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scussed with reference to fluid 

velocity measured bjt ultrasonic (or /aser ) 
Doppler ve~oc~metry.  7-hhi 
merits, in the mean 
p o ~ ~ g o n a l  hold 
~ ~ t e r p o ~ a t o r ~  The 
s ~ m p ~ i ~ ~  schemes, 

equal to the original signal p!us an u n c o r r e ~ ~ t e d  
additive white noise. Our purpose is to f e ~ ~ ~ ~ ~  the  
effect of this noise by ing a simple f j r ~ t - o ~ d e r  
(Or polygonal) interpo~ator. ~ i ~ ~ ~ a r  resuets can b e  
derived for u n ~ f o r ~  Sam ith some ~ i s ~ i n g  

fion 
o f  

s a m ~ / e ~  data 

1. INTRODUCTION 

ome preprocessing 
is pe~ormed in an attempt to produce an equally spaced 
data set from the raw, unequally spaced set. 
In many situations where random signals occur it is of 
interest to form estimates of power spectra by 
processing digital samples. Frequently one has control 
over the way in which these samples are acquired. It is 
then easyto sampl ly spaced intervals of time, 
since the resulting e processed by well known 
methods, usually based on the fast Fourier t r a n s ~ 0 r ~  
(FFT) or parametric algorithms, to yield spectral 
estimates. 
Situations do occur in practice, however, where it is not 
possible to dictate the times at which samples of a 
random signal can be acquired. 
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One such case is the measurement of the fluid velocity 
by the power spectral density using Doppler 
techniques. This situation is complicated by the random, 
intermittent nature of the velocity signal caused by the 
random arrivalof particles at the measurement volume. 
Random sampling also occurs in other conditions, either 
voluntarily to use less memory, reduce processing or 
reduce bandwidth for digital transmission, or as a 
consequence of the nature of the measuring system. 
Although random sampling may be more natural or 
efficient than uniform sampling it has not been used for 
several reasons. First, the nonuniform sampling theory 
is not simple. Second, the time and frequency analyses 
are rather involved. Finally, theire is no simple and 
practical reconstruction method for error free recovery 
asopposed to low pass filtering in the uniform sampling 
case. In general, a nonlinear andhr time varying filter is 
required for exact r e c ~ ~ ~ ~ y .  

Recently [l], [2], the power spectral of an LDV (Laser 
Doppler Velocimetry) velocity signal was estimated by 
sampling at the arrivals of valid signal bursts and holding 
the values until another valid signal arrives. 
~ n ~ o ~ ~ ~ n a ~ e l y ,  the measured spectrum is filtered at the 
mean sample rate and it contains a filtered white noise 
spectrum caused by the steps in the sample and hold 

olalor) signal. It is possible to show that 
m of the random samples consists of 

the power spectrum of the original signal plus additive 
noise. 
Qur problem is to reduce the effect of this noise by 
using a simple first-order (or polygonal) interpolator . 
The main objectives of the preseni general study can be 
summarized asfollows : 
In section Il, we briefly compare various reconstruction 
procedures: the zero-order hold, the e x p o n e ~ ~ i a ~  hold, 
:he po~ygonal hold, and a linear nonrea~isab~e 
inter~o~ation procedure. In the next section, we 
consider the effect of random sampling in the case of 
~ i n ~ ~ o ~ m  or Poisson s 
random samples are hence derived explicitly. 
Finally, we propose a way to passively identify the 
e x i s ~ ~ ~ c e , o f  such errors. The ~ ~ ~ ~ o s e ~  test can be 
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used to decide, given any sequence of data, whether 
timing errors in the sampling process or random 
sampling were present or not. 

11. MEAN SQUARE COMPARISON OF VARIOUS 
INTERPOLATORS 

Suppose that a random signal x ( i )  is sampled at the 
sampling times tn , thus leading to a set of data 
{x(t,,)},= o, f. , , i . 2 ,  ._. . The problem of optimum interpolation 
consists of finding an operation such that 

is the "best" recovery of x(t),  for all t .  

A. The Zero-Order Hold Case 

This is the classical stepwise reconstruction procedure. 
It is easily seen that 

and (3) 

In other words, y(r )  and x( t )  have the same mean and 
variance. 
The mean-square error is 

where g,(u) denotes the probability density function 
associated with the random variable L , ( t )  (see Fig. 1 ) and 
R,(Cr)is the correlation function of the original signal .r(l). 
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Notice that in the case of periodic sampling, the random 
variab/eL.,(t) is uniformly distrjbuted in the interval [Q, T ] 
where T denotes the sampling period. 

