T K.

(d) We exploit the geometrical decrease (F (rj−1)−F (rj))j∈Js+1,s+T K to show
that the exit condition is satisfied for j = s+ T .

2. We use the first point to show that the number of iterations
∑j

i=0 ni is
necessarily bounded by 2Tnj. The conclusion of Theorem 1 comes from
Lemma 3 which gives an upper bound of nj.

4.2 Proof of Theorem 1.

Let C > 4, ε > 0 and T = 1 +

⌈
log
(
1+ 16

C2−16

2(F (r0)−F
∗)

Lε2

)
log
(
C2

4
−1
)

⌉
where d·e is the ceiling

function. We show that there is a doubling step at least every T iterations.
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Assume that there is no doubling step from j = s+ 1 to j = s+T where s > 1
which means that for a given s > 1:

∀j ∈ Js+ 1, s+ T K, nj−1 > C

√
L

µ̃j
, (40)

and consequently:
∀j ∈ Js+ 1, s+ T K, nj = ns. (41)

Hence:

∀j ∈ Js+ 2, s+ T K, µ̃j = min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)

6 min
i∈N∗
s<i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)

6 min
i∈N∗
s<i<j

4L

ni−12
F (ri−1)− F (rj)

F (ri)− F (rj)

6 min
i∈N∗
s<i<j

4L

ns2
F (ri−1)− F (rj)

F (ri)− F (rj)

6
4L

ns2
min
i∈N∗
s<i<j

F (ri−1)− F (rj)

F (ri)− F (rj)
, (42)

as there is no doubling step for j > s. This then implies

∀j ∈ Js+ 2, s+ T K, µ̃j 6
4L

ns2
F (rj−2)− F (rj)

F (rj−1)− F (rj)
. (43)

Combining (40) with (41) and (43) we get that:

ns > C

√
L

4L
ns2

F (rj−2)−F (rj)

F (rj−1)−F (rj)

= ns
C

2

√
F (rj−1)− F (rj)

F (rj−2)− F (rj)
. (44)

This leads to the following inequality

F (rj−2)− F (rj) >
C2

4
(F (rj−1)− F (rj)), (45)

and then,

F (rj−2)− F (rj−1) >

(
C2

4
− 1

)
(F (rj−1)− F (rj)). (46)
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Since C > 2 we get that

F (rj−1)− F (rj) <
4

C2 − 4
(F (rj−2)− F (rj−1)). (47)

We consider the case j = s+ 1:

µ̃s+1 = min
i∈N∗
i<s+1

4L

(ni−1 + 1)2
F (ri−1)− F (rs+1)

F (ri)− F (rs+1)

6
4L

(ns−1 + 1)2
F (rs−1)− F (rs+1)

F (rs)− F (rs+1)

6
4L

(ns
2

+ 1)2
F (rs−1)− F (rs+1)

F (rs)− F (rs+1)

6
16L

ns2
F (rs−1)− F (rs+1)

F (rs)− F (rs+1)
, (48)

as ns 6 2ns−1.
By similar computations we get

F (rs)− F (rs+1) <
16

C2 − 16
(F (rs−1)− F (rs)). (49)

Since C > 4 we finally obtain the following inequalities

F (rs)− F (rs+1) <
16

C2 − 16
(F (rs−1)− F (rs)). (50)

∀j ∈ Js+ 2, s+ T K, F (rj−1)− F (rj) <
4

C2 − 4
(F (rj−2)− F (rj−1)). (51)

We introduce Lemma 4 which links the composite gradient mapping g to the
function F . This lemma is proven in Section 4.8:

Lemma 4. Let F be a function that can be written F = f + h where f is a con-
vex differentiable function having a L-Lipschitz gradient and h is a convex proper
lower semicontinuous function. Then the sequence (rj)j∈N provided by Algorithm
2 satisfies

∀j > 1,
L

2
‖g(rj−1)‖2 6 F (rj−1)− F (rj). (52)

21



From Lemma 4 and inequalities (50) and (51) we obtain the following sequence
of inequalities

L

2
‖g(rs+T−1)‖2 6 F (rs+T−1)− F (rs+T )

6
4

C2 − 4
(F (rs+T−2)− F (rs+T−1))

6

(
4

C2 − 4

)T−1(
16

C2 − 16

)
(F (rs−1)− F (rs))

6

(
4

C2 − 4

)T−1(
16

C2 − 16

)
(F (r0)− F ∗)

6

(
4

C2 − 4

) log

(
1+ 16

C2−16

2(F (r0)−F
∗)

Lε2

)
log(C2

4 −1)

( 16

C2 − 16

)
(F (r0)− F ∗)

6

(
4

C2 − 4

) log

(
1+ 16

C2−16

2(F (r0)−F
∗)

Lε2

)
log(C2

4 −1)
(

16

C2 − 16

)
(F (r0)− F ∗)

6
1

1 + 16
C2−16

2(F (r0)−F ∗)
Lε2

(
16

C2 − 16

)
(F (r0)− F ∗)

6
Lε2

2
.

