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Analytical description of the topological interaction between magnetic domain walls in

nanowires
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1Aix-Marseille Université, CNRS, IM2NP UMR7334, F-13397 Marseille Cedex 20, France
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Magnetic domain walls in nanowires behave as particles interacting through the exchange field.
As topological objects, their interaction is determined by their chirality or topological charge. We
investigate analytically the topological repulsion between magnetic domain walls with same topo-
logical charge in nanostripes (with easy-plane magnetization) and show that it decays algebraically,
as r−2, being part of a larger class of interactions that produce topological long-range order in two
dimensions. We compare the topological repulsion between the walls with other type of fundamental
interactions with exponential spatial decay, like the Yukawa-Reid potential, and with micromagnetic
simulations. We determine that trains of such walls can be well described analytically and can be
displaced regularly in nanowires leading to practical applications.

PACS numbers: 75.60.Ch, 75.10.Hk, 75.40.Mg

I. INTRODUCTION

The interaction forces of nature are few and theirs ex-
act spatial variation is difficult to determine from first
principles. In quantum field theory, the fundamental
interactions are mediated by massless spin one parti-
cles like gluons for the strong interaction or photons for
the electromagnetic interaction. In the non-relativistic
case, these interactions are described by an interaction
potential. In practice, some phenomenological model
is often employed as in the case of nucleon-nucleon in-
teraction where a Reid-type (Yukawa) potential is fre-
quently used and compared with experimental results[1].
The Yukawa-type potential is equally used to describe
the inter-particle interaction in strongly coupled systems
like ultracooled neutral plasmas[2] as well as in colloidal
suspensions[3] (the so-called Yukawa systems).
In several condensed matter areas and in field theo-

ries, the more localized excitations of nonlinear systems
are considered as quasiparticles and described within
the collective-variable approach[4]. The interactions be-
tween these quasiparticles, like vortices in superconduc-
tors, which have an equivalent in cosmology (global
strings)[5, 6], decay monotonically as r−2 in thin super-
conducting films or exponentially in the bulk[7]. The ex-
ponential repulsive interaction is also found in more mun-
dane interactions as the one between two pedestrians[8].
In magnetic systems, the interaction potential is dom-

inated at short range by the exchange interaction. The
exchange interaction is model dependent, the most com-
mon model being based on the Heisenberg Hamiltonian,
from which is derived the semi-classical exchange in-
teraction proportional to the square of the magnetiza-
tion gradient. This Heisenberg derived dependence is
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heavily used in numerical calculations of ferromagnets
(micromagnetics)[9].
Domain walls (DW) confined in magnets at the

nanoscale can be considered as particles (macrospins)
which interact through the exchange field. The DWs
in the confined structures are transverse or vortex DWs
depending on the samples dimensions[10]. The DWs are
formed from two or more elementary topological defects
with an integer winding number like vortices in the bulk
or fractional winding number which are half-vortices con-
fined to the edges[11, 12]. In a planar nanowire with in-
plane magnetization (nanostrip), the chirality of the DW
is protected by topology and is also called a topological
charge[13]. A pair of in-plane DWs with opposite topo-
logical charges (opposite fractional edge defects) can be
created or annihilated spontaneously, but a pair of DWs
with the same topological charge form a stable magnetic
texture - a soliton-soliton pair[14] (due to the ”topologi-
cal repulsion”, see Fig. 1(a) where four transverse DWs
with same topological charge are pinned in a nanostrip).
In a 3D cylindrical nanowire, it was shown that a pair
of DWs with the same initial topological charge form a
metastable state that anihilates after a finite time, due
to the relative rotation of the walls[15] and the non con-
servation of the total topological charge. The injection
of DWs in a nanowire with reliable chirality control has
been demonstrated experimentally[16]. The total topo-
logical charge is conserved during DW interaction and
a train of this type of DWs can be displaced jointly in
the nanostrip by a polarized current leading to practical
applications[17, 18].
The interaction potential beteen the DWs can also

be viewed as mediated by the topological defects. The
interaction between vortex DWs was studied analyti-
cally based on the Thiele’s approach in a 2D anisotropic
Heisenberg model[19, 20] and also experimentally[21].
In the majority of cases only the dynamics of one
DW is studied and simulated micromagnetically or the
dynamics of well separated DWs (different nanowires
or nanolayers) that interact through the dipolar field
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[22–31]. In few cases, the DWs interaction in
the same nanowire was studied experimentally and
micromagnetically[32, 33]. Analytically, the interaction
potential between transverse DWs in nanostripes was
considered only based on a the multipole expansion[34],
which was tested numerically for DWs pinned at artifi-
cial constrictions situated at large distances[15, 29, 35]
where the dipolar interaction dominates. To be able to
calculate analytically the dynamics of a train of trans-
verse DWs in a nanowire, a pertinent model should take
into account the repulsive (topological) interaction which
is important at short range.
In this paper we address this issue, establishing the

transverse DW interaction potential using trial models.
We test our phenomenological model numerically on the
fast-dynamics of two, three and four transverse DWs ini-
tially pinned at symmetric notches along a nanostrip, and
submitted to ultrashort current pulses. Our analysis is
similar to the classical model of a 1D chain of interact-
ing particles. In our model, we take into account only
nearest neighbor DW exchange interaction and the dipo-
lar interactions up to the third neighbor. We determine
that a power-law spatial variation of the DW exchange
interaction, of r−2 type, gives quantitatively good results
when compared to the micromagnetic calculations, sim-
ilar with the Heisenberg exchange and the interaction
of superconducting vortices in thin films. In a 2D XY
model, the interaction between charged particles (vor-
tices) was shown to decrease logarithmically rather than
exponentially below a topological phase transition[36].
We compare the obtained power-law behavior with an
exponential or a Yukawa potential and discuss the ob-
served differences in the DWs dynamics and depinning
curents. We also determine that the transient effects re-
lated with the DW inertia-like behavior[37–41], due to
deformation of the DW, diminish when the interaction
between several DWs is considered as symmetric inter-
actions on both sides annihilate the deformations of the
walls. Our study shows that a simple analytical model
gives good quantitative results even when the interaction
between several DWs is considered, paving the way for
calculating phase diagrams in larger memory racetracks.
This article is organized as follows. In Sec. II, we

present the stochastic 1D model used to calculate the
interaction between DWs. In Sec. III, we compute and
investigate the phase diagram of the DW dynamics in
an infinite nanostrip at T=0K and at room temperature.
Concluding remarks are presented in Sec. IV.

