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Chapter 12 Survival Analyses 

Sarah Cubaynes, Simon Galas, Myriam Richaud, Ana Sanz, Roger Pradel, Giacomo 

Tavecchia, Fernando Colchero, Sebastien Roques, Richard Shefferson, Carlo Giovanni 

Camarda 

 

Introduction 

Fitness differences among individuals are the bedrock of ecological and evolutionary dynamics 

(Stearns 1992). Survival is without doubt one major component of fitness, which makes of 

survival analyses a key tool for demographers, ecologists and evolutionary biologists (Metcalf 

and Pavard 2007). 

Assessing survival is not always an easy task. This is because individuals die only once 

in a lifetime, therefore precluding repeated measurements on the same individual, and death is 

rarely directly observed. However, a diversity of monitoring techniques exists to gather 

survival data for species across the tree of life, from short-living lab organisms, plants 

exhibiting dormancy, to long-living and elusive wild vertebrates (see chapter 4). Each 

monitoring technique leading to a peculiar type of survival data, a plethora of methods exist to 

estimate survival, from simple non-parametric estimators, to more or less complex semi-

parametric and fully parametric models fitted in a continuous or in a discrete manner (reviewed 

in e.g. Wienke 2010, Miller 2011, Klein et al. 2016, Canudas-Romo et al. 2018, Cox 2018). 

The choice of method is guided by the type of survival data (e.g. collecting age at death or 

monitoring live individuals with perfect or imperfect detection), the species life-history (e.g. 

single or numerous stages or ages) and the environment it experiences (e.g. controlled 

conditions versus variable environments).  

The aim of this chapter is not to provide another extensive review of the existing 

techniques for survival analyses, but rather to illustrate and contrast the most commonly used 



methods to estimate survival across the tree of life. The focus is placed on seven case studies 

of survival analyses in lab organisms, free-ranging animal and plant populations and in human 

populations. While it is relatively straightforward to gather survival data and assess survival 

using simple models under controlled lab conditions (Klein 2016; see section 2), monitoring 

survival in free-ranging populations often require more sophisticated capture-mark-recapture 

(CMR) techniques to deal with imperfect detection of individuals (Williams et al. 2002, see 

section 3). Indeed, survival data are often ‘incomplete’ in free-ranging populations, timing and 

cause of death can be hard to assess, and multiple environmental factors are at play in 

influencing survival (see section 3, see also chapter 4 and 5). Humans are an exception, with 

the existence of several consequent databases with perfect knowledge of age and cause of death 

for several human populations, such as the Human Mortality Database (2019). A great diversity 

of mortality models has been developed specifically to analyse age at death data in human 

demography (e.g. Canudas-Romo et al. 2018, see section 4).  

 

1. What is survival analysis and why do we need it?  

1.1. Time matters 

Survival analysis is used to analyze the time up to a specific event is going to occur. The event 

is generally death, but can be of another kind (e.g. reproduction, migration, or exposure to a 

pathogen). Survival data usually involve following a set of individuals over a specific period 

of time and recording the time of occurrence of the event of interest.  

1.2. Censoring and missing data 

By nature, survival data have some particularities: survival cannot take a negative value, 

survival data are often censored, and missing data are frequent. Right censoring occurs when 

an individual remains alive after the end of the study or drops out of the study, e.g. due to 

permanent emigration (Klein et al. 2006). Left-censoring occurs when we cannot observe the 



time when the event occurred, e.g. an individual was already exposed to a pathogen before the 

study started (Klein et al. 2006). Other types of missing data are common, because individuals 

cannot always be observed at all occasions (see chapter 4 and section 3). We need survival 

analyses to avoid introducing bias, because ordinary linear regression cannot effectively handle 

the censoring of observations and missing data (but see section 3).  

1.3. Known fate data versus imperfect detection 

In presence of data referred to as ‘know-fate’ data, survival can be modelled in a continuous 

manner using continuous distributions (e.g. Gompertz, Weibull, Makeham, Siler). The survival 

function S(t) is the probability that an individual survives up to a certain time t. The hazard 

function h(t) represents the instantaneous event rate for an individual who has already survived 

to time t. Both functions are related, the hazard relates to the death rate, while survival reflects 

its cumulative non-occurrence. One might choose to model survival when the data involve 

counts of individuals alive at different points in time while mortality models can be preferred 

to model age at death data.  

Alternatively, CMR models are used to estimate survival when the data involve 

individuals missing at certain monitoring occasions, and unknown time at death (Lebreton et 

al. 1992, see chapter 4). CMR models involve estimating survival probability in between 

consecutive occasions as a function of a set of covariates, while accounting for the imperfect 

detection of individuals at each occasion (e.g. a marked individual might be present in the study 

area at a given occasion, but missed). Fully parametric or semi-parametric approaches are 

available to model survival, transition, or detection in CMR models (examples in section 3).  

In both cases, survival or mortality can be modelled using a non-parametric (see 

example in section 2), semi-parametric (see example in section 4) or fully parametric model 

(see examples in section 3 and 4). 