As a consequence, if there are T consecutive steps of Algorithm 2 without dou-
bling the number of iterations, then the exit condition ‖g(rj)‖2 6 ε is eventually
satisfied. This means that there is a doubling step at least every T steps and for
all s > 1 there exists j ∈ Js+ 1, s+ T K such that

nj−1 < C

√
L

µ̃j
. (53)

This implies that nj = 2nj−1. As (nj)j∈N is an increasing sequence, we get that
ns+T > nj = 2nj−1 > 2ns. And thus

ns 6
ns+T

2
, ∀s > 1. (54)

Let us rewrite j as j = m + nT where 0 6 m < T and n > 0. The increasing
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nature of (nj)j∈N gives us that

j∑
i=0

ni =
m+nT∑
i=0

ni =
m∑
i=0

ni +
n−1∑
l=0

T∑
i=1

nm+i+lT (55)

6 Tnm + T

n∑
l=1

nm+lT = T
n∑
l=0

nm+lT = T
n∑
l=0

nj−lT . (56)

According to equation (54) we have nj−T 6 nj
2

and therefore

nj−lT 6

(
1

2

)l
nj, ∀l ∈ [[0, n]]. (57)

We obtain the following inequalities

j∑
i=0

ni 6 T

n∑
l=0

nj−lT 6 T
n∑
l=0

(
1

2

)l
nj 6 T

∞∑
l=0

(
1

2

)l
nj = 2Tnj. (58)

From (58) and Lemma 3 we get that for j > 0

j∑
i=0

ni 6 2Tnj 6 4C

√
L

µ
T 6 4C

√
L

µ

1 +


log
(

1 + 16
C2−16

2(F (r0)−F ∗)
Lε2

)
log
(
C2

4
− 1
)


 (59)

6
4C

log
(
C2

4
− 1
)√L

µ

(
2 log

(
C2

4
− 1

)
+ log

(
1 +

16

C2 − 16

2(F (r0)− F ∗)
Lε2

))
.

(60)

4.3 Proof of Corollary 1.

Let F = f + h be a function with a non empty set of minimizers X∗ where f is a
convex differentiable function with L-Lipschitz gradient and h is a convex function.
We suppose that F has a  Lojasiewicz property with an exponent 1

2
. Let (rj)j∈N

and (nj)j∈N be the sequences provided by Algorithm 2 with C > 4 and ε > 0.
We consider the case in which the exit condition ‖g(rj)‖ 6 ε is satisfied at first

for at least 8C
√

L
µ

iterations. We define the function ψµ : R∗+ →
(

8C
√

L
µ
,+∞

)
such that:

ψµ : γ 7→ 4C

log
(
C2

4
− 1
)√L

µ

(
2 log

(
C2

4
− 1

)
+ log

(
1 +

16

C2 − 16

2(F (r0)− F ∗)
Lγ

))
.

(61)
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According to Theorem 1, the number of iterations required to ensure that ‖g(rj)‖ 6
ε satisfies:

j∑
i=0

ni 6 ψµ(ε2). (62)

As ψµ is a strictly decreasing function and
∑j

i=0 ni > 8C
√

L
µ

we can write that:

ψ−1µ

(
j∑
i=0

ni

)
> ε2, (63)

where ψ−1µ is the inverse function of ψµ. By applying Lemma 1 we get that:

F (r+j )− F ∗ 6 2L2

µ
‖g(rj)‖2 (64)

6
2L2ε2

µ
(65)

6
2L2

µ
ψ−1µ

(
j∑
i=0

ni

)
. (66)

Elementary computations give us that:

ψ−1µ : n 7→ 2

L

16

C2 − 16

1

e−2 log(
C2

4
−1)e

log(C
2
4 −1)

4C

√
µ
L
n − 1

(F (r0)− F ∗), (67)

and thus we get:

F (r+j )− F ∗ 6 4L

µ

16

C2 − 16

1

e−2 log(
C2

4
−1)e

log(C
2
4 −1)

4C

√
µ
L

∑j
i=0 ni − 1

(F (r0)− F ∗). (68)

