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Abstract

The diffusion MRI signal arising from neurons can be numerically simulated by solving the Bloch-
Torrey partial differential equation. In this paper we present the Neuron Module that we imple-
mented within the Matlab-based diffusion MRI simulation toolbox SpinDoctor. SpinDoctor uses
finite element discretization and adaptive time integration to solve the Bloch-Torrey partial dif-
ferential equation for general diffusion-encoding sequences, at multiple b-values and in multiple
diffusion directions. In order to facilitate the diffusion MRI simulation of realistic neurons by the
research community, we constructed finite element meshes for a group of 36 pyramidal neurons and
a group of 29 spindle neurons whose morphological descriptions were found in the publicly available
neuron repository NeuroMorpho.Org. These finite elements meshes range from having 15163 nodes
to 622553 nodes. We also broke the neurons into the soma and dendrite branches and created finite
elements meshes for these cell components. Through the Neuron Module, these neuron and cell
components finite element meshes can be seamlessly coupled with the functionalities of SpinDoctor
to provide the diffusion MRI signal attributable to spins inside neurons. We make these meshes
and the source code of the Neuron Module available to the public as an open-source package.

To illustrate some potential uses of the Neuron Module, we show numerical examples of the sim-
ulated diffusion MRI signals in multiple diffusion directions from whole neurons as well as from
the soma and dendrite branches, and include a comparison of the high b-value behavior between
dendrite branches and whole neurons. In addition, we demonstrate that the neuron meshes can
be used to perform Monte-Carlo diffusion MRI simulations as well. We show that at equivalent
accuracy, if only one gradient direction needs to be simulated, SpinDoctor is faster than a GPU
implementation of Monte-Carlo, but if many gradient directions need to be simulated, there is a
break-even point when the GPU implementation of Monte-Carlo becomes faster than SpinDoctor.
Furthermore, we numerically compute the eigenfunctions and the eigenvalues of the Bloch-Torrey
and the Laplace operators on the neuron geometries using a finite elements discretization, in order to
give guidance in the choice of the space and time discretization parameters for both finite elements
and Monte-Carlo approaches. Finally, we perform a statistical study on the set of 65 neurons to
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test some candidate biomakers that can potentially indicate the soma size. This preliminary study
exemplifies the possible research that can be conducted using the Neuron Module.

Keywords: Bloch-Torrey equation, diffusion magnetic resonance imaging, finite elements,
Monte-Carlo, simulation, neurons.

1. Introduction

Diffusion magnetic resonance imaging is an imaging modality that can be used to probe the tissue
micro-structure by encoding the incoherent motion of water molecules with magnetic field gradient
pulses [1–3]. Using diffusion MRI to get tissue structural information in the mammalian brain has
been the focus of much experimental and modeling work in recent years.

In terms of modeling, the predominant approach up to now has been adding the diffusion MRI
signal from simple geometrical components and extracting model parameters of interest. Numerous
biophysical models subdivide the tissue into compartments described by spheres (or ellipsoids),
cylinders (or sticks), and the extra-cellular space. Such modeling work for the brain white matter
can be found in [4–7] and for the gray matter in [8–13]. Some model parameters of interest include
axon diameter and orientation, neurite density, dendrite structure, the volume fraction and size
distribution of cylinder and sphere components and the effective diffusion coefficient or tensor
of the extra-cellular space. More sophisticated mathematical models based on homogenization
and perturbations of the intrinsic diffusion coefficient can be found in [14, 15] and the references
contained therein.

Numerical simulations can help deepen the understanding of the relationship between the cellular
structure and the diffusion MRI signal and can play a significant role in the formulation and
validation of appropriate models in order to answer relevant biological questions. Some recent works
that use numerical simulations of the diffusion MRI signal as a part of model validation include
[16, 17]. Simulations can be also used to investigate the effect of different pulse sequences and tissue
features on the measured signal for the purpose of developing, testing, and optimizing novel MRI
pulse sequences [18–21]. In fact, given the recent availability of vastly more advanced computational
resources and computer memory, simulation frameworks have begun to be increasingly used directly
as the computational model for tissue parameter estimation [12, 22].

Two main groups of approaches to the numerical simulation of diffusion MRI are 1) using random
walkers to mimic the diffusion process in a geometrical configuration; 2) solving the Bloch-Torrey
partial differential equation, which describes the evolution of the complex transverse water proton
magnetization under the influence of diffusion-encoding magnetic field gradients pulses.

The first group is referred to as Monte-Carlo (“MC” for short) simulations in the literature and
previous works include [12, 23–26]. GPU-based accelerations of Monte-Carlo simulations were
proposed in [27, 28]. Some software packages using this approach include

1. Camino Diffusion MRI Toolkit, developed at UCL (http://cmic.cs.ucl.ac.uk/camino/);

2. DIFSIM, developed at UC San Diego (http://csci.ucsd.edu/projects/simulation.html);

3. Diffusion Microscopist Simulator, [24] developed at Neurospin, CEA;
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4. We mention also that the GPU-based Monte-Carlo simulation code described in [27] is avail-
able upon request from the authors.

