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ABSTRACT 
This paper is focused on joint fine estimation of 

time delay and Doppler shift based on the maximum 
likelihood criteria. Joint estimation of time delay and 
Doppler stretch of a random signal received by two (or 
more) sensors is required in many signal processing 
applications. This problem can be viewed as the 
determination of the effects of a time-varying channel 
on the emitted signal. It is shown that discrete time- 
frequency (time-scale) techniques provide the correct 
system characterization. Theses techniques are simple, 
fast and efficient. Moreover, in areas where the 
measurements are repeatable, such as ultrasonic 
imaging and nondestructive evaluation, the process of 
averaging can be used to improve the SNR. 

In order to implement the simultaneous estimation 
of time delay and Doppler coefficient according to the 
maximum likelihood criterion, two practical problems 
are investigated: the interpolation method used to 
obtain a fine resolution of the estimates and the scaling 
procedure which is not a trivial problem. 

1. INTRODUCTION 
The problem of estimating the time delay and 

Doppler shift of a known waveform is important in two 
common applications. First, in active radar and sonar, a 
known waveform is transmitted, and reflections from 
objects "illuminated" by the transmission are 
subsequently received. The received signals are often 
modeled as scaled, delayed and Doppler-shifted 
versions of the transmitted signal. Estimation of the 
signal amplitude, delay, and Doppler shift provides 
information about the position and relative motion of 
the objects. 

The second application involves estimation of the 
parameters of a multi-path communication channel in 
situations where the transmitter is rapidly moving or has 
an unknown frequency offset. For a example, consider a 
situation where a remote mobile user transmits a known 
waveform (e.g., a training sequence) to a base station 
for synchronization or equalization purposes. If the 
channel is frequency selective (nonzero delay spread), 
then the signal will be received with several distinct 
delays. In addition, due to the motion of the mobile and 
variations in the carrier frequency of the transmitter, the 
known signal can be received with a small frequency 

offset. Estimation of the delays and frequency offsets, 
as well as the spatial signatures of the signal arrivals, is 
necessary in establishing a clean, inter-symbol, and 
interference-free communication link. 

The interest in time delay estimation has moved 
from the initial area of radar and underwater acoustics. 
In particular, digital methods for delay and Doppler fast 
estimation are very important in medical application 
such as blood velocity which is an important parameter 
for the clinical diagnosis of vascular disease. 
Ultrasound has become an indispensable noninvasive 
tool for blood velocity measurement. The pulsed wave 
Doppler technique is widely used because it  can 
provide range resolution. With this method, sequential 
short ultrasound pulses are transmitted into vessel or 
heart at a pulse repetition frequency. Return signals are 
received sequentially after a certain delay following the 
pulse transmission. Due to the movement of the 
scatterers, the received echo is a time-delayed version 
of the echo from the previous pulse if time transit 
effects are not considered. 

Classical approaches of time-delay and Doppler 
estimation are based on matched filtering. These 
techniques typically assume one signal path and one 
sensor, although the extension to multiple sensor is 
straightforward. Matched filtering techniques are 
known to be optimal in the maximum likelihood (ML) 
sense for a signal arrival (corrupted by additive, 
Gaussian, white noise) but are not consistent when 
multiple overlapping copies of the signal are present. 

Digital processing techniques, based on fast 
interpolation of some estimated ambiguity samples, are 
particularly suited for real-time estimation of signal 
parameters to reduce the tremendous computational 
cost of a 2-D processing. They are based on parabolic 
interpolation of the sampled cross-correlation function 
(CCF) or cross ambiguity or optimum discrete wavelet 
scaling. 

This paper is focused on joint fine estimation of 
time delay and Doppler coefficient by a fast 
interpolation of the estimated ambiguity function, and 
used a new and computationally efficient solution to the 
scaling problem. 

The outline of the paper is as follows. In the next 
section, the signal model is described. Section 3, 
presents the ML solution of time delay and Doppler 
estimation. Finally, Section 4 provides a 
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computationally efficient solution to the interpolation 
and scaling problem. 