We can then conclude that

F (r+j )− F ∗ = O

(
e−

log(C
2

4 −1)

4C

√
µ
L

∑j
i=0 ni

)
. (69)

Minimizing the function C 7→ log(C
2

4
−1)

4C
gives us the optimal value Ĉ ≈ 6.38. This

choice leads to the following rate:

F (r+j )− F ∗ = O
(
e−

1
12

√
µ
L

∑j
i=0 ni

)
. (70)
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4.4 Proof of Proposition 1

(i) It is well known (see [12, 23, 2]) that as f is a convex differentiable function hav-
ing a L-Lipschitz gradient and h is a convex proper lower semicontinuous function,
the sequence (xk)k∈N provided by FISTA algorithm (1) satisfies

∀k ∈ N∗, F (xk)− F ∗ 6
2L

(k + 1)2
‖x0 − x∗‖2, (71)

where x∗ is any minimizer of F . This inequality is true for all x∗ ∈ X∗ so (71) can
be rewritten

∀k ∈ N∗, F (xk)− F ∗ 6
2L

(k + 1)2
d(x0, X

∗)2. (72)

Furthermore, F satisfies the growth condition G2µ so we can conclude by combining
(5) and (72).
(ii) We first prove the following claim. Let y ∈ RN . Then we have

∀x ∈ RN , F (y+) +
L

2
‖y+ − x‖2 6 F (x) +

L

2
‖x− y‖2. (73)

By definition of the proximal operator (13), y+ is the unique minimizer of the
function defined by

x 7→ h(x) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2. (74)

As this function is L-strongly convex we get that for all x ∈ RN ,

h(y+)+〈y+−y,∇f(y)〉+L
2
‖y+−y‖2+L

2
‖y+−x‖2 6 h(x)+〈x−y,∇f(y)〉+L

2
‖x−y‖2.

(75)
f has a L-Lipschitz gradient which implies that

∀(x, y) ∈ RN × RN , f(x) 6 f(y) + 〈x− y,∇f(y)〉+
L

2
‖x− y‖2. (76)

Thus we get that

h(y+) + f(y+)− f(y) +
L

2
‖y+ − x‖2 6 h(x) + 〈x− y,∇f(y)〉+

L

2
‖x− y‖2. (77)

The convexity of f gives us that f(x) > f(y) + 〈x− y,∇f(y)〉 and then

F (y+) +
L

2
‖y+ − x‖2 6 F (x) +

L

2
‖x− y‖2. (78)
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By applying this inequality to y = yk = xk+ k−1
k+2

(xk−xk−1), y+ = xk+1 and x = xk
for k > 1 we have

F (xk+1) +
L

2
‖xk+1 − xk‖2 6 F (xk) +

L

2

(
k − 1

k + 2

)2

‖xk − xk−1‖2 (79)

6 F (xk) +
L

2
‖xk − xk−1‖2. (80)

Moreover, if we apply (73) to y = x = x0 and y+ = x1 we get that

F (x1) +
L

2
‖x1 − x0‖2 6 F (x0). (81)

This implies that

∀k ≥ 1, F (xk) + ‖xk − xk−1‖2 6 F (x0), (82)

and thus we can conclude.
(iii) By rewriting the first claim of Proposition 1 we get that

∀k ∈ N∗, F (xk)− F ∗ 6
4L

µ(k + 1)2 − 4L
(F (x0)− F (xk)) . (83)

As a consequence, we have that for all k > 2
√

L
µ

√
1 + 1

γ
− 1,

F (xk)− F ∗ 6 γ (F (x0)− F (xk)) . (84)

The contraposite of this proposition leads us to the expected conclusion.

4.5 Proof of Lemma 1

Suppose that F = f+h is a function with a non empty set of minimizers X∗ where
f is a convex differentiable function with L-Lipschitz gradient and h is a convex
function. We consider that F satisfies G2µ which is equivalent to say that F has a
 Lojasiewicz property with an exponent 1

2
. Therefore there exists c > 0 such that

∀x ∈ RN , F (x)− F ∗ 6 cd(0, ∂F (x))2. (85)

In particular, this assertion is true for c = 1
2µ

.

