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1. INTRODUCTION 

Many methods have been explored to estiinate flow 
speeds in Doppler systems. In real,-time ~wo-dilnensional 
(2-D) Doppler systems, the ve lo~~ i~y  estimate is done 
with few samples (8-16) in compaIison with the image 

nce. This has implied the ~ ~ e v e ~ o p ~ e t ~ ~  of fast 
ithms with iow a c c ~ r a c ~ .  In “ re case of precise 

measurements of .flow velocities, it is necessary to find 
adapted methods. 
The ultrasound Doppler flow veloci 
afluid are linked to the estimate of 
referred to as ”Doppler ~requenc~/’ .  
determination of this frequency is not easy b8ecause of 
different physical parameters which introduce 
uncertainty in the velocity estimation [I  I ] .  

To overcome the ~nconvenier~~s of the use of the 
classical fast Fourier Transform (which leads to bad 
precision when only few samples are a v ~ i ~ a ~ i e  or when 
SNR us low), a number of investigations have been 
performed with ARMA parametric identifical.ion. Most 
studies dealing with these methods use algorithms 
applied on block data, assuming that the Doppler signal 
is almost stationary on atime window. The choice of the 
time window, to avoid hiding non s ~ a ~ i o n ~ ~ ~ ~ ~ ~ e s  and 
keeping a sufficient number of :i mples, is critical. In 
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practice a compromise based on experimental 
observations is made to define this time length of 
window . 

The Doppler frequenlcy is then estimated by mean 
of the power spectral density (PSD). This can be 
performed either by iimplicit or explicit centroid 
computing (first order moment) or by detecting PSD 
amplitude peaks. Even i f  in the same conditions the 
peaks detection is better, the estimates - in any case - 
are biased, especially when SNR is low and Doppler 
bandwid~h is large. Their computations can also be very 
heavy. 

We present an approach which directly computes the 
Doppler frequency using more precise ( compared with 
classical RLS case AR parameters estimates. 

II. THE RECURSIVE LEAST SQUARE (RLS) 
ALGORITHM 

We first define some useful notations. Let x be a 
function of time k, and T the sampling period. 

(1) A x(k + 1) - x(k) 
px(k) == --- ‘l- 

A signal x can be described by an ARMA model: 

where x is the output of t h e  modeled system, u(t) and 
q (t) are non-correlated centered white noises. 
Assuming that 
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/ R  = [-a n -1 ... - a. bm...bo] ' 
+ (t) = 

H (5) 
[p - 5qt )  pn - %(t) ... x(t) pmu(t) ... u(t)] 

The model (3) is equivalent to 

= 4 " m  + r( t )  (6) 
where H denotes the hermitian conjugate 
The estimation 6 of 8 in the least square sense lies on 
the calcution of the cost function: 

[y (Y) - + H ( ~  )6 ( t )] * 
C O  (7) 

+ ( 6 ( t ) - 6 ( t  ))HP-'(s(t)-s(t  ))I 
0 0  0 

where to is an instant before, but close to t. This means 
that in discrete time to = (k-l)T and t = kT for example. 
In the classical RLS estimation, 6 (to) is constant 

during the computations. This condition is discarded 
here, and adaptive values are used. 

p, is a non-negative symmetrical matrix - like P below - 
which can be chosen as diagonal to simplify the 
computations; C is a positive constant which can make it 
possible to limit the fluctuations in the estimates. 
The best estimate 6 follows from the minimum of J, by 
the cancellation of its gradient. After some simple, but 
long computations, the recursive estimates of 8 can be 
expressed by: 

pi, (t)  = P(t)(plp i, ( t ) + 9JQ [ y(t) - + " (t) i  (to )]} (8) 
0 -1 c 

by choosing t, similarly to to, with t-, <to (for example 
t., = (k-2)T ) 

In the classical derivation the term pi'f'i (t-l) doesn't 
exist. 
The advantage of our algorithm is that it computes at 
each step of recursion the increment of estimated 
parameters, and it uses the best knowledge of the 
process. 
Figure 1 a and 1 b compare the parameters estimates of 
the following model : 

y(k)= - (0.0625+0.5i)y(k-1)+(1+i)y(k-l) + 
where q is a white noise. 