II. MODEL

To determine the interaction potential between trans-
verse magnetic DWs, it’s necessary to control the po-
sition and the topological charge of the DWs. In the
following, the position is controlled by pinnig at notches
and the topological charge is fixed initially as the in-
jection with chirality control has already been proven

experimentally[16]. The demagnetizing energy keeps
the topological charge fixed for the DWs up to reason-
able high external applied current. We consider sev-
eral pinned transverse walls with the same topological
charge in an infinite Ni nanostrip (saturation magneti-
zation Ms=477kA/m, exchange stiffness parameter A =
1.05 × 10−11J/m, spin polarization P=0.7) with a cross
section of Ly×Lz = 60×5nm2. No magnetocrystalline
anisotropy is considered, the shape anisotropy insures
that the easy axis is in-plane. The strip has rectangu-
lar symmetric double notches, with dimension 20 × 9
× 5 nm3, and separated by 80nm. Fig. 1(a) shows the
equilibrium position of a train of four neighboring (situ-
ated in neighboring notches at 80nm distance) transverse
DWs: two pairs of head-to-head (HH) DWs and tail-to-
tail (TT) DWs of same chirality (and inverse polarity
at theirs centers) to ensure the topological stability and
repulsion between them. Each DW sits in a potential
well created by the notches[42, 43]. The form of the pin-
ning potential was determined from micromagnetic sim-
ulations and is presented elsewhere[44] (harmonic at the
notches and sinusoidal between them).

The DWs are displaced simultaneously by a series of
periodic spin polarized current pulses applied along the
stripe long axis (x-direction). The geometry of the cur-
rent pulse is described in Fig. 1(b): tr, ts, tf and tz are
the rise, stable, fall time and zero-current time respec-
tively. The nonadiabatic parameter is set to β=2α, if
not specified otherwise.

The DW dynamics was computed using the one-
dimensional DW model[22, 45] considering the DWs in-
teraction and by 3D micromagnetic simulations with the
MUMAX3 package [46]. In both cases, the magnetiza-
tion dynamics is determined from the Landau-Lifschitz-
Gilbert (LLG) equation with adiabatic and non-adiabatic
spin-transfer torques[47]:

ṁ = −γ0m×Heff+α(m×ṁ)−(u·∇)m+βm×(u·∇)m
(1)

where m is the normalized magnetization, γ0 is the gyro-
magnetic ratio, u = jePµB/eMs is the spin drift velocity,
P the spin polarization of conductions electrons, µB the
Bohr magneton and je the applied current density. No
additional exotic torques (like the ones due to the spin-
Hall or Rashba effect) were considered. The tempera-
ture is considered in the LLG equation as a thermal field
added to the effective field. The thermal field has zero
average and is uncorrelated in time and space and its
magnitude is the same as the Gaussian noise introduced
in the 1D model below.

The analytical equations of motion used are based on
the 1D model of the DW (collective coordinates: average
DW center position X and azimuthal angle ψ)[48, 49]:
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FIG. 1: (Color online) (a) Simulated structure with
four magnetic domain walls with same topological

charge are pinned at symmetric notches: two
head-to-head and two tail-to-tail DWs. The fractional
winding numbers of the edge defects are indicated for
each DW. (b) Current pulse shape used to displace the
domain walls.(c) Interaction energy of two domain walls
in a nanowire without notches (symbols) as determined
from micromagnetic simulations. The curves represent

modeling with different trial functions.
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with ∆(t) = ∆[Ψ(t)] = π
√
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the DW

width, Hk the DW demagnetizing field, ηX and ηψ repre-
sent stochastic Gaussian noise with zero mean value and

correlations 〈ηi(t)ηj(t
′)〉 = (2αkBT )/(µ0Ms∆S)δijδ(t −

t′). E is the potential energy of the DW that includes the
internal energy, the interaction energy with other DWs
and the pinning energy. The azimuthal angle of the DW
ψ represents the conjugate momentum in the Lagrangian
formulation. The interaction energy between DWs sepa-
rated by rij was modeled as Eint = Eexch +Emm +Edd,
where

Eijmm =
a2D2

rij
QiQj , E

ij
dd = a3

(

D3

rij

)3

cos(ψi − ψj)

EHexch = a1

(

D1

rij

)2

, Eexpexch = a1e
−rij/D1

EYexch =
a1D1

rij
e−rij/D1 (3)

represent the monopole-monopole (mm), the dipole-
dipole (dd) interaction and the DW exchange interaction
(”topological repulsion”). The topological charge of the
DW is q = 1

π

∫

dx∂xψ = ±1 and is related with the di-
rection of rotation of the in-plane magnetization when
traversing the DW and p = ±1 represents the direction
of the magnetization at the DW center along the y-axis
(width). While both HHDW and TTDW can have a pos-
itive or negative topological charge and direction p, the
product Q = q ·p is always equal to +1 for a HHDW and
to -1 for a TTDW. Therefore, themm and dd interactions
between nearest neighbors HHDW and TTDW of same
topological charge but opposite p directions are always
negative, meaning attractive. We introduce a repulsion
term, in the form of a ”topological” or DW ”exchange”
interaction in a phenomenological manner as shown by
the Eexch terms of Eq. (3). Several trial functions were
used and compared based on the asymptotic behavior of
fundamental potentials, the interaction potential which
correlates best with the micromagnetic simulations is the
r−2 decay. We only considered nearest neighbor DW ex-
change interaction, but mm and dd interaction was con-
sidered up to the third neighbor (see below the discussion
on the displacement of the four DWs).
The parameters ai and Di were determined by com-

paring the obtained phase diagrams with the micromag-
netic simulations. As the number of parameters is large,
the starting values were chosen by fitting the micromag-
netic results obtained for two DWs (a HHDW and a
TTDW) initially situated at 80nm distance in a very long
nanowire of same section and without notches (Fig 1(c)).
The two DWs repel each other at closer distance until
around an equilibrium position of 140nm, beyond which
the interaction becomes attractive due mainly to the long
range dipolar interaction. These initial parameters were
modified in the case of the pinned DWs as to follow
closely the micromagnetic phase diagrams, but the or-
der of magnitude was maintained.
For the micromagnetic computations, the strip was dis-

cretized into a mesh with a cell size of 2×3×2.5nm3, infe-
rior to the exchange length (∼5nm). The DW dynamics
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is studied in an infinity long wire, where the magnetic
charges at the ends of the nanostrip are compensated.