  



2. Survival analyses in the lab: when it’s (almost) all under control  

2.1. Monitoring survival in the lab 

In the lab, gathering survival data usually involve counting the number of individuals alive at 

different times or simply collecting the exact time at death. Collecting survival data is generally 

easier than in the wild because individuals are available for monitoring at all times during the 

study, and the influence of external variables is limited and often controlled. A common 

objective is to analyse differences in survival functions between groups of individuals that 

present different characteristics, e.g. various genotypes; groups of individuals exposed to 

various treatments; age, sex, and life history differences. 

2.2. Kaplan-Meier estimator and log-rank tests 

Laboratory experiments generate data sometimes referred to as ‘known fate’ data, in which the 

probability of detection is 1 and thus does not need to be accounted for when estimating 

survival. The survival function S(t), is usually estimated using the non-parametric Kaplan-

Meier (KM) estimator (Kaplan and Meier 1958). For each time interval, it is calculated as the 

number of individuals surviving divided by the number of individuals at risk. Censored 

individuals who have dropped out of the study are not counted in the denominator. The 

cumulative survival probability is calculated by multiplying probabilities of surviving from 

one interval to the next. A plot of the KM survival probability against time provides a useful 

summary that can be used to estimate parameters such as median survival time (Figure 1). The 

smaller the time intervals, the smoother the survival curve.  

[Figure 1 about here] 

Graphically, a vertical gap between the survival curves of different groups means that 

at a specific time point, one group has a greater fraction of individuals surviving while a 

horizontal gap means that it took longer for one group to experience a certain fraction of deaths 

(Figure 1). The log-rank test (Peto et al, 1977) is often used to compare the survival 



distributions of two or more groups. It is a non-parametric test based on a chi-square statistic, 

which makes no assumptions about the survival distributions. It assumes that the groups have 

the same survival as the null hypothesis. When the log-rank statistic is large, it is evidence for 

a significant difference in the survival times between the groups. 

KM curves and log-rank tests are very useful in assessing whether a categorial covariate 

(e.g. treatment A vs. treatment B; males vs. females) affects survival. However, it does not 

allow investigating the effects of multiple or continuous covariates (e.g. weight, age) and to 

know how much more at risk one group is than another. 

2.3. Cox’s proportional hazards to adjust for covariates 

An alternative method is the Cox’s proportional hazards regression analysis (Cox, 1972). It is 

a semi-parametric method, which can be used to assess simultaneously the effect of several 

risk factors (both categorial and continuous covariates) on survival time. It is analogous to a 

multiple regression in which the response variable is the hazard measuring the instantaneous 

rate of the event. It assumes a constant proportional hazard across groups over time, i.e. the 

ratio of the risk of dying at a particular point in time in one group over another group is constant 

over time. Proportionality tests are used to evaluate this assumption (e.g. Miller 2011, see 

Supplementary Information S1 for an example). Models allowing for different assumptions, 

such as accelerated failure time (AFT) models, are discussed for example in Kirkwood and 

Sterne (2003) and Klein et al. (2016). 

2.4. Example of a stress assay in an unconventional resistant organism: the tardigrade  

Tardigrades hold their own phylum that stands in between the phylum Arthropoda and 

Nematoda (Image 1). They are renowned organisms for their ability to cope with the harshest 

environments, such as exposure to organic solvents, extreme temperatures (rom -272 to 151°C) 

or high radiation doses, at any stage of their life (e.g. Jönsson et al, 2005). Most notably, some 



tardigrades have survived a ten days flight in the vacuum of space, and at a depth of 180 km 

below the surface of the earth (Ono et al. 2016). However, it seems that the genetic “toolbox” 

that ensures the uncommon resistance of these organisms to extreme stress is not shared by all 

tardigrade species. The resistance of tardigrade species can be assessed and compared under 

controlled conditions in the lab.  

[Image 1 about here] 

In this example, we illustrate the use of KM survival curve and log-rank test to evaluate 

the effect of the chemical stressor on tardigrades survival time. We use a Cox Proportional 

Hazard model to assess the effect of the chemical stressor while taking into account tardigrades 

age. Full procedure including data and R script to run the analysis using the R package survival, 

are provided in Supplementary Information S1.  

 

3. Survival analyses in the wild: dealing with uncertainty and variable environments 

In free-ranging animal and plant populations, CMR field methods are generally used to gather 

survival data (procedure described in chapter 4). A plethora of CMR models exist to estimate 

demographic parameters (including survival, access to reproduction, dispersal) while 

accounting for imperfect detection of individuals (e.g. Lebreton et al. 1992, Williams et al. 

2002, Schaub et al. 2004, Pradel et al. 2005).  

Hereafter, we introduce principle of CMR analysis and the main types of CMR models. We 

then provide an overview of their use in animal and plant demography with step-by-step study 

cases. 

3.1. Overview of CMR models  

3.1.1. Principle 

Within a typical CMR protocol designed to estimate survival probabilities, individuals are 

sampled on discrete occasions (often ≥3 occasions), at which they may be detected or not. Data 



collected in the field is then encoded into encounter histories organized by individual or cohort 

(see details in White and Burnham 1999). The simplest way to codify the encounter histories 

is by using binary codes “1” and “0” specifying if the individual has been detected or not. 

