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MULTIPHASE PIPE FLOW VELOCITY MEASUREMENT IN STRONG COLORED NOI-
SY DOPPLER ULTRASOUND : PARAMETRIC AND NON PARAMETRIC APPROACHES

P. KOUAME, C. GUETBI, J-P REMENIERAS, J-M GIRAULT, A. OUAHABI, F.PATAT

GIP Ultrasons/LUSSI-EIT, 7 Avenue M, Dassaull, 37000 Tours, France
E-mail : kouame @univ-tours.fr

Abstract - Real time flow velocity measurement is a preblem
of considerable practical interest in industrial and biomedical
applications. Due to their good frequency resolution, parametric
methods such as recursive least squares or their variants are
commonly used in such cases. However, some typical problems
of these methods, namely correct order selection and fitness of
the parametric model. may alter the accuracy of the frequency
estimates. This paper provides comparison between specific
Instrumental Variable (IV) identification which simultanecusly
gives model parameters and orders, and different non
parametric time-frequency estimators. Results of lests on
modeled Doppler signals with known flow velocity profile, are
discussed.

. INTRODUCTION

Many flow velocity estimation methods for Doppler systems
have been widely explored in literature [1-5]. In a real-time
two-dimensional (2-D) Doppler system, the velocity estimation
is performed with few (8 or 16) samples to compare with the
image cadence. This has implied the development of fast- but
not accurate- algorithms, In the case of precise measurements of
flow velocity, it is necessary to find other methods. In practice,
the precise determination of the Doppler frequency may be
cumbersome because of the various physical parameters which
introduce uncertainties in the velocity estimation [1]. In a
previous work [8], we show the good performances and the
intercst of specific factored form of parametric methods for
velocimetry.

The purpose of this puper is to provide comparison between
these parametric methods and non parametric ultrasound
Doppler frequency estimation by use of modeled signal with
known physical characteristics. Computer simulations are used
in order to perform statistical comparison of the different time
varying frequency estimation methods under the same
circumstances.

2. DOPPLER SIGNAL GENERATION AND
FREQUENCY MEASUREMENT

The experimental scheme of Doppler signal
measurement which is associated to our simulation
is given in Fig. 1.
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Fig. | Experimental scheme of Doppler signal measurement

Two sets of ultrasound transducers E ( Emission) and R
{Reception) are placed across a Plexiglas pipe containing a two-
phase fluid. The received signal is demodulated and sampled.
Al each sample time #, the quadrature analytical signal can be
wrilten as:
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K(t) is the random magnitude of the Doppler signal
depending on the characteristics of the transducers, ¢1;} the
random phase depending on the position of the particles of the
flowing fluid, and w{f) is the flow velocity to be measured
through the Doppler shift pulsation auft), v=n/4 is the angle
between the ultrasound probe axis and the flow direction, fo=
100kHz is the emission signal frequency, ¢ is the ultrasound
celerity. In order to simulate the experimental conditions of the
flow velocity measurement, we use the simulation procedure
described in [2]. Thus, for a given time velocity profile v(z), we
can compute the simujated Doppler signal which is not a simple
frequency modulation.

3. BACKGROUND AND METHODS

3.1. Parametric methods : Factored Instrumental
Variable (IV)

This method is applied on a model of the signal rather than the
signal itself. In the parametric methods, by using the Doppler
signal, the ARX ( or here AR) parameters and the associated
power spectral density are first computed, and then Doppler
frequency is estimated. In this part, our attention wiil be focused
on the problem of parameters estimation. The following
developments are based on the Birman's block data factorization
[6], [7] applied to the recursive least squares estimation. Here,
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due 1o the complex demodulation of the ultrasound signal, the
data are complex numbers. Let us first describe the specific
complex IV method. Consider the general AR model with
complex coefficients:
H
W= % a'._\'u—r')+£(r} (2)

i=1

where & is a complex noise which can be colored and s s
assumed to be the maximum possible order of eq. (2). Eq. (2)
can be written
Te+ £ (3)
with A(r) ==yt —n). =y = D),

yry=h

O=ta,.a, ...} and " is the transpose operator.

We recall here the principal steps of the IV algorithm for
complex Doppler signal parameter estimation [8).

Let x(1) be the instrument. This instrument aceounts for the
possible colored noise in the signal.

Ay =1yt =d ~a) Mt =d 1315 d 15 the instrument delay.

and let also gtry =[—vit —m.... —xtt =2t = )]’

Define pis) =[x tr1-sti3] . ety =[g(0),~x)] and

(‘“m:{inl}).m’u)} (5)

C.(1) is referred to us covariance matrix. Using the iterative
UoY" decompasitian, Cirycan be writlen as follows.