III. RESULTS

Our analysis of the DWs dynamical interaction begins
with the study of the impact of the different interaction
potential trial functions on the phase diagram obtained
when a symmetric pulse (stable time ts - current ampli-
tude je) or an asymmetric pulse (rise time tr - je) are
applied to the pinned DWs at T=0K. Afterwards, the
particularities of the DWs motion at room temperature
are discussed for the different interaction terms. The last
subsection details the influence of the transient displace-
ment on the DWs dynamics.

A. Influence of the DW exchange energy on the

phase diagrams at T = 0K

To evaluate the impact of the different DW exchange
terms on the DWs coupled dynamics, we computed
400×300 point-by-point analytical phase diagrams in-
tegrating the Eqs.(2) with a fourth order Runge-Kutta
scheme. The phase diagrams represent the relative po-
sition of the train of DWs after periodic spin-polarized
current pulses are applied to them. The current pulses
are varied in length, amplitude or shape and the corre-
lated displacement of the DWs is extracted after several
periodic current pulses. When the DWs are displaced
collectively keeping the same relative distance between
them, we consider that an expected and desired state
is realized. These collective regular displacements form
bands depending on the pulse characteristics and the in-
teraction potential between the DWs. The analytical dia-
grams are compared with the micromagnetic ones (24×31
points). As previously determined[44], the range of the
current amplitude was chosen (≤10 A/µm2) as to to have
only viscous motion (no precession) for the pulse duration
used (. 1.5ns), which is on the same order of magnitude
with access or reading/writing time in possible magnetic
memories based on DWs. At high current amplitude or
longer pulse duration, an antivortex appears when a DW
depins from a notch[50, 51]. The antivortex will per-
turb the systematic motion of the DWs and their mutual
interaction. In the results shown below, an antivortex
appears only in a few points in the upper right quadrant
of the micromagnetic phase diagrams (detailed in ref.44)
where the symbols are missing, and does not influence
our results.
Our analysis starts with a train of a HHDW and

TTDW having the same topological charge and situated
in neighboring pinning centers (separated by 80nm). The
initial distance between the DWs ensures that their re-
pulsive interaction is still important as determined from
their equilibrium positions and Fig. 1(c). In Fig. 2
we present the results for various α and β parame-

ters (corresponding to the Ni values at 0K and room
temperature[52]) and several pulse shapes. In the upper
panels, contour plots for the different bands are shown
obtained with the 1D model, while the lower panels
present a superposition of the 1D model diagrams (repre-
sented by colors) with the micromagnetic ones (symbols).
The two DWs move together after a pulse application due
to the spin transfer torque (STT) in the direction of the
electron movement, but the final DW position can be
in the opposite direction due to the transitory motion
(automotion)[37–41]. We indexed the different regions in
the phase diagram based on the relative position of the
two DWs as follows: we call the state 0, when the DWs
stayed in their initial notch (position) after the applica-
tion of the pulse (pinned case), state +1 if the two DW
went to the next notch in the direction of the electron
flow (of the STT) keeping the same distance between
them or state -1 if the two DW went to the next notch
in the direction opposite of the electron flow. The higher
number states were indexed in the same way (+2 means
displacement of both DWs to the second next notch in
STT direction). The state u is an unintended state (like
depinning of one DW), where the DWs do not keep the
initial relative distance between them. This state appear
generally as a transition region between the other states.
As our calculation is done on a finite sample of an infinite
nanostrip, to be able to compare to the micromagnetic
simulations, the number of bands is finite and the upper
right region, that shows an unintended state, correspond
to the DW reaching the nanowire (finite sample) end.
The states were determined after the application of at
least four periodic pulses that displace the DWs between
their initial position and the desired position back and
forth.

As observed in the lower panels of Fig. 2, the 1D
model DW repulsive interaction varying in r−2 (called
DW Heisenberg-exchange) agrees quantitatively with the
micromagnetic simulations up to the third band, after-
wards a small shift appears. In the upper panels, the
contour plots of only the first bands are shown for differ-
ent repulsive interaction and different material and pulse
parameters. In panel (a), for a symmetric pulse shape
(tr=tf=5ps) and α = 0.02 (β=2α), the contour plots
obtained with the three-type of DW exchange interac-
tion are superposed with the results obtained with no
repulsive interaction (dash-dotted line). As can be ob-
served, even in absence of the repulsive interaction, the
two DWs can still be displaced synchronously due to the
periodic pinning potential and the ultrashort pulses, but
the depinning current increases to 3.05 A/µm2 from 2.60
A/µm2 above ts=0.6ns, and the bands increase and are
more deformed. This situation is equivalent with the case
of two DWs initially separated by a larger distance than
the range of the repulsive interaction[53]. The depinnig
current diminishes when an exponential or Yukawa-type
DW exchange is used to 2.21 A/µm2 and 1.87 A/µm2 re-
spectively above ts=0.6ns. The variation of the repulsive
interaction impacts slightly the shape and surface of the
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FIG. 2: (Color online). Contour plots of the different bands obtained for a train of two neighboring DWs with
different type of DW exchange interaction at T=0K using the 1D model are represented in the upper panels (a), (c),