However, when additional information reflecting the state of the individual (e.g. breeder vs. 

non-breeder, different resighting sites, epidemiological states) is collected, encounter histories 

may include additional codes (see multistate and multievent capture-recapture frameworks 

below). Moreover, individual covariates can also be recorded and included at the end of the 

individual encounter histories either in order to categorize individuals (e.g. males and females, 

age class, different populations) or by indicating a particular quantitative individual trait (e.g. 

size) (White and Burnham 1999). 

Models for the analysis of capture-mark-recapture data are classically based on 

multinomial distributions that describe on one hand the biological processes and on the other 

hand the observational processes, conditional to the biological ones. In the simplest case, the 

probabilities involved are, i, probability of surviving the time interval i, i+1 and pi the 

probability to detect a live individual at occasion i. More complex models (see section 3.4.2 

and 3.4.3 below) actuate multinomial rather than binomial biological processes and 

observational processes but the basic structure remains the same.  

3.1.2. Single-state models 

The Cormack-Jolly-Seber (CJS) model was the first CMR model (with an earlier 

formulation: the Jolly-Seber (JS) model; Jolly 1965, Seber 1965) to allow the estimation of 

demographic parameters under the assumption of an open population (i.e. open to birth, 

immigration, death, and emigration, a.k.a. B.I.D.E. models). Under the CJS approach, apparent 

survival (i) is the probability that an individual alive at time i will be alive at time i+1, while 

resighting (pi) is the probability that an individual alive and present just before time i is seen 

(and marked) on that occasion (Lebreton et al. 1992). Apparent survival is generally not 



referred to simply as ‘survival’ because it may be confounded by permanent emigration of 

marked individuals out of the study site, and by long-term vegetative dormancy in plants. 

Further, apparent survival is the probability to survive during the interval between two 

monitoring occasions and thus not at a specific monitoring occasion. In contrast, resighting is 

an estimator of detection of previously seen individuals during the monitoring occasion. 

CMR models rely on several assumptions, the most important of which are that marked 

individuals are independent, tags are not lost, and the past history does not influence the fate 

of the individual (i.e. no trap response or negative effect of capture on survival). Pollock et al. 

(1990) developed a series of goodness-of-fit tests based on contingency tables for the CJS 

model to assess the validity of the assumptions. Later, directional tests for the detection of 

specific effects were derived (trap-dependence, Pradel 1993; transients, Pradel et al. 1997). The 

availability of informative goodness-of-fit tests makes the CJS model a common ‘umbrella’ 

model in model selection procedure (Lebreton et al. 1992). The CJS model can be easily 

expanded to age-dependent parameters when new animals are released at different ages or in 

multiple cohorts, or reduced assuming parameters are constant over time (examples in Lebreton 

et al. 1992).  

The CJS model, and its extensions, have been, and still are, extensively used in the 

ecological literature as they provide a suitable analytical framework to address multiple 

questions that tackle variability in survival over time (Lebreton et al. 1992), with external 

covariates (e.g. Grobois et al. 2008), changes in recruitment probabilities (e.g. Pradel and 

Lebreton 1999), recapture processes (e.g. Sanz-Aguilar et al. 2010) or evolutionary trade-offs 

(Tavecchia et al. 2001). However, the CJS model is based on capture-recapture data obtained 

from a single population and cannot explicitly frame observations of animals moving across 

multiple sites or between relevant biological states.  

3.1.3. Multi-state models 



Mutli-state models extend the CJS model by making the parameters state-specific 

(Arnason 1973; Schwartz 1993). Thus, apparent survival (i
jk) is now the probability that an 

individual alive in state j on monitoring occasion i survives to occasion i+1 and, during the 

latter occasion, transits to state k. This parameter may be decomposed into two parameters 

unseen in the CJS model: state-specific survival (Si
j) and state-transition (i

jk). Here, state-

specific survival (Si
j) is the probability that an individual alive in state j at monitoring occasion 

i survives to monitoring occasion i+1, irrespective of the state of the individual at the latter 

occasion. State-transition (i
jk) is the probability, conditional on survival, of changing or 

moving from state j at time i to state k at time i+1 assuming that the individual survived the 

interval between the two occasions. Additionally, multi-state models estimate resighting (pi
j), 

defined as the probability that an individual alive and in state j at monitoring occasion i is also 

observed in that occasion. 