Cny=UinD v where U, is an upper complex triangular
matrix with | on the diagonal, D, a real diagonal matrix and the
symbol " denotes the hermitian transpose. At the end of the
iterations, I/, takes the following shape at order n :

I I .
Uib‘lik—n]i 1 ! !
. 1 lele wlw ! '
[ L8 k-
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. : I i | : l U]
0 E|§9nck;
o o0 Co IV

(6)

D, is the diagonal matrix written at order n:

D, :dm;,»{f“)‘m -y J:I(k - L ()

The & are the estimates of the parameters & at the order i
Thus we have a recursion based on the order i= | to n.

The J; are achieved during the ilerative decomposition, and
are similar to the Akaike Information Criterion and can be used
ta select the model order. The recursion on the time ¢ is obtained
by writing

Ciny=Uir—1) Q‘(f—l)—mjl viir-1).
A (8)

with S =U 1= Deptry, B = D=L
Fo=¥ u-nnuy, g, =Du~nf, and  fBuy=1+fig . The
symbol * denotes the complex conjugation. Doppler frequency is
obtained by computing the AR parameters associated to the
analytical Doppler signal and then computing the maximum pole
frequency of the power spectrum density
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where ¥ Is a positive constant proportional to the covariance
of the innovation of the AR model, T, is the sampling period,
and f the reduced variable frequency :

05<f<0.5

3.2 Nonparamefric methods
distributions

Time-frequency

In many velocimetry applications, the ultrasonic signal 15 a
broadband pulse modulated at the center frequency of the
transducer. Therefore the signal extent is usually finite in both
time and frequency domains. Time-frequency distributions are
then a useful tool for such analysis. These distributions (which
belong to the Cohen class) can be formuluted with u unified
approach as

Dt f 0= | [Queast iy a2 (10)

exp(— f2T)d i

where Q(u,T) is a function which defines the distribution and
its properties,  and f respectively denote the time and frequency
components associated to the signal v. Further details on such
distributions can be found in [(G], [11]. Note that the classical
Fourier power spectrum density is a special case of these
distributions. Due tec the well-known limits of the intuitive
Fourier analysis, more convenient time-frequency estimators
have received considerable amount of attention in frequency
estimation.

The Wigner-Ville Distributions(WVD)

The WV} is another special case of these distributions.

We consider here one variant of these distributions (since Lhe
other variants do not give significantly different results) in the
case of Doppler signal frequency estimation.

For an anadytical signal v the continuous WVD is given by:

Wi f1= J)-(H T2~ T Dexpl— 2T (k1)

Wiit.fi gives for each time, the frequency components of the
signal,

3.3 The Wavelet Transforms({WT)

An extension of the previous case is obtained by defining the
wavelets analysis. A method of apalyzing nonstationary
ultrasonic signals is to consider them as a superposition of a
number of localized elementary signals or wavelets; so that
wavelet transformation can be used to analyze and identify the
various components of an ultrasonic signal. The WT is the
correlation between the signhal v(1) and a set of basis functions:

h | t—~b
T uby= |y e (12
L@t = [y R (12)
where b is the time domain variable and ¢ is the scaling factor

which is linked to the frequency domain variable. W (1-b M)
is the set of daughter wavelets generated from the mother



wavelet yfr) by dilatation or compression operations in time.
yA1), the mother wavelet, is a function Afr) which satisfies the
|# ()|

following admissibility conditions[lZ]:j——dw<+oo, where
LW

@ is the angular frequency and H{wj the Fourier transform of
A(t). Any continuous function which is band limited and has a
zero mean value can thus be used as a mother wavelet, The
continuous Wavelet used in this work is the Morlet[13] wavelet
that is formed by Gaussian modulation of a complex sinusoid.

hiry=e¢ ‘o™ (13

The main interest of this analysis is that the time and
frequency resolutions are variant : there is for example a very
good time resolution at high frequency. Thus, wavelet transform
allows details to be exhibited in time and in frequency domains.

3.4 Wide Band Processing{ WBP)

As defined above, the direct wavelet transform has a high
qualitative interest but it needs to be extended to make it robust
for accurate time and/or frequency measurements,

One of the main limitations of the common velocity
estimation methods is that they have good behavior mainly
with narrow band signals.