(e) and (g). In the lower panels, the 1D results (colored regions) obtained for a Heisenberg type DW exchange
interaction are compared with the micromagnetic calculations (scattered symbols) for the same pulse characteristics
and α and β parameters as the upper panels. The numbering of the bands is as follows: positive bands correspond
to the DWs moving collectively in the direction of the electron flow with the same initial relative distance between
them, negative numbers to the DWs moving collectively in the opposing direction with the same initial relative

distance between them, zero state correspond to the DWs staying pinned at initial positions and ’u’ to the
unintended states in which the DWs do not move synchronously in either direction. The parameters used are: (a)
and (b) ts variable, tr=tf=5ps, α=0.02, β=0.04, (c) and (d) ts variable, tr=tf=5ps, α=0.05, β=0.1, (e) and (f) tr

variable, ts=tf=5ps, α=0.02, β=0.04, (g) and (h) tr variable, ts=tf=5ps, α=0.05, β=0.1.

upper bands, the most important change is on the de-
pinning current for the symmetric pulse (panels (a) and
(c)). For asymmetric pulses (panels (e) and (g)), where
ts=tf=5ps and the rise time tr is varied, the change in
form and surface of the bands is more important as com-
pared to the symmetric pulses. Increasing the damping
parameter α to 0.05 (with β=2α), as shown in panels (c)
and (g), shifts all the bands to lower currents, including
the depinning value. We used in all the calculations the
same parameters for the mm and dd interaction: a2 =
0.2eV, a3 = 0.02eV, D2 = D3 = 500nm. For the dif-
ferent DW exchange interactions, the parameters used
are: a1=1.2eV and D1 = 350nm for EHexch, a1=20eV and
D1 = 150nm for Eexpexch and a1=90eV and D1 = 150nm
for EYexch. These parameters were chosen to fit best the
micromagnetic depinning line of shortest pulse length.
In-depth details about the comparison between analytic
and micromagnetic calculations are given in the Supple-
mental Material.
The importance of the pulse shape and length was in-

ferred by decoupling the Eqs.(2)[54, 55] :

Ẍ = −
Ẋ

τd
−

1

m

dE

dX
+

β

ατd
u+

1 + αβ

1 + α2
u̇ (4)

with m = 2αSµ0Msτd
∆γ0

the DW mass and τd = 1+α2

αγ0Hk
the

damping time of the wall in the pinning potential. Here,

the damping time is 0.27ns for α = 0.05 and 0.68ns for
α = 0.02, so the third term in Eq. (4) is more important
for higher damping parameter α, resulting in a lower de-
pinning current as observed from Fig. 2(a) and (c) (1.85
A/µm2 compared to 2.60 A/µm2 for Heisenberg DW ex-
change). The depinning current increases to 3.68 A/µm2

(lowest value) in panel (e) and 3.39 A/µm2 in panel (g)
for a longer rise time as the last term of Eq. (4) is directly
proportional to the current derivative. The second term
of Eq. (4) gives a hint to the different depinning current
obtained for various DW exchange forms used.

1. Case of four interacting DWs

The influence of the repulsive interaction between near-
est neighbors DWs was further studied by extending the
analytical calculation up to four DWs of same topologi-
cal charge. We describe here the case of a chain of four
consecutive interacting DWs: we consider the topological
repulsive interaction between first neighbors in the forms
presented above, along with the monopole-monopole and
dipole-dipole interaction between each pair of DWs. The
mm and dd interactions are attractive between first
neighbors, repulsive between second neighbors and at-
tractive between third neighbors. The parameters ai
and Di were kept constant for first-, second- and third-
neighbor mm and dd interactions with the values given
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FIG. 3: (Color online) Influence of the Heisenberg DW
exchange energy magnitude on the bands for a train of
four neighboring DWs for α=0.02 and β=0.04: (a) a1 =
0eV (no DW exchange), (b) a1 = 1.0eV and (c) a1 =
1.4eV. The 1D results (colored regions) obtained for a
Heisenberg type DW exchange interaction are compared

with the micromagnetic calculations (scattered
symbols) at T=0K. The pulse stable time was varied,

with tr=tf=5ps and tz=10ns.

above.

Fig 3 displays the influence of the magnitude of the
DW exchange interaction between nearest neighbors for
α = 0.02 using a Heisenberg-type DW exchange. The
difference between no DW exchange (panel (a)) and a
DW exchange of the same order of magnitude as used
for a train of 2DWs is much more drastic as the depin-
ning current and the band width diminish strongly when
the DW exchange is turned on (panel (b), a1=1.0eV).
A further increase of the DW exchange interaction will
lead to the quasi-suppression of the depinnig current (dis-
placed to lower values), but also of the bands (panel (c),
a1=1.4eV). The analytic results follow very well the mi-
cromagnetic ones for the depinning current line (panel
(b)) and semi-quantitatively the band form, which vali-
dates the model.

To further investigate the consequences of the DW ex-
change interaction type on the DW dynamics, we present
the evolution of the phase diagrams in the Fig. 4 for dif-
ferent pulse shape and damping parameter. The panels
(a) and (b) show the contour plots of the first bands
due to a symmetric current pulse shape (tr=tf=5ps)
and for α = 0.02 and 0.05 respectively, while the pan-

(a) (b)

(c) (d)

FIG. 4: (Color online) Contour plots of the different
bands obtained for a train of four neighboring DWs
(separated by 80nm) with different type of DW

exchange interaction at T=0K using the 1D model: (a)
and (c) α=0.02 and β=0.04, (b) and (d) α=0.05 and
β=0.1. In (a) and (b) the pulse stable time was varied,
with tr=tf=5ps, while in (c) and (d) the raise time was

varied with ts=tf=5ps and tz=10ns.

els (c) and (d) display the case of asymmetric pulse
shape (ts=tf=5ps). In panel (a), the contour plots ob-
tained with the three-type of DW exchange interaction
are superposed with the results obtained with no repul-
sive interaction (shown in Fig. 3(a)). The influence of
the different DW exchange forms is more marked for
the 4DWs, as the depinning current decreases as com-
pared with the 2DWs case, to 1.54 A/µm2 for Heisenberg
DW exchange and below 1 A/µm2 for an exponential or
Yukawa -type DW exchange. In the same time, the supe-
rior bands are displaced to higher currents as compared
to the 2DWs case, for example the begining of the band
+1 to 4.3 A/µm2 from 3.5 A/µm2 (Heisenberg DW ex-
change). This means that higher currents are needed
to achieve a synchronously movement of the DWs and
a larger unintended zone. The surface of the bands is
also strongly reduced when an Yukawa type interaction
is used, which is the most unfavorable scenario. In the
case of the asynchronous current pulse (panels (c) and
(d)), the same shift of the depining current and of the
bands is observed, with a clear difference between the
different DW exchange schemes.