This multisite-multistate formulation allows to address questions on survival and 

movement probabilities in metapopulation systems (e.g. Balkiz et al. 2010), but it also provides 

a suitable framework for the study of between-state transitions to study evolutionary trade-offs 

(Nichols and Kendall 1995), recruitment probability (e.g., Jenouvrier et al. 2008) or to mix 

information of different types, i.e. recoveries and recaptures (e.g. Lebreton et al. 1999). The 

multisite – multistate and robust design models have also been successfully applied to model 

dispersal to unobservable sites or transition to unobservable states, i.e. places or states through 

which animals can move but in which they cannot be seen, or unobservable dormancy states in 

plants (Kendall and Nichols 2002). In the unobservable site/state probability of detection is 

fixed to zero and for this reason they are often referred to as ‘ghost’ sites/states (Jenouvrier et 

al. 2008, Balkiz et al. 2010). Grosbois and Tavecchia (2003) applied this idea to unobservable 

transitions. They considered the probability of dispersal as a two-step process, one accounting 

for the probability of leaving a given site and a second, conditional to this, incorporating the 



probability of settling into a new site.  A similar approach was used by Schaub and Pradel 

(2004) to estimate the relative importance of different causes of death. However, multisite-

multistate models have an important limitation: they assume that the state or the site in which 

an individual is observed is always certain.  

3.1.4. Multievent models 

State uncertainty is a general problem in CMR models, but it might be particularly relevant in 

some studies. For example, the study of the evolutionary trade-off between survival and 

reproduction relies on the fact that the breeding state of the individuals observed is always 

determined correctly. This can be true in most cases, but sometimes it can be difficult to 

determine with certainty whether an animal or plant is: breeding or not, is healthy or affected 

by a particular disease, or even if it is a male or a female. Pradel (2005) solved this problem by 

generalizing the multisite-multistate model into a multievent framework. In this new 

framework, individuals are still assumed to move across different states through survival and 

transition processes but a new parameter, the initial state probability, appears. Usually, field 

observations are not fully informative of biological processes. By formally separating the ‘real’ 

state process from the observational process-events, Pradel included a parameter to account for 

state uncertainty, i.e. the probability to not assign or erroneously assign a given state to an 

individual. Multievent models provide a solution to estimate sex and/or age dependent survival 

in species with cryptic or little age and/or sexual dimorphism (see section 3.4.1). Transients 

can be considered as a particular initial state, and modelled directly using multievent models 

(Genovart et al. 2012, Santidrian et al. 2017). More than uncertainty about the state of an 

individual, multievent models allow to explicitly model unobserved heterogeneity among 

individuals. Indeed, latent state mixture models can be easily implemented within the 

multievent framework, a model particularly suitable to frame individual heterogeneity or frailty 

(Gimenez, Cam and Gaillard 2018). Other approaches, e.g. using individual random effects 



can also be used to implement frailty (e.g. Cam et al. 2016, Hamel et al. 2018 , see also section 

3.2).  

Multievent and multistate models can be used to address many other ecological and 

evolutionary questions. If individual states can change over time, multievent also allows 

modeling the transition dynamics between e.g. breeding states (Desprez et al. 2013) or 

epidemiological status (Benhaiem et al. 2018). Lagrange et al. (2014) developed multievent 

models able to study dispersal among numerous sites for birds and amphibians. Tavecchia et 

al. (2012), modelled mortality due to different causes of mortality of radiotagged individuals, 

while accounting for the loss of the radio signal (see section 3.4.2). Multievent models have 

also been used to model survival when marks identifying individuals are lost (even totally, see 

Badia-Boher et al. 2019). The multievent approach can be also used to exploit supplementary 

information and estimate survival, dispersal and/or recruitment in partially monitored 

populations (Tavecchia et al. 2016; Sanz-Aguilar et al. 2016). Finally, trap-responses and 

memory effects can be modeled into the multievent approach (Rouan et al. 2009; Pradel and 

Sanz-Aguilar 2012). 

3.2. Environmental variability and individual heterogeneity in CMR models 

Within a CMR model, survival, transition and/or detection parameters can be assumed to be a 

function of external covariates (Lebreton et al. 1992). This formulation allows the inclusion of 

environmental effects in a regression-like framework, by including e.g. climatic variables, or 

individual time-invariant characters such as genotype. Multifactorial effects of environmental 

covariates can also be modeled using hierarchical models (King et al. 2009), e.g. to study 

evolutionary processes in the wild (Cubaynes et al. 2012). However, time-varying individual 

covariates, such as body weight, are tricky because when an individual is not detected, the 

value of the covariate is unknown. Inference can be based on a conditional likelihood approach 

using only the observed covariate values (trinomial approach; Catchpole et al. 2008) or missing 



values of can be imputed from an underlying distribution (e.g. multiple imputation; 

Worthington et al. 2015). However, methods of imputation are sensitive to the underlying 

model and the number of missing values (Langrock and King 2013). One possibility is to 

discretize the covariate and use a multistate model (Fernández-Chacón et al. 2015, Gimenez, 

Cam and Gaillard 2018). 

Unfortunately, we often do not measure all covariates influencing demographic parameters. 

Individuals may also react in different ways to environmental variation depending on 

unobservable individual states. This leads to unobserved (latent) individual heterogeneity. 

Ignoring latent individual heterogeneity may lead to flawed inference about the ecological or 

evolutionary processes at hand (Cam et al. 2016, Hamel et al. 2018), such as senescence 

patterns (Cam and Monnat 2000, Service 2000, Peron et al. 2010). Latent individual 

heterogeneity can be framed using finite mixtures or as individual random effects (see 

Gimenez, Cam and Gaillard 2018 for a review about how to implement individual 

heterogeneity in CMR models).  