The works on model formulation and validation for brain tissue diffusion MRI cited above [12, 16–22]
all used Monte-Carlo simulations.

The second group of simulations, which up to now has been less often used in diffusion MRI, re-
lies on solving the Bloch-Torrey partial differential equation (PDE) in a geometrical configuration.
Numerical methods to solve the Bloch-Torrey equation with arbitrary temporal profiles have been
proposed in [29–32]. The computational domain is discretized either by a Cartesian grid [29, 30, 33]
or by finite elements [31, 32, 34–36]. The unstructured mesh of a finite element discretization ap-
peared to be better than a Cartesian grid in both geometry description and signal approximation
[31]. For time discretization, both explicit and implicit ODE solvers have been used. The efficiency
of diffusion MRI simulations is also improved by either a high-performance FEM computing frame-
work [37, 38] for large-scale simulations on supercomputers or a discretization on manifolds for
thin-layer and thin-tube media [39]. Finite elements diffusion MRI simulations can be seamlessly
integrated with cloud computing resources such as Google Colaboratory notebooks working in a
web browser or with the Google Cloud Platform with MPI parallelization [40]. Our previous works
in PDE-based neuron simulations include the simulation of neuronal dendrites using a tree model
[41] and (using the techniques we introduce in this work) the demonstration that diffusion MRI
signals reflect the cellular organization of cortical gray matter, these signals being sensitive to cell
size and the presence of large neurons such as the spindle (von Economo) neurons [42, 43].

In a recent paper [44], we presented a MATLAB Toolbox called SpinDoctor that is a diffusion MRI
simulation pipeline based on solving the Bloch-Torrey PDE using finite elements and an adaptive
time stepping method. That first version of SpinDoctor focused on the brain white matter.

It was shown in [44] that at equivalent accuracy, SpinDoctor simulations of the extra-cellular
space in the white matter is 100 times faster than the Monte-Carlo based simulations of Camino
(http://cmic.cs.ucl.ac.uk/camino/), and SpinDoctor simulations of a neuronal dendrite tree is 400
times faster than Camino. We refer the reader to [44] for the numerical validation of SpinDoc-
tor simulations with regard to membrane permeability as well as extensions to non-standard pulse
sequences and the incorporation of transverse relaxation.

In this paper, we present a new module of SpinDoctor called the Neuron Module that enables neuron
simulations for a group of 36 pyramidal neurons and a group of 29 spindle neurons whose morpho-
logical descriptions were found in the publicly available neuron repository NeuroMorpho.Org [45].
The key to making accurate simulations possible is the use of high quality meshes for the neurons.
For this, we used licensed software from ANSA-BETA CEA Systems [46] to correct and improve
the quality of the geometrical descriptions of the neurons. After processing, we produced good
quality finite elements meshes for the collection of 65 neurons. These finite elements meshes range
from having 15163 nodes to 622553 nodes. They are used as input meshes in the Neuron Module,
where they can be further refined if required using the built-in option in SpinDoctor. Currently, the
simulations in the Neuron Module enforce homogeneous Neumann boundary conditions, meaning
the spin exchange across the cell membrane is assumed to be negligible.

A recent direction for facilitating Monte-Carlo simulations is the generation of geometrical meshes
that aim to produce ultra-realistic virtual tissues, see [47, 48]. Our work is similar in spirit, with
a first step being providing high quality meshes of realistic neurons for finite elements simulations.
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Through the Neuron Module, the neuron finite element meshes can be seamlessly coupled with
the functionalities of SpinDoctor to provide the diffusion MRI signal attributable to spins inside
neurons for general diffusion-encoding sequences, at multiple diffusion-encoding gradient amplitudes
and directions.

We make a note about the software. The first version of SpinDoctor is a pipeline that constructs
surface meshes relevant to the brain white matter and performs diffusion MRI simulations using
SpinDoctor’s internally constructed meshes. For technical reasons related to software organization,
we decided to put the neuron meshes into a separate and stand-alone pipeline and called it the
Neuron Module. The diffusion MRI simulation related routines were copied from the original
SpinDoctor pipeline into the Neuron Module pipeline. Within the Neuron Module, we provide
additional functionalities that are relevant to treating externally generated meshes. The Neuron
Module and other Modules that we have developed are all grouped under the umbrella of the
Matlab Toolbox whose name remains SpinDoctor. The user is referred to the online User Guide for
the technical details of using the Toolbox. We also mention the existence of another SpinDoctor
pipeline called the Matrix Formalism Module [49] that numerically computes the eigenfunctions
and eigenvalues of the Bloch-Torrey and Laplace operators and we will use it to show later in this
paper the time and space scales of neuron diffusion MRI simulations.