2. MODELING AND HYPOTHESIS 
Let us refer to the following model of signals 

x ( t )  = s( t )  + n(t)  

y(t> = se, ( t )  + m(t> (1) 
received by two sensors: 

where s(t) is the source signal, and the noises n(t) and 
m(t) are uncorrelated with each other and with the 
signal s(t) .  
The received signal is expected to take one of two 
form: 

se, ( 2 )  = As(t - d)e'OD' for narrowband signals 

se, ( t )  = As(@ - d ) /  a)  for wideband signals (2)  

where 
w, Doppler shift; 

A attenuation; 
D time difference of arrival; 
U scale difference of arrival. 

A correlation processor or a matched filter 
combines the transmitted signal s(t)  (or x( t )  in additive 
noise) with the received signal seo(t) (or y ( t )  in additive 
noise). A high correlation results when the signals 
match. This processing technique is optimal for signals 
buried in additive, Gaussian, white noise [9]. The 
correlation or the matching operation requires some 
form of model for the received signal, two of which are 
the narrow-band model and the wide-band model. The 
model selected depends on the assumed characteristics 
of the received signal. Suppose a transducer emits the 
signal s(t) ,  and this signal reflects off a single object (a 
point scatterer). If the object moves with constant 
velocity, v, a time scaling, a, of the signal occurs. The 
received signal is then modeled as a wide-band signal 
model. 

When the speed of propagation of the signal, c, 
verify [ V I  < c ,  the wide-band model can be 
approximated by narrow-band model [3]. With this 
model, time scaling the signal by a is approximated by 
a Doppler shift, 0,. For a signal with carrier frequency, 
w, = 2 M C ,  the approximation is 

(3) 

1 
with = -.  
This approximation says that all frequencies in the 
signal are shifted equally. The approximation is based 
on the assumption that for signals with a sufficiently 

U 

narrow bandwidth, time-scaling the signal is equivalent 
to a frequency shift. 
Active echo location (or time-varying system 
characterization) techniques seek to identify and 
localize objects in an environment [7]. One way to 
accomplish this is to estimate values of z and a (or U,) 
associated with each object [6].  Various techniques 
have been developed to estimate theses parameters, 
with one commonly applied technique being 
correlation processing. 

3. TIME-FREQUENCY (TIME-SCALE) 
PROCESSING 

The idea behind correlation processing is to 
correlate the received signal, seo(t), with hypothesized 
replicas of the transmitted signal, s(t), where a 
collection of delays and scales (Doppler shifts) are 
hypothesized. When the received signal and one of 
these hypothesized signal match, a high correlation 
results. The hypothesized signal yielding the highest 
correlation then provides an estimate of the parameters 
of the received signal. 
The correlation processing is then: 
1. Wide-band model (time-scale analysis) 

+c-, 

('U'). cl 
1 '  

W ( a , z )  = - se,(t)s* - (4) 

Expression (4) represents a wide-band correlation 
receiver output or the wide-band cross ambiguity 
function of the signals s(t) and soo(t) and it is referred 
to as a continuous wavelet transform of the signal seo(t) 
with respect to the mother wavelet, s(t) .  
2 .  Narrow-band model (time-frequency analysis) 

+- 
A(wD ,z) = se, ( t )s  * (t - ~ ) ? - ' ~ ~ ' d t  ( 5 )  

-CO 

Expression (5) represents the ' narrow-band cross 
ambiguity function of the signals s( t )  and s d t ) .  

+- 
C(z) = j se, ( t )s  * (t - ') i t  (6) 

When the transmittedreceiver is motionless and the 
signal, s(t) ,  is reflected from a motionless object, then 
a = 1 andw, = 0. In this case, both Eqs (4) and (5) 
reduce to the same equation: 
This equation is the standard correlation encountered in 
time delay estimation theory [ 11. 

Since, the dominant effect of relative motion 
consists of a time scaling of the received signal, we 
focus on system characterization with the wide-band 
model. 