3.3. Inference framework  

Implementation of CMR models can be carried out either using a frequentist or Bayesian 

approach. A different philosophy stands behind each approach, and there is a long-standing 

debate about whether ecologists should use one or the other (e.g. Lele and Dennis 2009). While 

the frequentist approach may be faster, the Bayesian approach allows a great flexibility in the 

model writing which can be useful to tackle analytical complexity, such as choosing underlying 

distributions for model parameters, or fitting temporal random effects (e.g. Kery and Schaub 

2011).  Another appeal of the Bayesian approach is the possibility to include prior knowledge 

on biological parameters to facilitate the estimation, e.g. information on body weight or 

survival of a closely-related species (MacCarthy et al. 2005). The Bayesian approach of CMR 

models uses the state-space formulation (SSM) that clearly distinguishes the observation 



process (detection) from the underlying demographic process of interest (transition between 

states; e.g. Gimenez et al. 2007, Royle 2008, Kery and Schaub 2011). The observation process 

being conditional to the state process. The SSM formulation therefore allows to easily 

implement complex multifactorial observation processes and combine multiple sources of 

information (e.g. Buoro et al. 2012, see Supplementary Information S5 for a SSM formulation  

of the Jolly-Seber model). 

Prior to model fitting, goodness-of-fit tests are generally performed to check the 

validity of the assumptions behind a CMR model, e.g. using the R2ucare package (Gimenez et 

al. 2018). In the frequentist approach, model implementation can be carried out using program 

MARK and the widely used RMark package (White and Burnham 1999, Laake 2013), marked 

(Laake 2013) or E-SURGE (Choquet et al. 2009). Common tools for model comparisons 

include the Akaike Information Criterion and its variants (AICc, QAIC, wAIC; Burnham and 

Anderson 2002), which serves to rank the models, calculate weights of evidence for each of 

them or for a particular effect (Burnham and Anderson 2002). The Analysis of Deviance 

(Anodev) is also used to calculate the proportion of variance explained by a specific covariate 

(Grosbois et al. 2008). In the Bayesian approach, models can be implemented using program 

Jags (Plummer 2003), R packages such as rjags (Plummer et al. 2018) or BaSTA (Colchero et 

al. 2012). Posterior predictive checks can be used for performing model assessment (Chambert 

et al. 2014) and information criterion such as DIC or wAIC are often used for model 

comparison (Hooten and Hobbs 2015). Further details about implementation both in a 

frequentist and Bayesian framework can be found in McCrea and Morgan (2014).  

Hereafter, we develop study cases in animal and plant demography showing how to 

implement CMR models in a frequentist framework using program E-SURGE and R package 

marked (Laake et al. 2013), and in a Bayesian framework using package BaSTA and rjags. 

 



3.4. Study cases in animal demography 

3.4.1. Estimating sex-dependent survival when sex assignment is uncertain: a multievent 

model of the Balearic Wall Lizard (Podarcis lifordi) 

In this example, we consider the possibility of erroneous assignment of sex to a newly captured 

individuals, a situation common to the monitoring of species, for example, with little sexual 

dimorphisms. In CMR analyses, erroneously assigning sex at the beginning of the capture 

history leads to bias in the estimated survival difference between the sexes.  Here, our aim is 

to estimate sex-specific survival rates in the Balearic wall lizards, a small species endemic of 

the Balearic archipelago, Spain. Immature males are sometimes difficult to be sexed in the field 

and can be confounded with mature females. Sex-specific survival rates can be estimated by 

accounting for the uncertainty on sex assignment using a multievent CMR model to separate 

the ‘real’ sex of the individuals (state) from the ‘apparent’ (observed) sex (event). In this model, 

we considered four events (type of observations) which code three states (‘real’ state of the 

individual). Data, together with step-by-step instructions to implement the models in E-

SURGE and interpret the results, are provided in Supplementary Information S2. 

3.4.2. Survival and the issue of tag-loss: study case of the Red Kite (Milvus milvus) 

Tag-loss is a common issue in wildlife monitoring of marked individuals and can lead to 

underestimated survival (Arnason and Mills, 1981). To cope with this issue, ecologists have 

developed advanced methodological tools: from multiple-marking to advanced statistical 

methods to integrate tag-loss in the individual state (Cowen and Schwarz 2006, Tavecchia et 

al. 2012).  Here is one case study to integrate the loss of a remote tracking device in the 

multievent modeling framework. 



The use of remote tracking devices (radio-satellite and GSM/GPS transmitters) to collect 

detailed individual history data is increasingly common in the ecological literature (see Chapter 

4). A problem in estimating survival from tracking data is that the lifespan of the remote signal 

is commonly shorter than the lifespan of the individual that carries the device.  In this case the 

survival probability refers to the lifespan of the radio signal and not to the one of the animal. 