Poisson sampling: If A denotes the average number of 
sampling points per unit time interval, then 

g , ( a )  = KhU, 

Therefore, using (4), the mean-square error is 

5. The First-Order (Polygonal) Hold Case 

The polygonal hold reconstructor defines the 
approximation function y ( i )  as 

It is easy to see that v(t) and x ( t )  have the same mean 
values 

E{?G)) = W-~(')) 
and the mean-square reconstruction error is 

Notice that in the case of periodic sampling, the random 
variable L ,  is uniformly distributed in the intetval IO, T 1 
and L ,  + L , =T. 

for Poisson sampling:. expression (7) becomes 

Fig. 1. Sampling instants 
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C. Performances of Interpolators 

Performances of Poissoin sampling are plotted in 
figure 3 for various interpolators when the input signal is 
a band-limited white noise [3]. Comparing the simplest 
interpolators, we can conclude that the first-order hold is 
much better than the zero-order hold. 
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Fig. 3. C:omparison of Various Interpolators: Poisson 
Sampling sl aBand-limited Signal 

111. !SPECTRAL ANALYSIS OF RANDOM SAMPLES 

A. Definition 

It is well known that the spiectrum of a periodic impulse 
train is another periodic impulse train in the frequency 
domain. However, the spectrum of a set of a random (or 
nonuniform) impulses (fig. 4), in general, is not another 
set of impulses. This implies that the spectrum of 
random samples might be totally smeared (aliased) in the 
f r equency  domain and we cannot use any linear time- 
invariant filter for signal recovery. 

~ 
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Fig. 3. (a) Sequence of Impulses Occurring at the 
Random Times t,. 

(b) Random sampling process. 

6(t - t , )  is any random sequence of 

impulses and xir )  is the original signal then the sampled 
signal is 

Therefore, the power spectrum of the randomly 
sampled signal is 

where * isthe convolution operator 

POWER SPECTRUM 

s x  

Fig. 4. Power Spectrum of Random Samples 

For the case of Poisson impulsive sampling, the power 
spectrum of the point process, p(t), is [ 1 11 

where A is the average number of samples per unit 
time. 
Therefore, substituting equation (10) into (9), the power 
spectrum of the sampled signal is 

Sb(f, = k*SX Cfl+ N 
where N equals hR,((/) . 
The power spectrum of randorri samples (Poisson 
impulsive sampling) of a random signai resembles that 



of the signal imbedded in “white” noise as shown in 
figure 4. 
Thus in the frequency domain, we generally expect the 
original signal to be corrupted by noise. 

B. Discussion on Performances 

Equation (11) confirms the intuitive result that by 
increasing the density of sampling rate, the SNR (signal 
to noise ratio) improves. Papoulis [ I O ]  shows that if the 
sampling instant t, is a Poisson point process with 
average density h, then the Fourier transform of the 
randomly sampled signal (if his energy is finite) is 
unbiased as h - 0 0 .  

Masry [5] considers general spectral estimates (using 
the periodogram algorithm), with classical spectral 
windows (Bartlett, Tuckey and Parzen), based on finite 
number of observations taken at Poisson sampling 
instants. 
He derives the asymptotic bias and variance of the 
estimate and shows that the bias is directly proportional 
to the bandwidth and the variance is inversely 
proportional to the bandwidth. 
This behaviour is identical to that of the continuous-time 
estimates and seems comforting. 
A somewhat unexpexted result is the effect of the 
average sampling rate on the bias and variance of the 
estimate: the bias is independent of h and the variance 
is proportional to 

and consequently for each fixed frequency f ,  there is an 
optimal sampling rate A,, = h,(n which minimizes the 
mean square error ; with, 

so that h, is inversely proportional to the normalized 
value of the the spectral density. 

G. Interpolation 

There are several reconstruction methods. We mention 
only the most promising ones, namely, the non-linear 
technique, the iterative technique and the first order 
inter poi at0 r . 
Marvasti [6] shows that the non-linear technique 
improves signal to noise ratio compared to simple low- 
pass filtering. Wiley [12] proposed an iterative 
procedure which can recover a signal from a set of 
nonuniform pulses without any distorsion after infinite 
iterations. 
Based on the results obtained in section II, we assert 
that a simple first-order interpolator gives a good 
estimation of the power spectrum of the original signal 
without significant additive operations. 