In this case, the time delayd and time scale 

-m 

a  ̂estimates are 
(;,& = argmax{W(a,z)) 

U *7 
(7) 

The optimum wavelet in this case is identified as one of 
the sensor output [4]. 



Previous papers did not explicitly use discrete-time 
representations. In fact, continuous-time 
implementation of Doppler time scaling is quite 
complex and expensive. Moreover, all the possible 
Doppler scaling factor should be considered in the 
maximum likelihood procedure. 

Digital processing techniques, based on fast 
interpolation of some estimated ambiguity samples, are 
particularly suited for real-time estimation of signal 
parameters to reduce the tremendous computational 
cost of 2-D processing. In practice, the signal is 
discrete due to sampling in time. The true location of 
the maximum of a 2-D ambiguity function is not 
constrained to discrete increments, and it may fall 
between the discrete sampling points that result in 
estimation inaccuracy. An interpolation technique 
usually is used to improve the time delay and Doppler 
estimation accuracy. The most widely used 
interpolation technique is the simple parabolic-fit [8]. 

4. THE SCALING & INTERPOLATION 
PROBLEMS 

In practice, only the low-passed signal samples are 
available. Now, expression (4) in discrete form reads 
(ignoring 1 / & ) 

k=N'  

w(a,r) = c y(k)x , , , (k  - r )  (8) 
k=-N' 

With N = 2N'+1 noisy data samples. 
The estimation procedure is to scale x l ( k )  over 

several values and, for each scale, to compute the cross- 
correlation as in (8). The pair (a ,  d) that gives 
maximum correlation value is the final estimate. The 
FFT is used to calculate the convolution in (8). 

Several approaches have been proposed for the 
scaling of a wavelet that has no analytic form. One 
method is by multi-rate signal processing [2] .  It 
involves up-sampling, filtering, and down-sampling the 
input sequence. If the scaling factor is close to unity, 
the multi-rate method needs large up-sampling and 
down-sampling factors, giving rise to high complexity 
[lo]. Recently, Young [ l l ]  has proposed another 
technique by using the cross wavelet transform [ 101, 
[ 113. The technique first transforms the discrete signal 
by an admissible analytic wavelet over sufficient scales 
and shifts, and applies then applies the wavelet 
inversion formula to compress or expand the signal. 
The method is computationally intensive as a large 
number of shifts and scales are needed for good 
accuracy. 
Therefore it is not trivial to scale q ( k )  since it has no 
analytic form. Scaling via the multi-rate technique is 
very costly and prohibits real-time application. 
Although incoherent processing is computationally 
attractive, it can only give sub-optimal solutions. We 
shall use the scaling method proposed by Ho and Chan 
[5] and demonstrate its effectiveness in the estimation 
problem. 

4.1 Fast scaling algorithm 
Ho and Chan [5] have formulated the scaling 

problem as a mean-square minimization, and the 
resulting estimator consists of two parts: noise filtering 
and sinc function scaling. Sinc function scaling is a 
time-dependent process and requires O(N' )operations, 
where N is the data length. The fast algorithm based on 
the FFT is proposed to reduce the complexity to 
O(Nlog2 N ) .  

Given N = 2N'+1 noisy data samples 
(9) 

we want to find s , (k)  = S ( t / k ] , , k  which are the signal 
samples scaled by a factor of a. The sampling time is 
normalized to unity, and n(k)  is the noise. The number 
of samples of the scaled signal may be more or less than 
N, depending on the scaling factor a. Here, we set the 
scaled signal to have the same number of samples as the 
original signal. In such case, for a < 1 (compression), 

the extra samples are from extrapolating s , ( t ) ,  
whereas for a >l(expansion), the end samples of 
s, ( t )  are not considered. 