B. Temperature dependence

The effect of temperature was computed with the
stochastic 1D model (Eqs. (2)) for the first bands and mi-
cromagnetically only on several points that corresponded
to the highest probability obtained with the 1D model. A
more detailed comparison between the analytic and mi-
cromagnetic calculated probabilities for the first band in
Fig. 5(a) is shown in the Supplemental Material[53]. The
results obtained analytically at T=293K are presented



7
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(e) (f) (g) (h)

P(%)

FIG. 5: (Color online) Probability of DWs motion in different bands at T=293K, for a train of two neighboring
DWs and a damping parameter α = 0.02 in (a) or α = 0.05 in (b), or a train of four neighboring DWs with α = 0.02
in (c) or α = 0.05 in (d). A Heisenberg-type DW exchange interaction is used along with a non adiabatic parameter
β = 2α. The vertical dotted lines correspond to the probability profile represented in the figures underneath. The

profiles are compared for different types of DW exchange interaction, and are chosen in each case as to pass through
the maximum probability of the first band (the lowest branch in the figures).

in Fig. 5 for a train of two or four DWs. A symmetric
current pulse (tr=tf=5ps) was applied, after an initial
relaxation time of 10ns, followed by another relaxation
time of 10ns. The bands shown in panels (a) and (b)
are the bands of Fig. 2(a) and (b) for Heisenberg DW
exchange, while the bands displayed in panels (c) and
(d) are the ones from Fig. 4(a) and (b) for Heisenberg
DW exchange. We computed 1000 realizations for the
+1 band and 500 realizations for the +2 and +3 bands.
The realizations were calculated for half of the points in
each band for the train of two DWs (panels (a) and (b))
and for all the band points for the train of four DWs (less
total points in the bands).

In Fig. 5(a), the maximum of the probability distri-
bution for the positioning of a train of two DWs to the
nearest notch (+1 band) is of 100% obtained for 7 states
(points) (α=0.02) out of 3093 calculated points, with
29.9% of the states having a probability superior of 95%.
The states that have 100% probability of desired dis-
placement are obtained for a pulse with ts=100ps and
current amplitude superior to 9.1 A/µm2 or ts=110ps
and je ≥ 8.5 A/µm2. The maximum of probability de-
cays in the superior bands, being of 95.6% on the +2
band and 68.8% on the +3 band. These probabilities are
comparable with the ones when a single DW is displaced
by current pulses[44]. Micromagnetically, the maximum
of probability is of 98% (on 100 realizations) obtained for
the same pulse characteristics that give maximum prob-
ability with the 1D model. The discrepancy is probably
due to the small shift of the bands between the two mod-
els. For a damping parameter α=0.05 (Fig. 5(b)), the

maximum of the probability distribution is of 99.9% in
the +1 band obtained for a lower current amplitude of
7.8 A/µm2 and a ts=90ps. The percentage of states hav-
ing a probability superior to 95% is of 30.6% of the 3310
calculated states. The maximum of probability is 91%
and 77% for the +2 and +3 bands.

For a train of four DWs, the maximum of the probabil-
ity distribution in the +1 band decreases slowly to 97.4%
(α=0.02, panel (c)) and 96.2% (α=0.05, panel (d)). The
probability maximum in the +2 and +3 band is 76.8%
and 28.2% respectively for α=0.02 and 70% and 47.8%
for α = 0.05 case. The current pulse characteristics for
which the probability maximum is obtained are (ts=90ps,
je = 9.9 A/µm2) for α=0.02 and (ts=90ps, je = 7.8
A/µm2) for α=0.05. The probabilities when an asym-
metric pulse is applied are almost equal with the ones
obtained for symmetric pulses for all the cases presented
above.

In the Fig. 5(e)-(h), we compare the profiles of the
probability distribution when passing through the maxi-
mum of the probability in the +1 band for the different
DW exchange energies considered. The profiles corre-
sponding to r−2 DW exchange are represented by a dot-
ted line in the panels directly above them. There is a
considerable difference in the probabilities of a train of
two DWs and a train of four DWs: for the two DWs
(panels (e)-(f)), the probability maximum is almost the
same in the three bands for the different DW exchange
interactions with only a shift of the bands along the ts
axis. For the train of four DWs (panels (g) and (h)), the
probabilities depend strongly on the spatial variation of
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the DW exchange interaction. For the α=0.02 case, the
maximum probability in the +1 band decreases to 64.1%
for the exponential DW exchange and to 17.5% for the
Yukawa-type interaction. For α = 0.05, the maximum
probability is 79.1% for the exponential DW exchange
and 46.3% for the Yukawa-type interaction. This differ-
ence can be related to the first two terms in Eq. (4), to
the damping parameter through the different damping
time and to the force exerted on the walls due to the
interaction energy between them. The large difference
in probability of the +1 state between the Heisenberg
DW exchange and Yukawa DW exchange is directly im-
putable to the type of the repulsive energy between the
DWs[53], generally the first DW depins even before the
application of the current due to the large angular varia-
tion and therefore large transient effects directly related
with the oscillation of the second DW (and their mutual
interaction).