2. Theory

Suppose the user would like to simulate the diffusion MRI signal due to spins inside a neuron, and
assume that the spin exchange across the cell membrane is negligible for the requested simulations.
Let Ω be the 3 dimensional domain that describes the geometry of the neuron of interest and let
Γ = ∂Ω be the neuron cell membrane.

2.1. Bloch-Torrey PDE

In diffusion MRI, a time-varying magnetic field gradient is applied to the tissue to encode water
diffusion. Denoting the effective time profile of the diffusion-encoding magnetic field gradient by
f(t), and let the vector g contain the amplitude and direction information of the magnetic field
gradient, the complex transverse water proton magnetization in the rotating frame satisfies the
Bloch-Torrey PDE:

∂

∂t
M(x, t) = −Iγf(t)g · xM(x, t) +∇ · (D0∇M(x, t)),x ∈ Ω, (1)

where γ = 2.67513×108 rad s−1T−1 is the gyromagnetic ratio of the water proton, I is the imaginary
unit, D0 is the intrinsic diffusion coefficient in the neuron compartment Ω. The magnetization is
a function of position x and time t, and depends on the diffusion gradient vector g and the time
profile f(t).

Some commonly used time profiles (diffusion-encoding sequences) are:

1. The pulsed-gradient spin echo (PGSE) [2] sequence, with two rectangular pulses of duration
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δ, separated by a time interval ∆− δ, for which the profile f(t) is

f(t) =


1, t1 ≤ t ≤ t1 + δ,

−1, t1 + ∆ < t ≤ t1 + ∆ + δ,

0, otherwise,

(2)

where t1 is the starting time of the first gradient pulse with t1 + ∆ > TE/2, TE is the echo
time at which the signal is measured.

2. The oscillating gradient spin echo (OGSE) sequence [50, 51] was introduced to reach short
diffusion times. An OGSE sequence usually consists of two oscillating pulses of duration σ,
each containing n periods, hence the frequency is ω = n 2π

σ , separated by a time interval τ−σ.
For a cosine OGSE, the profile f(t) is

f(t) =


cos (n 2π

σ t), t1 < t ≤ t1 + σ,

− cos (n 2π
σ (t− τ)), τ + t1 < t ≤ t1 + τ + σ,

0, otherwise,

(3)

where τ = TE/2.

The PDE needs to be supplemented by interface conditions. For the neuron simulations within the
Neuron Module, we assume negligible membrane permeability, meaning zero Neumann boundary
conditions:

D0∇M(x, t) · n = 0,

where n is the unit outward pointing normal vector. The PDE also needs initial conditions:

M(x, 0) = ρ,

where ρ is the initial spin density.

The diffusion MRI signal is measured at echo time t = TE > ∆ + δ for PGSE and TE > 2σ for
OGSE. This signal is the integral of M(x, TE):

S :=

∫
x∈

⋃
{Ω}

M(x, TE) dx. (4)

In a diffusion MRI experiment, the pulse sequence (time profile f(t)) is usually fixed, while g is
varied in amplitude (and possibly also in direction). The signal S is plotted against a quantity
called the b-value. The b-value depends on g and f(t) and is defined as

b(g) = γ2‖g‖2
∫ TE

0

du

(∫ u

0

f(s)ds

)2

.

For PGSE, the b-value is [2]:

b(g, δ,∆) = γ2‖g‖2δ2 (∆− δ/3) . (5)
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For the cosine OGSE with integer number of periods n in each of the two durations σ, the corre-
sponding b-value is [29]:

b(g, σ) = γ2‖g‖2 σ3

4n2π2
= γ2‖g‖2 σ

ω2
. (6)

The reason for these definitions is that in a homogeneous medium, the signal attenuation is e−D0b,
where D0 is the intrinsic diffusion coefficient.

3. Method

3.1. Constructing finite element meshes of neurons

In the current version of the Neuron Module, we focus on a group of 36 pyramidal neurons and a
group of 29 spindle neurons found in the anterior frontal insula (aFI) and the anterior cingulate
cortex (ACC) of the neocortex of the human brain. These neurons constitute, respectively, the most
common and the largest neuron types in the human brain [52, 53]. They share some morphological
similarities such as having a single soma and dendrites branching on opposite sides. The collection
of 65 neurons consists of 20 neurons for each type in the aFI, as well as 9 spindles and 16 pyramidals
in the ACC.

