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A B S T R A C T

Landscape graphs are increasingly used in ecology, conservation, and landscape planning for modeling habitat
connectivity of wildlife species. We present here the follow-up of Graphab, a software application for modeling
habitat networks. This application has been recently enhanced by advanced functions of spatial analysis,
command-line facilities, and connections with other software applications. It has been used in many studies,
first in ecological studies for analyzing the role of landscape connectivity on biological responses measured in
the field, second for supporting decisions concerning biodiversity preservation. Future improvements could be
made to make the links more realistic with respect to ecological processes.
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1. Introduction

Biodiversity loss that has been reported for several decades now has
become a major worldwide concern. Among the main causes of decline
are the loss and fragmentation of ecological habitats driven by more
intensive farming, urban sprawl, and denser transport infrastructures.
Many approaches have been designed for modeling habitat connectiv-
ity to better understand how landscape changes impact species and
to support the design of land-use policies taking biodiversity into
consideration [1,2]. One of the most popular approaches is a graph-
theoretic method promoted in ecology by [3] and known as habitat
networks or landscape graphs. In these graphs, the nodes are the set
of habitat patches occupied by a given species and the links are the
potential connections between them, weighted by distances or dispersal
probabilities [4]. These graphs provide users with a basis for visualizing
ecological networks and characterizing their functional properties by
means of connectivity metrics. Given their need for few input data,
they have been increasingly used for 20 years in ecology, biologi-
cal conservation, and landscape planning [5]. Landscape graphs have
given rise to several software applications, including mainly Conefor
Sensinode [6] and Graphab [7]. While Conefor Sensinode is mostly
for calculating connectivity metrics, Graphab was designed as an inte-
grated tool covering all the modeling steps, from graph construction
with a wide range of parameters to the implementation of spatial
analyses for specific operational applications.

As Graphab has significantly progressed since its first online release,
we propose in this paper to review its specific advanced functions
and its thematic applications. We also emphasize the recent connec-
tions between Graphab and other software applications, before fo-
cusing on the future developments that could overcome its current
limitations.

2. Description

The initial set of Graphab functions presented in [7] is for con-
structing landscape graphs and calculating connectivity metrics. Their
input data are a land cover map provided by users as a categorized
raster layer. The graph nodes are defined from the land cover classes
corresponding to the optimal habitat of the species under study. From
this set of nodes, users can generate several link sets, controlling for
their topology (complete vs. planar) and the type of spatial distance
(Euclidean vs. least-cost distance). In the case of least-cost distances,
a cost value is assigned to each land cover class or alternatively an
external raster cost map is loaded. From the set of nodes and a given
set of links, users then define a graph controlling its topology by
choosing (or not) a distance threshold beyond which links are removed
thereby creating several components (or sub-graphs). Users can easily
map all these elements with either a realistic or topological view
(Fig. 1).

A wide range of metrics can be calculated from each graph, in-
cluding indices commonly used in network analysis or specifically
designed for landscape ecology studies [8]. These metrics characterize
the connectivity of the entire graph (global level), of its sub-parts
(component level) or of its basic elements, i.e., nodes and links (local
level). Each local metric calculated for nodes can be interpolated to
produce a continuous connectivity map that is useful for multi-species
approaches [9]. When a set of geolocated points describing biological
data (e.g., presence occurrences of a species) is loaded, each point is
connected to the closest node according to the spatial distance used for
a given link set.

In addition, Graphab allows users to perform sensitivity analyses of
graph construction and metric calculation parameters systematically by
proposing a batch processing mode [7]. To reduce calculation execution
time, Graphab algorithms are parallelized, allowing the use of multiple
processors/cores from one workstation or multiple computers in one

Additional spatial analyses have been implemented for addressing
specific operational purposes of conservation or land planning, like
habitat and corridor restoration, or urban sprawl mitigation (Fig. 2).
Each graph link is now associated with its corridor, i.e., the area where
individual movements may occur. This function provides a view of
the spatial extent of corridors whose width depends on the matrix
permeability, which gives a relevant outcome for land managers. We
made it possible to simulate a land cover change while assessing the
resulting impact on graph connectivity using the ‘‘patch addition’’,
‘‘patch removal’’, or ‘‘land cover modification’’ functions. Patch addi-
tion, for example, scans all possible locations over a defined area and
iteratively quantifies the gain in connectivity which would result from
implanting a new habitat patch at each location. The best location
is selected and the process starts again by accounting for the gain in
connectivity cumulatively. The same iterative process can be used to
identify the best locations for restoring links, e.g., wildlife crossings
along a highway.