C. Influence of transient effects on the DW

dynamics

Large transient effects were predicted and observed in
the movement of one DW in a nanowire[37, 38, 44, 56].
These transient effect were related to the deformation
of the wall in the periodic potential and produced a dis-
placement of the wall in the direction opposite to the STT
(opposite to the electron flow), corresponding to negative
bands in our phase diagrams. The transient movement
was determined to be proportional to the wall angle:

δX = −
∆

α

(

1−
β

α

)

δψ (5)

The transient displacement was predicted to appear for
a value of the nonadiabatic parameter β = 0, β = α and
even β = 2α for a single DW submitted to ultrashort cur-
rent pulses[44] comparable with the DW damping time
τd. In the case of interacting DWs, these transient effects
still appear as is shown in Fig. 6, but they are greatly
reduced (which seem to agree with a quantum-classical
hybrid approach[57]). For a train of two DWs, the tran-
sient effects appear only for β=0 (or close to) when a
symmetric pulse is applied (details in Ref.53) and even
for β = 2α (α=0.02) for an asymmetric pulse when the
rise time is larger than 0.35ns. However, for a train of
four DWs, the transient effects appear only in the case β
= 0 and a rise time superior of 0.5ns forming a reduced
-1 band. These effects still appear even for a train of five
DWs (Fig. 6(i)), with the -1 band shrinking rapidly.
The transient effect appear due to a combination of

factors[44]: the presence of the periodic pinning poten-
tial which distorts the DWs, restoring force in the po-
tential well, position of the DWs in the potential well at
the pulse end and a low damping value. For the train of
four DWs, the walls that are situated at the interior of

the train are less distorted than the ones which are situ-
ated at the beginning and the end of the sequence as the
interior walls fill symmetric interaction forces from both
neighboring walls and are situated to the center of the
potential well. The exterior walls are more deformed as
they are pushed from the equilibrium position of the po-
tential well and they escape first from the train creating
unintended states.
The results obtained with the analytical model for a

train of two DWs are displayed in Fig. 6(a) to (c), for
the different DW exchange interactions and different ini-
tial distance between the DWs (α=0.05, β = 0). When
the two DWs are initially pinned in nearest neighboring
notches situated 80 nm apart, the -1 band is obtained
only for Heisenberg DW exchange and only for currents
inferiors to 7.7 A/µm2. There is a discrepancy with the
micromagnetic result shown in panel (d), where the -1
band continue to higher currents for shorter pulse length.
If the two DWs are initially pinned at second neighboring
notches 160nm apart (panel (b)), the -1 band obtained
analytically follows closely the micromagnetic one (panel
(e)) even though somewhat larger. In this case the -1
band is obtained also for exponential DW exchange. Fur-
thermore, if the two DWs are pinned initially even further
away at third neighboring notches 240nm apart (panel
(c)), the -1 band is obtained for all three types of DW
exchange interaction with almost same band width and
form and very close to the micromagnetic result (panel
(f)). As the two DWs are further away, the DW ex-
change interaction have only a limited influence and the
dipolar interaction determines the form of the bands. We
observe that the DW exchange interaction at shorter dis-
tances modifies the width and form of the band. For a
train of three, four or five DWs, the -1 band is still ob-
tained micromagnetically as shown in the panels (g) to
(i). Analytically, we didn’t obtained the -1 band for nei-
ther of the DW exchange interactions for trains of DWs
superior of two and the parameters used above. This can
be related to the smallness of the bands width and to the
values of the DW exchange parameters, but also to the
pinning potential analytical description (harmonic peri-
odic potential). Changing the DW exchange parameters
allows to obtain the negative bands but the depinning
line no longer follows the micromagnetic result and dif-
ferences are obtained for the others values of α and β.
The values for the DW exchange and dipolar parame-
ters were chosen to follow closely the depinning line and
the first bands for β=2α. These parameters give semi-
quantitative results even for β=0 (the depinning line for
example), but the limit of the 1D model is reached.

IV. DISCUSSION AND CONCLUSION

We investigated the repulsive interaction between
transverse DWs with the same topological charge, pinned
at constrictions in a magnetic nanowire. Our analytical
study of the DW interaction shows that a r−2 decay de-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 6: (Color online) Influence of the pulse raise time tr on the phase diagram for a train of several DWs at T=0K
for α = 0.05 and β = 0. The parameter space is the raise time vs. current amplitude. In all cases, ts = tf = 5 ps
and tz = 10 ns. The 1D model results for different DW exchange energies are shown in panels (a) to (c) for a train

of 2DWs separated by: (a) 80nm, (b) 160nm and (c) 240nm. Only the band -1 is visible in the center of the
diagram, together with the depinning boundary. The micromagnetic results are presented in the panels (d) to (i),

where the band -1 is represented by a continuous line and the limit of the band 0 by the dotted line. The
micromagnetic simulations are for a train of two DWs separated by: (d) 80nm, (e) 160nm and (f) 240nm and a train

of (g) three DW, (h) four DW and (i) five DW separated by 80 nm.

scribe best the micromagnetic results. The same power
law variation was found to describe the vortex-vortex
interaction in superconducting films[7], but differs from
the vortex-vortex interaction in bulk superconductors or
the magnetic vortex-vortex interaction calculated in a 2D
anisotropic film (which decays logarithmically). Our trial
functions for the interaction potential also included an
exponential or Yukawa potential, which describe a large
number of interaction forces in many areas of condensed
matter physics (in discrete or continuum models).

The analytical phase diagrams for a train of up to four
DWs follow closely the ones calculated with micromag-
netic simulations, when the r−2 decay is used. If the
repulsive interaction would decay with an Yukawa po-
tential, the changes to the phase diagrams are important
starting from the depinning current and the form of the
bands to the large decrease in the maximum jump prob-
ability to the nearest pinning position (the +1 band) at

room temperature and the suppression of the transient
effects. The Yukawa-type repulsive interaction between
DWs is the most unfavorable scenario for the collective
motion of DWs in a nanostrip at room temperature.

A train of four DWs is shown to be displaced regu-
larly between pinning centers, with ultrashort current
pulses (100ps), leading to practical applications like mag-
netic memories. The lowest depinning currents are found
for the ultrashort rise time of the pulse as described
before[44] as long as the largest bandwidth. When going
from a train of two nearest neighboring DWs to a train
of four, the main impact is the decrease of the depinning
current, but in the same time a decrease of the bandwidth
and an increase of the unintended region with larger tran-
sition regions between the bands. The transient effects
are also severely diminished due to the mutual interac-
tion and are eventually suppressed.