We started with the morphological reconstructions (SWC files) published in NeuroMorpho.Org [45],
the largest collection of publicly accessible 3D neuronal reconstructions. These surface descriptions
of the neurons cannot be used directly by SpinDoctor to generate finite elements meshes since they
contain many self-intersections and proximities (see Figure 1, left). We used licensed software from
ANSA-BETA CEA Systems [46] to manually correct and improve the quality of the neuron surface
descriptions and produced new surface triangulations (see Figure 1, right) that are ready to be used
for finite elements mesh generation. The new surface triangulations are passed into the software
GMSH [54] to obtain the volume tetrahedral meshes.

Figure 1: Left: a surface description of a pyramidal neuron published in NeuroMorpho.Org [45] which contains
many self-intersections and proximities; it cannot be used for finite elements mesh generation. Right: a new surface
triangulation that fixes the self-intersections and proximities; it is ready to be used for finite elements mesh generation.
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In Figure 2 we summarize the pipeline that takes the SWC format files from NeuroMorpho.Org
[45] to the volume tetrahedral meshes in the MSH format that the users of the Neuron Module will
take as the input geometrical description to the Neuron Module routines that perform diffusion
MRI simulations. This pipeline is provided here for informational purposes, it is not needed to run
diffusion MRI simulations in the Neuron Module.

.SWC
Medical segmentation
NeuroMorpho.Org

.STL
Triangulated
representation

.NAS
Surface wrapping
Watertight surface
Volume meshes

.MSH
Volume meshes
for SpinDoctor

ANSA GMSH

swc2vtk
package

vtk2stl
package

BETA CAE Systems

Figure 2: The SWC files from NeuroMorpho.Org [45] are converted to the STL mesh format by using swc2vtk [55] and
vtk2stl. Then ANSA was used to generate watertight surface and volume meshes of the STL meshes whose output is
in the NAS format. Finally, the NAS files were converted to volume tetrahedral meshes in the MSH format by the
software GMSH [54].

To further study the diffusion MRI signal of neurons, we broke the neurons into disjoint geometrical
components: namely, the soma and the dendrite branches. We manually rotated the volume tetra-
hedral mesh of a whole neuron so that upon visual inspection it lies as much as possible in the x−y
plane. In this orientation, we cut the volume tetrahedral mesh into sub-meshes of the soma and
the dendrite branches. As an illustration, we show in Figure 3 the spindle neuron 03a spindle2aFI
volume tetrahedral mesh broken into sub-meshes of the soma and the two dendrite branches.

+ =

Figure 3: The volume tetrahedral mesh of the spindle neuron 03a spindle2aFI is broken into three disconnected
geometrical components: the soma and two dendrite branches.
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3.2. Diffusion MRI simulations using the Neuron Module

SpinDoctor [44] is a MATLAB-based diffusion MRI simulation toolbox. The first version of Spin-
Doctor focused on the brain white matter. It provides the following built-in functionalities:

1. the placement of non-overlapping spherical cells (with an optional nucleus) of different radii
close to each other;

2. the placement of non-overlapping cylindrical cells (with an optional myelin layer) of different
radii close to each other in a canonical configuration where they are parallel to the z-axis;

3. the inclusion of an extra-cellular space that is enclosed either

(a) in a tight wrapping around the cells; or

(b) in a rectangular box;

4. the deformation of the canonical configuration by bending and twisting;

and uses the following methodology:

1. it generates a good quality surface triangulation of the user specified geometrical configuration
by calling built-in MATLAB computational geometry functions;

2. it creates a good quality tetrahedron finite elements mesh from the above surface triangulation
by calling Tetgen [56], an external package (the executable files are included in the Toolbox
package);

3. it constructs finite element matrices for linear finite elements on tetrahedra (P1 elements)
using routines from [57];

4. it adds additional degrees of freedom on the compartment interfaces to allow permeability
conditions for the Bloch-Torrey PDE using the formalism in [58];

5. it solves the semi-discretized FEM equations by calling built-in MATLAB routines for solving
ordinary differential equations.

The Neuron Module is a stand-alone pipeline that contains all the diffusion MRI simulation routines
from the original SpinDoctor pipeline and adds the relevant routines to process externally gener-
ated neuron meshes. By neuron meshes we mean watertight surface triangulations and volume
tetrahedral meshes. We do not consider the neuron descriptions from NeuroMorpho.Org neuron
“meshes”. The Neuron Module takes the neuron watertight surface triangulations or volume tetra-
hedral meshes and calls the Neuron Module routines that perform diffusion MRI simulations. The
finite elements mesh package Tetgen [56] contained in the release of SpinDoctor and the Neuron
Module is used to refine the input volume tetrahedral meshes, if desired.

The accuracy of the SpinDoctor simulations is tuned using the following three simulation parame-
ters:

1. Htetgen controls the finite element mesh size;
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(a) Htetgen = −1 means the FE mesh size is determined automatically by the internal
algorithm of Tetgen to ensure a good quality mesh (subject to the constraint that the
radius to edge ratio of the tetrahedra is no larger than 2.0).