When animals are marked with tags or rings in addition to the radio device, their encounter 

history can follow the loss of the radio signal. In this example, we illustrate how multievent 

models can accommodate the loss of the signal and provide unbiased estimate of survival in 

the presence of radio-loss or radio-failure using a real dataset on Red Kite in the island of 

Mallorca. Data, together with step-by-step instructions to implement the models in E-SURGE, 

and interpret the results, are provided in Supplementary Information S3. 

 

3.4.3. Bayesian implementation using the R package BaSTA 

The R package Bayesian Survival Trajectory Analysis (BaSTA; Colchero et al. 2012) provides 

a set of tools that complement other CMR methods when users want to estimate age-specific 

mortality from CMR datasets where times of birth are known only for few individuals (or 

none). Several parametric mortality models are available in BaSTA, including the exponential, 

Gompertz, Weibull, logistic, Makeham and Gompert-Makeham models (Figure 2). In order to 

include all records in the analysis, BaSTA estimates the missing ages at birth and at death, 

which reduces the bias in the estimation of the mortality and cumulative survival functions. An 

example of implementation is provided in Supplementary information S4. 

[Figure 2 about here] 

3.4.4. Bayesian state-space formulation of the JS model to study stopover decisions of 

migratory birds using JAGS 



Migratory birds cannot realize their journey between breeding and wintering areas in a single 

flight of thousands kilometres and usually stop-over at places where they can replenish their 

energy reserves. At these stopover places individuals are not easy to detect. Studying the 

stopover decisions of migratory birds is a typical case where the detectability need to be taken 

into account to be able to make strong ecological inference. In this example the survival 

between two capture occasions (i) is considered as the remaining probability at the stopover 

place and thus 1-i is the departure probability between two occasions. As individuals may 

arrived in the stopover area before first capture, the model needs to not be conditional on the 

first capture (as in the CJS model). Thus, we can use the JS model parametrized with entry 

probabilities noted as i for the probability to entry in the stopover area between time i and i+1 

if not previously entered (Schwarz and Arnason 1996). This SSM formulation of the JS model 

allows an easy implementation in the Bayesian framework and a straightforward computation 

of the stopover duration (Lyons et al. 2016). We can also easily incorporate the effect of a 

weather covariate on the departure probability. The implementation of this example with R and 

JAGS is provided in Supplementary S5. 

3.5. Study cases in plant demography 

Plants do not move, but certain aspects of their ecologies, such as vegetative dormancy, 

variable sprouting times, and complex growth patterns, can make them just as challenging to 

work with as animals.  

3.5.1. Linear modeling of plant survival 

The most common method to analyze survival using plant resighting datasets is using 

linear analysis under a logistic, generalized linear model (GLM), or generalized linear mixed 

model (GLMM) framework, with survival modeled assuming a binomial distribution (e.g. 

Salguero-Gómez et al. 2012). This method assumes that at the very least, the resighting of 

previously observed individuals is nearly perfect, because any phenomenon decreasing re-



detection would be observed as mortality and yield biased survival estimates. In cases where 

re-detection is not perfect, some have argued that this approach is still useful provided that 

monitoring datasets are particularly long and large, and that re-detection is still above 90% 

(Shefferson et al. 2018). However, in studies of vegetative dormancy-prone perennials, 

dormancy will increasingly be confused with mortality as study length decreases. In the final 

year of a study, there will be no ability to differentiate the dead from the dormant. This suggests 

that the final one to three years of data in a study should be used simply to assign dormancy 

within the remaining data, and that survival should not be estimated for those years. This loss 

of estimable years adds value to long datasets, particularly those over 10 years long. 

We illustrate the use of linear modeling for survival analysis in plants using a case study 

on Cypripedium parviflorum, the North American small yellow lady’s slipper, using data 

collected from 1994 to 2003 within a larger population from Illinois state in the United States. 

These data were previously used in e.g. Shefferson et al. (2018). Using the R packages lme4 

for model fitting and MuMin for model comparison, we show that non-flowering plants have 

decreasing survival with increasing size, while flowering plants have increasing survival with 

increasing size. Full procedure including data and R script to run the analysis, are provided in 

Supplementary Information S6. 

3.5.2. CMR survival analysis for plants 

Plant population ecologists have long used field methods that may be considered in the same 

vein as mark-recapture methods in wildlife ecology. However, the application CMR methods 

to plant population ecology is very recent. In one of the first studies to use mark-recapture 

analyses in plants, Alexander et al. (1997) faced all of these problems in a population of the 

Mead’s milkweed, Asclepias meadii. This population consists of plants that grow in high 

densities and do not always produce aboveground tissue in a growing season. Closed 

population mark-recapture analysis allowed them to produce estimates of population size 



unbiased by these challenges. Expanding on this work, Shefferson et al. (2001) proposed the 

use of open population mark-recapture models to estimate annual survivorship in populations 

in which living individuals do not always sprout in a growing season. Since then, CMR studies 

have blossomed in plant population ecology, with extensions into the estimation of transition 

rates among life-history stages (e.g. Shefferson et al. 2003), estimation of the demographic 

impacts of herbivory (e.g. Kéry and Gregg 2004), investigations into relationships among life-

history traits (e.g. Shefferson et al. 2003), tests of correlation with climatic factors (e.g. 