We only present the imaginary part s of the parameters 
to reduce the number of figures; the real parts have the 
same behavior. 

(3+5i)e( k-3) +(2+2i)e( k-2)-1 .5e(k-l)+e(k). (10). 
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Fig. 1 a. Imaginary parts of the parameters estimates of the A R M  madel 
(IO) with the classical RLS algorithm. 
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Fig.1 b. Imaginary part of the parameters estimates of the A R M  model 
(10) with the new approach. 
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Ill. THE SPECTRAL DECOMiPOSITION 

The Doppler frequency estimate lies on the calculation 
of the Power Spectral Density (PSD) which is defined in 
the caseof ARMA model by: 

I m  12 I b, exp( -23cjlfT) 
P(f)=y \-l 

where y is a constant depending on the covariance of 
the modelling error. 
One of the best ways [8], I l l ]  of determining the 
Doppler frequency is to search tlhe PSD amplitude 
peak's frequency. 
Thus, this procedure inludes three steps: the first one is 
the computation of ARMA or AR parameters estimation, 
the second one is the computation of the P!3D, and 
finally the estimation of the peak frequency. 
Young and Song [5] proposed adirect estimation of the 
centroid (instead of the peak frequency) by using an 
AR2 (n=2 and m=O in (4)). They considered that the 
two frequencies are characteristic of the Doppllar signal 
(Doppler frequency and clutter). 
In pratice this is not always right. And because of many 
sources of noises there are more than two frequencies. 
So, the question is which of them is the Doppler 
frequency . We thus perform a decomposition of the 
PSD into simple first order elements. In the rest of the 
paper we only consider AR model (but the procedure 
can also be applied to ARMA models). 
Let us first consider afirst order AR rnodel (n=1) or AR 1. 

The peak frequency is given by: f,, = - (12) 2 JCT 
where a,  >O is the argument of a1 . 

m u 
(I: .- 
a 
U3 a 

f Pl 
Fig. 2a. PSD of an AR1 

Now, let us consider an ARn. Since the denominator of 
er  ex polynom it can be expressed 

as a product of first order polynoms. Thus in this case 
the PSD can be expressed as: 

Y 
2 (1 3) 

P(f) = 
I n  I 

where the zk are the root!: of the denominator of (1 1). 
Thus if its logarithm is taken, the PSD is the sum of first 
order elements; and the peaks frequencies f pk of these 
elements are expressed as; in (1 2) 

L J C  1 

f , 
Fig.2b. PSD of an Am model 

With this decomposition wle note that the minimum of 
ak gives the best estimation of Doppler frequency. 
Thus the direct computation of the PSD is not 
necessary. 
In the case when there is a high level of clutter, it is 
required to make a test to distinguish the frequency 
caused by the Doppler eff'ect and the one caused by 
the clutter. 
This method compared with the amplitude peaks 
detection seems to be quite independant of signal-to- 
noise ratio (SNR), wRen the model described in [ i l l  is 
used, asshown on fig. 3. On these figures, we show the 
speed (Doppler fequency) estimates: Fig 3a and 3b. 
compare in the invariant speed case, the peaks estimate 
and the pole decomposition estimate with SNR = 0 (fig. 
3a) and -20dB (fig. 3b ). It can be seen that the pole 
decomposition method is more accurate. 
When the speed varies (fig. 4), it is impossible to make a 
good estimate with peaks method without averaging, 
wheras the decomposition method is still correct. 
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Fig. 3a. Doppler frequencyestimate with snr=O dB; 
invariant speed case 

3 5 1  i, peaksdetection theoretical 

pole decomposition 

O 5  t 
I 

'0 3 0 5  1 1.5 2 25 3 3.5 4 4 5  

time (ms) 

Fig. 3b. Dopplerfrequencyestimate with snr=- 20 db 
invariant speed case 
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Fig. 4. Dopplerfrequencyestimate with snr= 10 db 
time variant speed case 

IV. CONCLUSION 

A transformated recursive least square algorithm is used 
here to estimate the parameters of an AR Doppler 
analytic signal. Through the PSD decomposition the 
Doppler frequency is directly obtained from the 
parameters onward. This Doppler frequency estimate 
ccmpared to the peaks frquency approach is quite 
independant of SNR. 
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