(b) Htetgen = h requests a desired tetrahedra height of h µm (in later versions of Tetgen,
this parameter has been changed to the desired volume of the tetrahedra).

2. rtol controls the accuracy of the ODE solve. It is the relative residual tolerance at all points
of the FE mesh at each time step of the ODE solve;

3. atol controls the accuracy of the ODE solve. It is the absolute residual tolerance at all points
of the FE mesh at each time step of the ODE solve.

All validation, accuracy, and timing simulations were performed on the spindle neuron 03b spindle4aACC
(Figure 4). The sizes of the finite elements meshes of this neuron, which are the space discretiza-

Figure 4: The finite elements mesh (19425 nodes and 60431 elements) of the spindle neuron 03b spindle4aACC.

tion parameters, are the following:

Space-1: Htetgen = 0.5µm: the finite elements mesh contains 19425 nodes and 60431 elements;

Space-2: Htetgen = 0.1µm: the finite elements mesh contains 43790 nodes and 157484 elements;

Space-3: Htetgen = 0.05µm: the finite elements mesh contains 68536 nodes and 266337 elements;

We ran simulations with the following ODE solver tolerances, which are the time discretization
parameters:

Time-1: rtol = 10−2, atol = 10−4;
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Time-2: rtol = 10−3, atol = 10−5;

Time-3: rtol = 10−4, atol = 10−6;

Time-4: rtol = 10−6, atol = 10−8;

The diffusion MRI experimental parameters, unless otherwise noted, are the following:

• the intrinsic diffusion coefficient is D0 = 2× 10−3 mm2/s;

• the diffusion-encoding sequences are PGSE (δ = 2.5ms, ∆ = 5ms), PGSE (δ = 10ms, ∆ =
43ms), PGSE (δ = 10ms, ∆ = 433ms);

• the b-values are b = {1000, 4000} s/mm
2
;

• 10 or 90 gradient directions were simulated, uniformly distributed on the unit semi-circle in
the x− y plane.

4. Numerical results

4.1. Validation of simulations

In this section, we validate our simulations by refining in space (making the finite elements smaller)
and refining in time (decreasing the error tolerances of the ODE solver). We took the simulation
with the finest space discretization (Space-3: Htetgen = 0.05µm) and the finest time discretization
(Time-4: rtol = 10−6, atol = 10−8) as the reference solution.

In Figure 5, we show the relative signal errors (in percent) between several simulations and the
reference solution:

E =

∣∣SRef − SSimul∣∣
SRef

× 100, (7)

for PGSE (δ = 10ms, ∆ = 43ms). By looking at the difference between the reference solution
and the coarser SpinDoctor simulations in Figure 5, we estimate that the accuracy of the reference
solution is within 0.05% of the true solution at b = 1000 s/mm

2
and it is within 0.2% of the true

solution at b = 4000 s/mm
2
. Figure 5(a) shows that for b = 1000 s/mm

2
, by refining the time

discretization from Time-1 to Time-3, the maximum E over 10 gradient directions went from
around 1.06% down to 0.2% for space discretization Space-1 and from 1.35% to 0.05% for space
discretization Space-2. We see in Figure 5(b) that by using Space-1 and Time-2:

Htetgen = 0.5µm, rtol = 10−3, atol = 10−5 (8)

the maximum E over 10 gradient directions is less than 0.2% for b = 1000 s/mm
2

and less than

0.35% for b = 4000 s/mm
2
. We will choose the above set of simulation parameters in Eq.8 for the

later simulations, unless otherwise noted.
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Figure 5: The relative errors between the reference signal and the simulated signals for the neuron 03b spindle4aACC.
10 gradient directions uniformly placed on the unit semi-circle in the x−y plane were simulated. The gradient direction
angle is given with respect to the x-axis. The simulations with large relative errors are discarded for the clarity of
the plots. The diffusion coefficient is 2 × 10−3 mm2/s. The gradient sequence is PGSE (δ = 10ms, ∆ = 43ms). In
the legend, h denotes Htetgen. (a) b = 1000 s/mm2. (b) b = 1000 s/mm2 and b = 4000 s/mm2.

4.2. Diffusion directions distributed in two dimensions

We generated 90 diffusion directions uniformly distributed on the unit semi-circle lying in the x−y
plane (plotting 180 directions on the unit circle due to the symmetry of g and −g) and computed
the diffusion MRI signals in these 180 directions for three sequences:

• PGSE (δ = 2.5ms, ∆ = 5ms);

• PGSE (δ = 10ms, ∆ = 43ms);

• PGSE (δ = 10ms, ∆ = 433ms);

The simulation parameters are specified in Eq.8. With this choice, we verified that the signal is
within 1% of the reference solution for all geometries (the whole neuron, the soma, the two dendrites
branches) for the three gradient sequences simulated.