Shefferson and Tali 2007), the estimation of minimal recruitment levels necessary to sustain 

populations (Slade et al. 2003), and theoretical papers inspired by the problem of unobserved 

life stages (Kendall and Nichols 2002). 

In this example, we also use the Cypripedium parviflorum dataset, in combination with 

the R package marked (Laake et al. 2013), to investigate costs of reproduction using CMR 

models. Full procedure including data and R script to run the analysis, are provided in 

Supplementary Information S7. 

4. Mortality analysis in human populations 

Modelling mortality in human populations is relatively easier than in non-human ones. For a 

given group of individuals, we often know their age-at-death, calendar year of the event and 

their sex. Thanks to these reliable data sources, methodological advances have been produced 

since De Moivre (1725) and Gompertz (1825). These long-standing demographic and statistical 

developments have been often drawn by political, military and economic reasons. Below, we 

present a brief overview of the most common models used to describe mortality patterns over 

age and/or time on human mortality data. 

4.1. Human data and assumptions 



For a given sex, we usually have deaths and exposures to the risk of death arranged in two 

matrices, whose rows and columns are classified by age at death, and year of death. The 

stochastic assumption behind mortality has a central role in modeling it. The most suitable 

distribution when we observe mortality data is the Poisson distribution. The aim of any 

mortality model is to seek for a parsimonious, yet satisfactory description of the so-called force 

of mortality 𝜇𝑖,𝑗 , given observed deaths 𝑑𝑖,𝑗, and exposures 𝑒𝑖,𝑗. One could estimate force of 

mortality in a fully non-parametric framework computing the death rates 𝜇𝑖,𝑗 ≈
𝑑𝑖,𝑗

𝑒𝑖,𝑗
. Simple 

plots of rates over age and/or time are good tools for a first presentation of mortality 

development. Commonly, rates are plotted on a logarithmic scale to better acknowledge 

differences (Figure 3). A relatively strong assumption behind is that within the Poisson 

distribution mean and variance are equal. When the observed variance is larger than the 

theoretical one, we often attribute this feature either to overdispersion, or to some hidden 

patterns in the data. Specific methods for coping with this issue have been proposed in the 

literature for all models below, though they will not be presented in this chapter. For a 

comprehensive overview of them see, e.g. Cameron and Trivedi (2013). Furthermore, binomial 

distribution could be used when we deal with probability of dying (deaths divided by persons-

at-risk) and the multinomial distribution has been suggested for modeling mortality from a 

cohort perspective (Canudas Romo et al., 2018). 

[Figure 3 about here] 

4.2. Parametric models over age  

Parametric models for a suitable representation of the variation of mortality over age have been 

proposed since Gompertz (1825). He observed that after a certain age, a “law of geometric 



progression pervades, in an approximate degree, large portions of different tables of mortality” 

(Gompertz, 1825, p. 514). He thus suggested representing force of mortality as:  

𝜇𝑖 = 𝑎𝑒𝑏𝑖. (1) 

where a represents the mortality at time zero (usually age 30/40) and b is the rate of increase 

of mortality and is frequently used as a measure of the rate of aging.  

Makeham (1860) extended Gompertz’ equation by adding a constant, an age-independent term, 

c > 0, to account for risks of death that do not depend on age:  

𝜇𝑖 = 𝑐 + 𝑎𝑒𝑏𝑖. (2) 

Human mortality often shows a levelling-off above certain ages (often 80) (Vaupel, 1997). 

Logistic models have been proposed to portray this feature. Perks (1932) was the first to 

proposed a logistic modification of the Gompertz-Makeham models. A logistic function to 

model the late-life mortality deceleration can be given by  

𝜇𝑖 = 𝑐 +
𝑎𝑒𝑏𝑖

1+𝛼𝑒𝑏𝑖  . (3)  

where α capture the mortality deceleration at oldest ages. This law of mortality can be derived 

when heterogeneity is assumed in a proportional hazard setting. Commonly called the Gamma-

Gompertz model, (3) is the hazard at a population level when standard mortality is described 

as a Gompertz and frailty values are assumed to be Gamma distributed (Wienke, 2010).  

A simplified version of the previous logistic law has been proposed by Kannisto (1992):  

𝜇𝑖 = 𝑐 +
𝑎𝑒𝑏𝑖

1+𝑎𝑒𝑏𝑖
. (4)  



Heligman and Pollard (1980) derived a descriptive model, covering the whole age range. Here 

we propose a version for death rates:  

𝜇𝑖 = 𝐴(𝑖+𝐵)𝐶
+ 𝐷𝑒−𝐸(𝑙𝑛𝑖−𝑙𝑛𝐹)2

+
𝐺𝐻𝑖

1+𝐺𝐻𝑖
. (5)  

where A, B . . . , H are the eight parameters in the model. Each component aims to describe 

mortality at childhood, during young-adult ages and at older ages. It is easy to see that such 

parameterization can cause difficulties in the estimation procedure. Moreover, it would be hard 

to disentangle the physical meaning of each parameter (Booth and Tickle, 2008).  