The estimate of s,, ?, can be expressed as Hx where 
H is an N x N  matrix. The mean square error is an 
optimal criterion to obtain the operator H. Operating H 
on x can be expressed in two steps: 
s = R,,R;X noise filtering (Wiener filtering) ( 1 0 )  

S, = A,; scaling (1 1) 

The scaling problem can be stated as follows: 

~ ( k )  = ~ ( k )  + n(k) ,  - N ' 5  k 5 N' 

whereA, is a pure scaling operator and 

R, = E{xxT)= R,, + R,, because signal and noise are 
independent. 
Expression ( 1  1) can be expressed as a fast convolution 
(based on FFT): 

j L ; 2  j L ; 2  

where a(i) = S^(i)e ON and p(i) = e nN 
?-. s is the Fourier transform of s^ , defined in the limited 

1 a > l  
a a < l  

range121 I B N / 2  with B = 

Assuming the sequence p ( i )  and its FFT are available 
in memory, the required complex computation in each 
scale is 
1) N operations for a(i) ; 
2) 2 length (2N -1) FFTs and N operations for 

convolving a(i) and p ( i )  ; 
3) 2 N  operations to multiply the convolution sum by 

O(i) and N ( N operations only if p ( i ) /  N are pre- 
computed). 
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The FFT of input s^is needed only once and is not 
counted. Since convolution dominates the 
computational load, the expense to perform one discrete 
signal scaling is the order of 4Mog2(2N) complex 
operations. The reduction in complexity is significant 
when is N large. 

4.2 Parabolic interpolation 
In a more.genera1 case, if the functions W ( U , T )  have 

a convex form in a neighborhood of its maximum, a 
local interpolation is necessary to get a good time delay 
and Doppler estimation. One simple interpolation 
method is parabolic-fitting, which has been used in 
many applications. 

In our application, the parabolic fitting is performed 
near the peak and only requires a few operations. This 
local interpolation can be accomplished by a fast 
technique by determining a 2-D paraboloid 

W ( a , T ) = @ T 2 + @ + p + 6 a + &  (14) 
fitted from only five estimates (five measurements of 
W ( a , z )  around its maximum). It should be noted that 
such an approximate fast interpolation is here very 
important to reduce the tremendous computational cost 
of searching for the minimum over the whole 2-D 
domain. The time delay and time scale can be 
performed as 

(15) 
- -Y 6 

2a 2 P  
d = -  and ;=-- 

Unfortunately, the parabolic-fit interpolation method 
introduces a bias at low sampling rate. It is interesting 
to use other methods as linear filtering to reduce this 
bias. 

5. CONCLUSIONS 
The time delay and Doppler estimation is examined 

on two data sets for simulated and real backscattered 
signals. Different experimental conditions: multiple and 
non-multiple time delay and time scale of the sampling 
rate under different signal-to-noise ratio ( S N R ’ s )  will 
be presented at ICECS’99. We begin by studying the 
performance of the algorithms presented above as the 
signal-to-noise ratio (SNR) varies ( -10 to 30 dB). 
Simulation data was generated using (1) with time 
delays d = 0.5 and d = 2, and time-scale a = 0.988 and 
a = 1.011. The data was corrupted by white Gaussian 
noise with zero mean and standard deviation 0 . The 
signal sequence was chosen to be 

where the time k varies form 0 to 100, and M is a 
constant. 
An other signal considered next is a correlated AR(2) 
signal 
~ ( k )  =1 .16~(k  -l)-O.Sls(k - 1 ) + ~ ( k )  

where E ( k )  is a Gaussian white sequence of power 

The bias and standard deviation of the estimators are 
performed on 100 realizations. 

Experimental evaluation is performed in ultrasound 
domain oriented to source localization and channel 
modeling and system characterization (blood vessel) in 
high signal-to-noise situations. 

In this paper, we have developed a data model for 
time delay and Doppler estimation problem. We have 
revisited the general solution of this problem using the 
maximum likelihood criterion. Our study is focused on 
the scaling problem and the necessity of interpolating. 
The algorithm proposed can be used also when the 
signal ~ ( t )  is random or a filtered noise ( AR signal). 
Preliminary results are very encouraging step for using 
the fast algorithms studied. 

o z .  
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