Let x ∈ RN . By definition of the proximal operator (13), x+ is the unique
minimizer of the function defined by

z 7→ h(z) +
L

2
‖z − x+

1

L
∇F (x)‖2 (86)
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and thus x+ satisfies

0 ∈ ∂h(x+) +
{
L(x+ − x) +∇f(x)

}
. (87)

As a consequence we get that

Lg(x)−∇f(x) +∇f(x+) ∈ ∂F (x+). (88)

Moreover as f has a L-Lipschitz gradient we have

‖Lg(x)−∇f(x) +∇f(x+)‖ 6 L‖g(x)‖+ ‖∇f(x+)−∇f(x)‖ (89)

6 2L‖g(x)‖. (90)

By combining these inequalities we conclude that

F (x+)− F ∗ 6 1

2µ
d(0, ∂F (x+))2 (91)

6
1

2µ
‖Lg(x)−∇f(x) +∇f(x∗)‖2 (92)

6
2L2

µ
‖g(x)‖2. (93)

4.6 Proof of Lemma 2.

The sequence (µ̃j)j>2 is defined such that

∀j > 2, µ̃j = min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
. (94)

On the other hand, for all i ∈ N∗ and k ∈ N∗, we have:

F (ri)− F ∗ > F (ri)− F (ri+k) = γ(F (ri−1)− F (ri)), (95)

where γ = F (ri)−F (ri+k)

F (ri−1)−F (ri)
. Moreover, the third claim of Proposition 1 gives us that:

ni−1 < 2

√
L

µ

√
1 +

1

γ
− 1. (96)

Thus:

µ <
4L
(

1 + F (ri−1)−F (ri)
F (ri)−F (ri+k)

)
(ni−1 + 1)2

=
4L

(ni−1 + 1)2
F (ri−1)− F (ri+k)

F (ri)− F (ri+k)
. (97)
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As a consequence, µ < µ̃j. Furthermore, we have

∀j > 2, µ̃j+1 = min
i∈N∗
i<j+1

4L

(ni−1 + 1)2
F (ri−1)− F (rj+1)

F (ri)− F (rj+1)
(98)

6 min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj+1)

F (ri)− F (rj+1)
. (99)

The second claim of Proposition 1 implies that F (rj+1) 6 F (rj). As a consequence

the function defined by y 7→ F (ri−1)−y
F (ri)−y is an increasing homographic function and

we get that

∀j > 2, µ̃j+1 6 min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj+1)

F (ri)− F (rj+1)
(100)

6 min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
(101)

6 µ̃j. (102)

4.7 Proof of Lemma 3.

The sequence (nj)j∈N is defined such that for all j > 2, nj = 2nj−1 if the following
condition is satisfied:

nj−1 6 C

√
L

µ̃j
. (103)

The second claim of Proposition 1 implies that

nj−1 6 C

√
L

µ
. (104)

This inequality ensures nj 6 2C
√

L
µ

if j > 2. For j = 0 and j = 1, nj 6 2C 6

2C
√

L
µ

and we get the final conclusion.

4.8 Proof of Lemma 4

Let j > 1. We can rewrite the inequality (73) for x = y ∈ RN :

L

2
‖y+ − y‖2 6 F (y)− F (y+). (105)
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By setting y = rj−1 and as F (r+j−1) 6 F (rj) we conclude that

L

2
‖g(rj−1)‖2 6 F (rj−1)− F (rj). (106)
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Mathématiques de Bordeaux ; INSA Toulouse ; UPS Toulouse, Sept. 2020.

[11] A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained
total variation image denoising and deblurring problems. IEEE transactions
on image processing, 18(11):2419–2434, 2009.

[12] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202,
2009.

[13] J. Bolte, A. Daniilidis, and A. Lewis. The Lojasiewicz inequality for nons-
mooth subanalytic functions with applications to subgradient dynamical sys-
tems. SIAM Journal on Optimization, 17(4):1205–1223, 2007.

[14] J. Bolte, A. Daniilidis, A. Lewis, and M. Shiota. Clarke subgradients of
stratifiable functions. SIAM Journal on Optimization, 18(2):556–572, 2007.

[15] J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter. From error bounds
to the complexity of first-order descent methods for convex functions. Math-
ematical Programming, 165(2):471–507, 2017.

[16] G. H. Chen and R. T. Rockafellar. Convergence rates in Forward-Backward
splitting. SIAM Journal on Optimization, 7(2):421–444, 1997.

[17] G. Garrigos, L. Rosasco, and S. Villa. Convergence of the Forward-Backward
algorithm: Beyond the worst case with the help of geometry. arXiv preprint
arXiv:1703.09477, 2017.

[18] E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson. Global convergence
of the Heavy-Ball method for convex optimization. In 2015 European control
conference (ECC), pages 310–315. IEEE, 2015.
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réels. Les équations aux dérivées partielles, 117:87–89, 1963.

30
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