The results for the spindle neuron 03b spindle4aACC are shown in Figure 6. We plot the normalized
signals: ∣∣∣∣ S

S(b = 0)

∣∣∣∣
in the 180 diffusion directions in the x − y plane. The finite elements meshes of the geometries
simulated are superimposed on the plots for a better visualization.

11



Figure 6: The diffusion MRI signals in 180 directions lying on the x − y plane, uniformly distributed on the unit
circle. The distance from each data point to the origin represents the magnitude of the normalized signal which is
dimensionless. The simulation parameters are rtol = 10−3, atol = 10−5, Htetgen = 0.5µm. The diffusion coefficient
is 2× 10−3 mm2/s. (a) the whole neuron (finite elements mesh: 19425 nodes and 60431 elements). (b) the dendrite1
(finite elements mesh: 10825 nodes and 30617 elements). (c) the soma (finite elements mesh: 5842 nodes and 26160
elements). (d) the dendrite2 (finite elements mesh: 6444 nodes and 24051 elements).

It can be seen that the dendrite branch diffusion signal shape is more like an ellipse at b =
1000 s/mm

2
, whereas at b = 4000 s/mm

2
the shape is non-convex. The signal shape of the soma

is like an ellipse except for b = 4000 s/mm
2

at the two shorter diffusion times. At the two shorter

diffusion times, the soma signal magnitude at b = 4000 s/mm
2

is much reduced with respect to the

magnitude at b = 1000 s/mm
2
, in contrast to the dendrite branches, where the difference in the

signal magnitude between the two b-values is not nearly as significant. For the soma, at the long
diffusion time, there is not the large reduction in the signal magnitude between b = 1000 s/mm

2
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and b = 4000 s/mm
2
.

By visual inspection, at the lower b-value, the signal in the whole neuron is close to the volume
weighted sum of the signals from the three cell components (the soma, the upper dendrite branch
and the lower dendrite branch). A quantitative study is conducted in section 4.3.

4.3. Exchange effects between soma and dendrites

Here we compare the volume weighted composite signal of the 3 cell parts

Scomposite =
VsomaSsoma + Vdendrite1Sdendrite1 + Vdendrite2Sdendrite2

Vneuron
(9)

and compare it to the signal of the whole neuron in the different gradient directions. In Figure 7
we see that the signal difference between the two is larger at longer diffusion times and at higher b-
values. The error also presents a gradient-direction dependence. According to Figure 6 and Figure
7, we can see that the error is larger in the direction parallel to the longitudinal axis of the neuron
than in the direction perpendicular to the longitudinal axis.

Figure 7: (a) The absolute error between volume weighted composite signal and whole neuron signal. (b) The relative
error between volume weighted composite signal and whole neuron signal. 90 gradient directions uniformly placed
on the unit semi-circle in the x− y plane were simulated. The gradient direction angle is given with respect to the
x-axis. The position of the neuron can be seen in Figure 6.

4.4. High b-value behavior

In [17] it was shown experimentally that the diffusion MRI signal of tubular structures such as axons
exhibits a certain high b-value behavior, namely, the diffusion direction averaged signal, Save(b), is
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linear in 1√
b

at high b-values:

Save(b) ≡
∫
‖ug‖=1

Sug (b)dug ∼ c0 + c1
1√
b
. (10)

Because the dendrites of neurons also have a tubular structure, we test whether the diffusion
direction averaged signal, Save(b), of dendrite branches also exhibits the above high b-value behavior.
We computed Save(b) for the whole neuron as well as its two dendrite branches, averaged over 120
gradient directions uniformly distributed in the unit sphere. The results are shown in Figure 8. We
see clearly the linear relationship between Save(b) and 1√

b
in the dendrite branches for b-values in

the range 2500 s/mm
2 ≤ b ≤ 20000 s/mm

2
. In contrast, in the whole neuron, due to the presence

of the soma, such linear relationship is not exhibited. By simulating for both D0 = 2× 10−3 mm2/s
and D0 = 1× 10−3 mm2/s we see that the fitted slope c1 is indeed 1√

D0
.

Figure 8: The direction-averaged signal for the neuron 03b spindle4aACC. The Save(b) is averaged over 120 diffusion
directions, uniformly distributed in the unit sphere, and it is normalized so that Save(b = 0) = 1. The simulation
parameters are rtol = 10−3, atol = 10−5, Htetgen = 0.5µm. The diffusion-encoding sequence is PGSE (δ = 10ms,
∆ = 43ms). The b-values are b = {60000, 40000, 20000, 12000, 10000, 8000, 7000, 6000, 4000, 2500} s/mm2. (a) D0 =
1× 10−3 mm2/s. (b) D0 = 2× 10−3 mm2/s.