We would like to discuss our results on the repul-
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sive interaction between DWs from the spin waves per-
spective. The spin waves or magnons are the elemen-
tary excitations of the electronic magnetic system[58],
quasiparticles with a ~ angular momentum and ~k lin-
ear momentum. It was shown both theoretically[59–64]
and experimentally[65] that the spin waves can induce
DW motion in both directions due to the angular or lin-
ear momentum transfer. The motion is directly related
with the transmission coefficient of the spin waves pass-
ing through the wall. It was also shown numerically,
that the rigid DW motion is not stable against spin wave
emission[66–69]. In principle, a DW submitted to an ul-
trashort current pulse could emit spin waves that inter-
act with other DWs. This interaction will be attractive if
only the angular momentum is transferred to the second
DW (magnonic spin torque) or more complex if linear
momentum is also transferred. The repulsive interaction
considered here is thought to be mediated through the
exchange of gauge bosons of integer spin which could be
virtual magnons. A DW would emit a magnon that is
absorbed by another DW of opposite topological charge,
therefore inducing the repulsive interaction which is a
fundamental interaction that exists with or without the
presence of notches or an applied external current. If the
DWs could rotate out-of-plane, one of the DWs could

change its topological charge and the interaction can be-
come attractive as observed in cylindrical nanowires[15].
In our view, this can be demonstrated exactly only in a
microscopic theory and can not be proved in a continuum
theory. In our micromagnetic simulation this interaction
arises due to the exchange energy term and is described
analytically like an exchange interaction between DWs
(which can be described as a magnon spin current).

In summary, our calculations show that an analyti-
cal description of the interaction between several DWs is
possible paving the way for larger calculations of inter-
acting DWs in nanowires. We expect the same type of
dependence to take place between Bloch or Neel DWs in
thin films with perpendicular magnetic anisotropy.
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Equip@Meso (ANR-10-EQPX-29-01) of the program ”In-
vestissements d’Avenir” supervised by the Agence Na-
tionale pour la Recherche.

[1] R. Machleidt and I. Slaus, J. Phys. G: Nucl. Part. Phys.
27, R69 (2001).

[2] P. K. Shukla and K. Avinash, Phys. Rev. Lett. 107,
135002 (2011).

[3] K. Kremer, M. O. Robbins, and G. S. Grest, Phys. Rev.
Lett. 57, 2694 (1986).

[4] R. Boesch, P. Stancioff, and C. R. Willis, Phys. Rev. 38,
6713 (1988).

[5] H.B.Nielsen and P.Olesen, Nucl. Phys B 61, 45 (1973).
[6] M. B. Hindmarsh and T. W. B. Kibble, Rep. Prog. Phys.

58, 477 (1995).
[7] A. L. Fetter and P. C. Hohenberg, Phys. Rev. 159, 330

(1967).
[8] D. Helbing, Rev. Mod. Phys. 73, 1067 (2001).
[9] W. F. Brown, Micromagnetics (Interscience Publishers,

New York, London, 1963).
[10] R. D. McMichael and M.J. Donahue, IEEE Trans. Magn.

33, 4167 (1997).
[11] J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid

State Phys. 6, 1181 (1973).
[12] O. Tchernyshyov and G.-W. Chern, Phys. Rev. Lett. 95,

197204 (2005).
[13] S. K. Kim, S. Takei and Y. Tserkovnyak, Phys. Rev. B

92, 220409 (2015).
[14] S. B. Braun, Adv. Phys. 61, 1 (2012).
[15] V. O. Dolocan, Eur. Phys. J. B 87, 188 (2014).
[16] A. Pushp, T. Phung, C. Rettner, B. P. Hughes, S.-H.

Yang, L. Thomas, and S. S. P. Parkin, Nat. Phys. 9, 505
(2013).

[17] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320,
190 (2008).

[18] D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson,

D. Petit, R. P. Cowburn, Science 309, 1688 (2005).
[19] A. R. Völkel, F. G. Mertens, A. R. Bishop, and G. M.

Wysin, Phys. Rev. B 43, 5992 (1991).
[20] A. R. Völkel, G. M. Wysin, F. G. Mertens, A. R. Bishop,

and H. J. Schnitzer, Phys. Rev. B 50, 12711 (1994).
[21] K. S. Buchanan, P. E. Roy, M. Grimsditch, F. Y. Fradin,

K. Yu. Guslienko, S. D. Bader, and V. Novosad, Nat.
Phys. 1, 172 (2005).

[22] A. Thiaville and Y. Nakatani in Spin Dynamics in Con-

fined Magnetic Structures III, edited by B. Hillebrands,
and A. Thiaville (Springer, Berlin, 2006).
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FIG. S1. (Color online) Contour plot of the first bands obtained for a train of two DWs when

situated at nearest neighboring pinning centers (80 nm distance) with the topological repulsion

(DW exchange term) set to zero and when a power law r−2 DW interaction is considered but

the DWs are situated at next-to-nearest neighbors (160 nm distance) or next-to-next-to-nearest-

neighbors (240 nm). The parameters used are: tr = tf = 5 ps, α = 0.02, β = 2α.

I. INFLUENCE OF THE DOMAIN WALLS DISTANCE ON THE PHASE DIA-

GRAMS

When two domain walls are situated at nearest neighbor pinning centers (at 80 nm), the

phase diagrams stable time ts – current amplitude je are presented in Fig.2 of the main text

for different topological interaction types. The topological interaction decays faster than the

monopole-monopole interaction between the DWs, and at larger distances has lesser impact

(due mainly to the demagnetizing field). This is detailed in Fig. S1, where the contour plot

of the first three bands (and the depinning line) is compared for a train of two DWs situated

at first neighboring pinning centers (80nm) without taking into account the repulsive DW

exchange interaction with the cases when the two DWs are situated at larger distances

at second neighboring pinning centers and third neighboring pinning centers (160 nm and

240 nm respectively) with the DW exchange interaction on. The model used for the DW

exchange interaction is the power law dependence r−2 (called Heisenberg DW exchange). We

see that further away, the bands become more and more comparable with the case without

exchange, even though a discrepancy still exists, especially in the depinning barrier at low

2



ts.