Recently, these good performances of the first-order 
interpolator were confirmed [9] practically for LDV 
application. Indeed, the theory valid [l] , [2] for low 
fluctuation intensity flows shows that the measured 
spectrum is filtered at the mean sample rate and that it 
contains a fi!tered white noise spectrum caused by the 
steps in the sample and hold signal (obtained by a zero- 
order interpolator). The effect of this additive noise is 
significantly reduced by a first-order interpolator 
especially at high frequencies where the distorsion is 
lower than for zero-order “sample and hold” processor . 

h’. JITTER DETECTION 

A. Jitter and Aliasing 

Sampling processes are rarely perfect - random clock- 
timing errors (jitter) are present in any practical clock 
used for sampling time. These errors cause aliasing 
which can have a considerable effect on the 
performance of discrete signal-processing algorithms. 
Hinich [4] propose a test for aliasing using bispectra! 
analysis applied in social science. 
Aliasing can be especially serious for social science time 
series applications. since the sampling rate determined 
according to logistic and cost c o n ~ i ~ e r a ~ ~ o n s  without 
regard for the spectral characteristics of the underlying 
process. Once a sampling process is used to collect 
data, it is of value to test the observations for the 
presence of aliasing. 

In engineering and physical-science applications, 
aliasing is usually avoided by filtering the signal to 
eliminate its energy above a certain cutoff frequency 
and then sampling the filtered signal at or above twice 
the cutoff frequency. 
Consequently, in this paper we assume that in the 
absence of jitter, no aliasing exist. 

Based on Hinich’s results, we attest that, while the 
discrete bispectrum of a uniformly sampled third-order 
stationary signal is zero in a triangle that is a proper 
subset of the principal domain [4], 151, [8] and [lo], it 
differs from zero in the presence of jitter or random 
sampling. Exploiting this effect, we use a test for 
detection of sampling jitter, based on the bispectrum. 

B. Bispectrum and Test for Aliasing 

The discrete bispectrum of the uniformly sampled band- 
limited, real, zero-mean and stationary process x(k). 
satisfies 

CO, on OT 

where IT and OT are the inner triangle and the outer 
triangle of the principal domain (the triangle 6AB of Fig. 
5) ,  respectively, and Be is the two-dimensionnal Fourier 
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transform of the third moment [SI, [IQ]. R(m,n) defined 
bY 

E{x(k)x( k+ m)x( k+n)) . 
The suboptimal test, whiich decid s H, or H I ,  on the 
basis of the bispectrum estimates is 

(Q,,Q,) E OT a t ,  = ~22" (no ji tter ) 

: B(SL,,Q2) f 0 

(Q1,,Q2) E OT 3 t ,  = nT + E,  (jitter) 

where T is the samplirig period and (EJ are i. i. d .  
random variables. 

Notice that the only prior knowledge required 
concerning the continuous process is that it is band 
lin?ited and it has a nonzero bispectrum. 

Thistest issimilar to the tests in [4], [5] and [a], which 
were used for detection of non-Gaussian or 
nonstationary signals. 
It is possible to exploit this suboptimal test, using 
standard statistic approximations and deriving sufficient 
condition for high probabiility detection. The proposed 
test is made in the bispectral domain, and not that of 
the data itself, therefore it is suboptimal. However, the 
test is robust, independent of the signal statistics, and 
applicable for random sampling of any statistical 
distribution. 

Fig. 5. The bispectrum principal domain 

v. SUMMARY AND CONCLUSIONS 

Spectral analysis is more difficult in the case of unequally 
spaced data than in the case where the data are 
sampled at equal intervals. 
There are a number of open theoretical questions, for 
example regarding the nature of aliasing in estimates 
from an arbitrary sampling scheme, the exact analytic 

~ 
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expression of the power spectrum in the case 
order i n ~ ~ r ~ o l a ~ o ~  and the CO 
identification for parametric e 
number of different methods available, but little pr 
experience to ~ h Q w  their relativ 
choosing which should be applied Is a p a ~ i c ~ ~ l a ~  
problem. 

We have investigated the power spectrum estimation 

Indeed in the majority of pr'actical s ~ ~ ~ a ~ i o t ~ s  this 
distribution will be a good 
that 
distr 
the i 
the total signal power. 
Therefore, the estimation of the power s 
improved in the mean square sense without significant 

Nyquist rate. 

d to use the ~ ~ ~ ~ ~ c ~ r u m  on OT for 

unknown band-limit 
bispectrum, we can tell w~ther the sampling clock has 
jitter by looking at the bispectrum of the sampled data, It 
is done by app~ying a binary lnypsthesis test, whose 
outcome decides wether the b i s ~ ) e c ~ r u ~  an 07' is zero 
or not. 

Although, this study was m o ~ i v ~ f e ( ~  ~ r i m a r ~ l y ~ ~  the need 
to analyze the ~ x p ~ ~ t m e n t a l  inf rmation ~ e n t i ~ n ~ d  
above [9, 111, the ideas upon which it IS based are of a 
fundamental nature and as such are likely to have a wide 
area of a p p l ~ ~ ~ ~ i o n s  c o m ~ ~ n i ~ a ~ i o n s ,  conlroi 
biomedical, geophysics 
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