4.5. GPU Monte-Carlo simulation on neuron meshes

We show that one can also use the neuron meshes we provide with Monte-Carlo diffusion MRI
simulations. In particular, we ran the GPU implementation of Monte-Carlo simulations described
in [27], which provides two surface representation methods, namely the octree method and the
binary maker method. Since we only have access to the GPU Monte-Carlo implementation with
the octree method and the binary maker is an unconventional representation method, the octree
method is used for the simulations.

The Monte-Carlo equivalent of the space discretization parameter is the number of spins placed
in the geometry and we simulated with the following choices:
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MC Space-1: 5× 105 spins;

MC Space-2: 1× 106 spins;

MC Space-3: 2× 106 spins;

The Monte-Carlo equivalent of the time discretization parameter is the time step size and we
simulated with the following choices:

MC Time-1: dt = 0.1ms;

MC Time-2: dt = 0.01ms;

MC Time-3: dt = 0.005ms;

MC Time-4: dt = 0.001ms;

To compare with an available analytical solution, we computed the Matrix Formalism[59, 60] signal
of a rectangle cuboid of size Lx×Ly×Lz using the analytical eigenfunctions and eigenvalues of the
rectangle cuboid[61–64]. We chose Lx = 3µm, Ly = 100µm, Lz = 1µm to be close to the size of
the dendrite branches. We computed the diffusion MRI signal in 10 gradient directions uniformly
placed on the unit semi-circle in the x− y plane. We define the maximum relative error to be:

Emax = max
10 directions in x-y plane

∣∣SRef − SSimul∣∣
SRef

× 100, (11)

where the reference solution is the analytical signal from Matrix Formalism. In Table 1 we see
that there is a straightforward reduction of the error in the SpinDoctor simulations as we decrease
the ODE solver tolerances and decrease Htetgen, the Emax going from 0.33% to 0.02% for b =
1000 s/mm

2
and the Emax going from 0.59% to 0.03% for b = 4000 s/mm

2
. However, for GPU

Monte-Carlo, the reduction of Emax is not consistent as the number of spins is increased and dt
is reduced. This means that we cannot use the finest GPU Monte-Carlo simulation as a reference
solution because it is not guaranteed that this simulation is the most accurate one. Nevertheless,
we see GPU Monte-Carlo has an Emax ranging from 0.15% to 0.67% for b = 1000 s/mm

2
and

Emax ranges from 0.95% to 6.11% for b = 4000 s/mm
2
, compared to the reference analytical Matrix

Formalism signal.
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SpinDoctor
δ = 10ms, ∆ = 43ms

Emax GPU Monte-Carlo
δ = 10ms, ∆ = 43ms

Emax

b = 1000 b = 4000 b = 1000 b = 4000
h = 0.5µm

rtol = 10−3, atol = 10−5 0.33 0.59
5× 105spins
dt = 0.01ms

0.15 1.79

h = 0.5µm
rtol = 10−4, atol = 10−6 0.16 0.39

5× 105spins
dt = 0.005ms

0.18 6.11

h = 0.1µm
rtol = 10−4, atol = 10−6 0.09 0.37

1× 106spins
dt = 0.01ms

0.20 4.32

h = 0.1µm
rtol = 10−5, atol = 10−7 0.05 0.11

1× 106spins
dt = 0.005ms

0.47 4.17

h = 0.05µm
rtol = 10−6, atol = 10−8 0.04 0.06

2× 106spins
dt = 0.005ms

0.19 1.07

h = 0.01µm
rtol = 10−7, atol = 10−9 0.02 0.03

2× 106spins
dt = 0.001ms

0.67 0.95

Table 1: The computational time (in seconds) and the maximum relative error (in percent) of SpinDoctor and GPU
Monte-Carlo simulations for a rectangular cuboid (Lx = 3µm,Ly = 100µm,Lz = 1µm). The maximum relative
error Emax is taken over 10 gradient directions uniformly placed on the unit semi-circle in the x − y plane. The
reference signal is the analytical Matrix Formalism signal.

From the rectangle cuboid example, we see that refining the SpinDoctor simulation parameters
clearly results in a reduction in the simulation error, therefore we took the SpinDoctor simulation
with the finest space discretization (Space-3: Htetgen = 0.05µm) and the finest time discretization
(Time-4: rtol = 10−6, atol = 10−8) as the reference solution for the following neuron simulations
we performed. We remind the reader that by looking at the difference between the reference solution
and the coarser SpinDoctor simulations in Figure 5, we estimate that the accuracy of the reference
solution is within 0.05% of the true solution at b = 1000 s/mm

2
and it is within 0.2% of the true

solution at b = 4000 s/mm
2
, for PGSE (δ = 10ms, ∆ = 43ms).