The nacrow band assumption [ 14] for a ultrasound signal in a
flowing fluid is expressed as 2vw/e <<}/TB, where T is the signal
duration and B its bandwidth. This assumption of narrow band
processing can be violated either if the velocity of the scatterers
is high or if the time-bandwidth product TB is large. In this
case, wide band processing must be applied. A wide band signal
is also a signal whose fractional bandwidth (B/f) is greater than
10%.

In the case of narrow band processing, the reflected
ultrascund  signal  following a transmitted pulse can be
approximated by a time delayed and Doppler-shified replica of
the emitted signal: rir) = str-1)e™™

In the wide band case, the received signal is approximated by
atime-delayed and scaled replica of the source signal [14] :

[
riry = .&|

] . where l!‘\/ﬂ is an energy normalization.
E“‘ v

The wide band cross correlation proves to be a useful tool
when the wide band hypothesis is taken into account.

Assume x(1) a transmitted pulse and (1) the received signal,
the scaling factor and the time shift between x and y are given
by: (Swman Tued=Argmax{T.{s, T]| .. where T,. s the wavelet
transform of ¥ with respect to x, that is :

T t5.7) :7;=| J‘.r(IJ_\'[g)dF. For a narrow band signal
LI k)
fu=(S -1 My where fy is the Doppler frequency linked to the
velocity by eq.(1). For a wide band signal v=c(l-Sua/f F+Siar).
Ty 18 related to the time delay between the two signals.

4. COMPARISON AND DISCUSSIONS

Two kinds of simulations are performed. In the first one, an
analytical Doppler signal is generated with the model[2]
described in section 2. Fig.2 shows the wavelet-transform of
the Doppler signal. In Fig.3, we show the theoretical velocity

and estimated time profile obtained with the previous methods.
As it can be seen the higher the velocity, the greater the errors.
All the methods presented here track lhe time profile velocity
with good efficiency.

In the second simulation, we just consider the maximum
possible velocity of the fluid which is 7.5m/s. We assume that a
pulse is transmitted toward air point scatter fluid, at fo =100
kHz with a fractional bandwidth of 60% and backscattered with
a delay 1 =0.14 us with the celerity ¢=300m/s. IV, WVD and
WBP methods are used to estimate the frequency shift and then
the velocity. Fig. 4 shows the bias and standard deviation of the
frequency estimates on 50 realizations. The shift frequency to
be estimated is 5 kHz. Note that the classical Doppler technique
cannot directly furnish the delay t.

For the Wide Band method the delay is also obtained. In
applications where the ultrasound celerity is unknown, this
delay allows to estimate its valuc. Table | shows the delay and
the velocity estimates on 50 realizations, in the case of a high
level noise in the measurement system. The bias and the
variance dre comparable for scale and delay estimates. For low
SNR, large errors occur. Correct estimates are obtained around
0 dB. Fig. 4 shows the behavior of the 1V, WVD and WBP
methods on a larger set of SNR.

Absolute Values of wavelet transform Coefficients

500 1000 1500 2000 2500 23000 3500 4000 4500 5000

times (x 30 microsec)

Fig.2. The wavelet transform coefficients of the Doppler signal

45r

theoreticil —-—‘—‘—____’
ab ey ]
351 . 1
5 9 :
€
Z25F i
2 /
v ot . 1

v WYL

o

o
o

00 0.02 C04 006 008 G.1 g1z 014 016 018
times in sec

Fig.3. Theoretical and estimated velocity profite . The IV method
arder is found to be 2.
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Snr(dB) -20) -10 0
T{ux) 0.03 0.04 0.11
v(m/s) 73 33 7.3

Table 1 : Time delay and velocity estimates of
the second example

As it can be seen, the WBP method is better than the WVD
and IV ones in the terms of bias {the variance of IV and WBP
methods are similar). However, the WBP method is less suitable
for real time estimation. Unlike the WVD, the IV does not need
a FFT procedure to be implemented and is thus more accurate
when only few duta are processed.

5. CONCLUSION

Due to the physical parameters of the measurement
environment, the ultrasound Doppler signal can be a particularly
tricky signal. Three classes of methods are discussed in this
paper : a specific [V method which accounts for the possible
change of the model order during the estimate process, a
Wigner-Ville approach and a wavelet transform, The wide band
wavelet method seems to give better qualitative results. Deeper
investigation and more exhaustive comparison are now being
performed using experimental data.
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Fig.4. Bias (a) and variance (b} of the frequency estimates with the
Wigner Ville distribution (WVD), the Instrumental Variable (1V) and
the Wide Band Processing {WBP)
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