II. COMPARISON BETWEEN THE ANALYTIC PHASE DIAGRAMS AND MI-

CROMAGNETIC ONES AT T=0K

The comparison between the phase diagrams obtained by analytic calculations (colors)

and the ones obtained by micromagnetic simulations (symbols) are presented in Fig. S2 and

Fig. S3 for a train of two neighboring DWs and a train of four neighboring DWs respectively.

The phase diagrams were computed for a symmetric current pulse with tr = tf = 5 ps and

for an asymmetric current pulse with ts = tf = 5 ps. The damping parameter α and the

non-adiabatic parameter β used are indicated on each figure. The analytic phase diagrams

were determined using a Heisenberg r−2 type DW exchange interaction. The micromagnetic

diagrams are calculated up to a ts or tr of 1.2ns and the missing points in some cases for

a pulse length inferior to 1.2ns are due to a DW reaching the nanowire end at short pulse

length or some special unintended states where two DWs collapse as the magnetization

escapes through the third dimension1,2, the magnitude and length of the current being large.

These cases appear usually at β=0 (normally above the Walker threshold), an example is

shown in the video section.

Generally, a good agreement is obtained, with the exception of a few cases like the negative

states at low α for a train of two DWs. The parameters Di and ai are given in the main text

and are chosen as to follow closely the depinning line at short current pulse length. In the

case of four DWs (Fig. S3), the agreement of the depinning line is very good in almost all

of the cases, the only discrepancy is the state -2 on the α=0.05, β=0 diagram as discussed

on the main text.

III. INFLUENCE OF THE DW EXCHANGE INTERACTION ON THE DW PO-

SITION

In Fig. S4, the difference between the Heisenberg DW exchange and Yukawa-Reid DW

exchange interaction is detailed for a train of two DWs submitted at same current pulse.

The current pulse corresponds to a +1 state in the micromagnetic simulations (Fig.2 of the

main text). The +1 state is obtained for a Heisenberg DW exchange (panels (a) for first
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FIG. S2. (Color online) Phase diagrams of a train of two DWs situated at neighboring pinning

centers, for different pulse and material parameters. The analytical calculation with the Heisenberg

DW exchange interaction (colors) is superposed on the micromagnetic calculations (symbols).

DW and panel (b) for second DW), with the DW azimuthal angle oscillating around its

equilibrium value (in-plane direction) for both DWs. At the end of the current pulse (the

circular dot in each panel), the DW angle for both DW already oscillated once around the

equilibrium position and the DWs position exceeds a little bit the equilibrium position of

the pinning center, but the DWs stay in their intended positions. For a Yukawa-Reid DW
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FIG. S3. (Color online) Phase diagrams of a train of four DWs situated at neighboring pinning

centers, for different pulse and material parameters. The analytical calculation with the Heisenberg

DW exchange interaction (colors) is superposed on the micromagnetic calculations (symbols).

exchange, the DWs angle at the end of the pulse oscillates but stays on the same side of the

equilibrium position and still increases after the pulse end. The DWs position is close to

the top of the potential barrier, further away from the equilibrium position compared with

the Heisenberg DW exchange. The DWs have enough momentum to pass to the second

neighboring position giving a +2 state after one pulse, but an unintended state after two
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FIG. S4. (Color online) DW angular variation, position, velocity and acceleration for the first DW

in (a) and (c) and second DW in (b) and (d) from a train of two neighboring DWs computed with

the same pulse characteristics for a Heisenberg type DW exchange (a) and (b) and Yukawa-Reid

type DW exchange in (c) and (d). The pulse parameters are: tr = tf = 5 ps, ts = 350ps and je

= -4 A/µm2 which correspond to a +1 state with α = 0.02 and β = 2α. The Yukawa-Reid DW

exchange gives a +2 state after one pulse, but an unintended state after several periodic pulses.

The dotted lines in the angular variation panels represent the ±10◦ around the equilibrium value,

while in the position panels the dotted lines represent the position of the pinning centers in the

nanowire. The current pulse shape is superimposed on the position panels. The dot represents the

end of the pulse.

periodic pulses like in the main text.

IV. COMPARISON BETWEEN THE ANALYTIC PHASE DIAGRAMS AND MI-

CROMAGNETIC ONES AT T=293K

The comparison between the DWs probabilistic motion at T=293K, calculated with the

analytic model (small dots) and by micromagnetic simulation (large dots), is shown in Fig. S5

for a train of 2 DWs and a damping parameter α = 0.02 (β = 2α). Micromagnetically, the
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FIG. S5. (Color online) Probability of DWs motion in the +1 band for a train of two neighboring

DWs at T=293K. The damping parameter is α = 0.02 and β = 2α. The micromagnetic results on

30 band points (large squares) are superposed on the analytical results on 3093 band points (small

points - almost continuous).

stochastic motion was calculated on 30 points of the +1 band, shown in the Fig.2(a) of the

main article at T=0K, and on 100 realizations/point. The 1D calculated stochastic motion

was on 3093 points and 1000realizations/points and was already presented in the Fig.5(a)

of the main article. The maximum probability is 100% on 7 points for the 1D computation

and 98% on 6 points for the micromagnetic one. The micromagnetic stochastic simulations

are much more time consuming, therefore we only calculated the stochastic probabilities on

few points for the other cases.

V. MICROMAGNETIC SIMULATIONS – VIDEOS

Two videos are presented with their names self-explanatory. In each video, two current

pulses are applied: one at the beginning and another one after 10ns to bring the DWs at

their initial position. The total simulation time is of 20ns. The current pulse is asymmetric

with ts = tf = 5ps different tr. The damping parameter α = 0.05 and β = 0.

• One video that presents the unintended state of a train of four DWs due to the out-
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of-plane rotation of the DW angle leading to the annihilation of two DWs. The pulse

parameters are tr = 1.15 ns and je = -9.7 A/µm2.

• One video that presents the -1 state for the same train of four DW. The pulse param-

eters are tr = 0.55 ns and je = -6.1 A/µm2.
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