As Graphab functions find both research and operational applica-
tions, their use has been made more flexible to cover the needs of
this wide range of users. First, command-line facilities are available
and documented to ease batch processing. Similarly, Graphab functions
have recently been included in the R software environment [10], which
is frequently used in ecological research, and supplemented by specific
functions for landscape genetic analyses through the release of the
graph4lg package [11]. Finally, a QGIS [12] plugin has been developed
to make basic functionalities available to the wider community of users
of this free GIS software. This connection could also make it possible
to set modeling outputs against other geographical information layers
for interpretation.

3. Impact overview

Graphab’s use in academic research has already contributed to the
publication of several tens of scientific papers in various fields. It
was first applied in ecological studies to provide knowledge about
the effect of landscape connectivity on biological responses measured
in the field. This was done at multiple biological levels to explain
species presence [13,14], species community richness or similarity
[15–18], genetic diversity [19], demographic variations [20,21], indi-
vidual movements [22], presence of roadkill hotspots [23–26], or even
parasite prevalence [27,28].

Graphab has also been frequently implemented in studies to support
decisions directed at biodiversity preservation, allowing users to answer
questions beginning with ‘‘where’’. In the field of environmental impact
assessment: Where might species be the most impacted by landscape
changes [9], climate changes [29–31], or natural disasters [32]? Where
will the potential ecological impacts caused by the development of
transport infrastructures [33–35] or of a large urban infrastructure [36]
occur? Graphab has also proved useful in many biological conservation
studies, primarily to identify the priority locations for maintaining the
connectivity level of a habitat network [37–43]. Concerning ecological
compensation or mitigation, Graphab has been applied in response
to the question: Where are the most relevant locations to design or
plan actions promoting access to ecological habitats? Studies have been
made to establish compensation sites following the implantation of a
highway [44] or a sports infrastructure [45], for restoring ecological
habitats [46–49], for developing wildlife crossings over a highway
[50,51], or even for evaluating the pooling of biodiversity offsets [52].
Graphab has also been used to choose optimal field locations for
implementing agroecological measures to reduce habitat connectivity
of a rodent whose swarming causes substantial ecological and economic
damage [53,54].

At a larger scale of urban planning, Graphab has been used to
include ecological connectivity in the impact assessment of urban
cluster with an MPI framework.
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Fig. 1. Screenshot of Graphab with a case study in urban ecology. The nodes (green circles) represent herbaceous patches connected by links (black lines). The size of nodes is
roportional to the Interaction Flux index, a connectivity metric outlining the potential of local interaction of the nodes.

evelopment. Most of these planning approaches were based on spatial
imulations of urban development scenarios, either for comparing the
otential impacts of several urban forms [55–57] or for planning ac-
ions to mitigate urban expansion [58]. Other urban planning studies
sing Graphab have been conducted to evaluate the biological potential
f green spaces [42,59] or to assess their permeability as stepping
tones [60,61]. Graphab has also been used as a tool to include stake-
olders in connectivity analysis [62,63], to initiate public debate in
he context of an action against an infrastructure project [62] and
o explore the covariations between visual and ecological landscape
ualities [64].

Finally, Graphab software has fueled a variety of methodological
pproaches aimed at proposing or testing new research designs. This
ainly concerns multi-species analyses [65], the coupling of landscape

raphs with species distribution models [66], and the comparison of
everal strategies of graph construction [67,68].

. Limitations and potential improvements

The wide range of Graphab users and their regular feedback have
ontributed to the diversification of the software functions. Yet,
raphab is not without its limitations and several improvements can
lready be outlined.

Graphab inherits one of the problems of landscape graph modeling,
amely the assignment of cost values. Except for the case of input

is usually derived from expertise, raising the question of its valida-
tion. This refers to the broader need for validating landscape graph
parameters with biological data [69]. From this perspective, specific
procedures could be added to help users validate their choices. When
field data such as geolocated points characterized by species presence
or community richness are loaded, statistical tests could be set up to
provide a validity level of the model and a rapid sensitivity analysis.

Further development could improve the relevance of links. To go
beyond the classical limitation of the least-cost distances reported
by [70] and [71], the goal would be to enhance the link weighting
with methods taking account of multiple alternative paths, using either
stochastic processes [72] or circuit theory [73]. From the same per-
spective, it would be worth setting up directional links for considering
non-symmetrical fluxes among patches.

An ambitious perspective would be to design a 3D-version of
Graphab to account for differences in elevation between landscape
features in high-resolution applications. This would make it possible
to avoid the limitations of 2D land cover maps where elements overlie
each other (e.g., a bridge over a stream) and could be specifically useful
in urban ecology when buildings may be covered by green roofs, or
when several layers of water are stratified in aquatic ecology.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
ata derived from a species distribution model [66], such assignment influence the work reported in this paper.
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Fig. 2. Flowchart of the main Graphab functions. Nodes, links, and the resulting graph are the central elements from which connectivity metrics are computed, and potentially
interpolated. Processes of land cover modification and patch or link addition (or removal) are iterative. Corridors and connected points are specific outcomes.
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