Another three-component, competing-risk mortality model has been proposed by Siler 

(1983). Initially developed for animal survival data, this model has been recently used in human 

demography, especially for simulating possible scenarios in mortality developments (Canudas-

Romo, 2018). This model aims at portraying the whole of the age range with five parameters:  

𝜇𝑖 = 𝑎1𝑒−𝑏𝑖𝑖+𝑎2 + 𝑎3𝑒𝑏3𝑖 (6) 

4.3. Over parametrized models: the example of the Lee-Carter 

Moving to a two-dimensional perspective and given the wealth of data, traditional demographic 

methods for analyzing mortality surfaces, i.e. data on deaths and exposures cross-classified by 

age and year of occurrence, tend to apply a high number of parameters leading to all but 

parsimonious models. A typical example of this kind is the widely used model introduced by 

Lee and Carter (1992). In its original formulation, this approach reduces the complexity of the 

whole surface by introducing the following bi-linear model for the log-death-rates:  

ln(𝑚𝑖𝑗) = 𝛼𝑖 + 𝛽𝑖 𝜅𝑗 + 𝜀𝑖𝑗,   𝑖 = 𝑙, … , 𝑚  (7)  

𝑗 = 𝑙, … , 𝑛 



where αi, βi and κj are vectors of parameters to be estimated, and εij represents the error term. 

Interpretation of the parameters are straightforward: αi and βi describe the general shape of 

mortality and the fixed rate of mortality improvement at age i respectively, and κj is a time-

varying index which captures the general level of mortality. The variance εij in Lee and Carter 

(1992) is assumed to be constant for all i and j. As presented, the Lee-Carter model (LC) is 

under-determined and requires additional constraints on the parameters to be successfully 

estimated. Usually, the model is centered by  ∑ βi = 1 , ∑ κj = 0.  

As pointed out in Section 4.1, a Poisson assumption is more suitable for estimating 

mortality models and a further development of the Lee-Carter model was devoted to this issue 

(Brouhns et al., 2002).  In Supplementary Information S7 we will provide computational details 

for estimating the LC model within a Poisson framework. 

In the last decades, further variants of this model have been proposed for enhancing several 

features of the model (e.g. Booth et al. 2002).  

4.4. Semi-parametric models: the example of P-splines 

A compromise between simple parametric and over-parametrized models could be found in the 

area of semi-parametric statistics. Without the aim of producing estimated parameters with 

physical meanings and searching for a good fit to the data, smoothing approaches have been 

lately developed in the study of nonlinear phenomena. Among numerous options, we will 

mention here (and illustrate with more details in Supplementary Information S7) a 

methodology which is particularly suitable for the analysis of mortality developments: B-

splines with penalties, known as P-splines. In a unidimensional setting, applications to 

mortality have been proposed by Currie et al. (2004) and Camarda (2008). Estimation of a 

model for the complete mortality surface will be achieved by a specific R package: 



MortalitySmooth (Camarda, 2012). It is noteworthy that, being an extremely flexible tool, this 

methodology can be easily implemented for the analysis of demographic phenomena other than 

mortality. The main idea of the P-splines is to construct an intentionally over-parametrized 

model and simultaneously to restrict, via a penalty, all redundant features for achieving a wisely 

parsimonious description of the data. Instead of smoothing a given structure, this approach 

used local supports such as equally-spaced B-splines over ages and/or years, and penalty 

term(s) on the associated coefficients.  

4.5. Implementation example 

We use data from the Human Mortality Database (2019) on Japanese females from year 1960 

to 2016 and from age 0 to 100 to fit the models described above. Guidance with R script are 

provided in Supplementary Information S8.  

 

Concluding remarks 

This chapter has illustrated how the choice of a specific method for survival analysis is driven 

by the research question (e.g. comparing survival across groups vs assessing the effects of 

environmental predictors), the species life history (more or less easy to monitor) and its living 

environment (controlled vs. stochastic environments) which determines the type of survival 

data (e.g. proportion of individuals alive, CMR data, or age at death).  

With the rising of new monitoring techniques allowing to gather more and more detailed 

data at the individual level (see chapter 4) has come the developments of advanced statistical 

tools for survival analyses, including multievent models and hierarchical models. More than 

simply assessing survival to feed population projection models (see chapter 8 and 9), modern 

survival analyses have addressed questions about evolutionary trade-offs (e.g. Nichols and 

Kendall 1995), static versus dynamic heterogeneity in demographic parameters (e.g. Cam et 

al. 2016; Gimenez et al. 2018), assessing senescence (e.g. Peron et al. 2010), or quantifying 



heritability of demographic parameters in the wild (e.g. Papaïx et al. 2010). Addressing more 

and more complex questions has brought new challenges into the field of survival analyses. 

Among others, current methodological developments deal with methods to implement models 

with numerous states, predict age at death, or consider dependence among individuals when 

estimating survival. 
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