In Figure 9 we show the relative signal errors E (in percent) between several GPU MC simulations

and the SpinDoctor reference solution. Figure 9(a) shows that for b = 1000 s/mm
2
, by refining the

time discretization from MC Time-1 to MC Time-3, the Emax went from around 0.7% down
to 0.28% for space discretization MC Space-1 and from 0.92% to 0.17% for space discretization
MC Space-2. We see in Figure 9(b) that by using MC Space-2 and MC Time-3, the Emax is

around 0.6% for b = 4000 s/mm
2
.
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Figure 9: The relative signal difference between the SpinDoctor reference signal and the signals given by GPU
Monte-Carlo simulations for the neuron 03b spindle4aACC. The diffusion coefficient is 2× 10−3 mm2/s. 10 gradient
directions uniformly placed on the unit semi-circle in the x− y plane were simulated. The gradient direction angle is
given with respect to the x-axis. The gradient sequence is PGSE (δ = 10ms,∆ = 43ms). (a) b = 1000 s/mm2. (b)
b = 4000 s/mm2.

4.6. Timing

Here we compare the computational times used by SpinDoctor and the GPU Monte-Carlo program
[27] for neuron and cell components simulations. The following are the computational platforms
used for each type of simulation:

• All SpinDoctor simulations were performed on a Dell workstation (Intel(R) Xeon(R) CPU
E5-2667 0 @ 2.90GHz, 189GB DDR4 RAM), running CentOS 7.4.1708;

• All GPU Monte-Carlo simulations were performed on a Dell workstation (Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20GHz, 256GB DDR4 RAM and Tesla V100 DGXS 32GB), running
Ubuntu 18.04.3 LTS.

For a fair comparison, we will choose two set of simulation parameters with a comparable accuracy,
in other words, a comparable Emax, this choice will be different for lower b-values versus higher b-
values. Because the GPU Monte-Carlo simulation is inherently parallel (there is no communication
between spins), the running time is essentially the same whether one runs one gradient direction or
multiple directions, up to the limit of GPU memory. We found that the GPU memory limit in the
computer listed above to be about 1×106 spins and 1200 gradient directions running in parallel. A
rough estimation of the GPU limitation for Tesla V100 with 32GB GPU memory is that the number
of spins times the number of gradient direction should be less than 1×109. In contrast, SpinDoctor
is mostly designed for serial computations, so simulations for multiple gradient directions are run
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one after another. Due to this difference between serial and parallel implementations, we show in
Table 2 the SpinDoctor and GPU Monte-Carlo computational times for one gradient direction. To
estimate the SpinDoctor computational times one can multiply the computational time in Table 2
by the number of gradient directions to be simulated.

From Table 2, we see that the ratio between the GPU Monte-Carlo computational time and the
SpinDoctor computational time for 1 gradient direction ranges from 31 to 72 for the whole neuron
simulations. This means that 31 (for b = 1000 s/mm

2
) and 72 (for b = 4000 s/mm

2
) gradient

directions are the break-even point when considering whether to run GPU Monte-Carlo or the
SpinDoctor code in terms of computational time. The break-even point is between 24 to 43 gradient
directions for the dendrite branches, and between 46 to 55 gradient directions for the soma. Details
of the accuracy and the computational time of 6 SpinDoctor and 6 GPU Monte-Carlo simulations
can be found in Tables 3 - 6.

Computational time (s) neuron dendrite1 dendrite2 soma
δ = 10ms,∆ = 43ms b Emax t (s) Emax t (s) Emax t (s) Emax t (s)

SpinDoctor
1000 0.16 17.1 0.52 7.8 0.11 3.4 0.17 5.7
4000 0.34 26.0 0.91 11.8 0.13 4.9 0.23 6.8

GPU Monte-Carlo
1000 0.14 537.8 0.65 337.3 0.51 116.1 0.29 311.2
4000 0.60 1895.9 2.34 342.1 0.47 116.5 0.90 311.3

GPU MC/
SpinDoctor ratio

1000 31 43 34 55
4000 72 29* 24 46

Table 2: The computational times of SpinDoctor and GPU Monte-Carlo simulations (in seconds). The simulation
parameters for SpinDoctor are rtol = 10−3, atol = 10−5, Htetgen = 0.5µm. The space discretization is: dendrite1
(finite elements mesh: 10825 nodes and 30617 elements), dendrite2 (finite elements mesh: 6444 nodes and 24051
elements), the soma (finite elements mesh: 5842 nodes and 26160 elements), the whole neuron (finite elements mesh:
19425 nodes and 60431 elements). The simulation parameters for GPU Monte-Carlo can be found in Tables 3 - 6.
The maximum relative error Emax (in percent) is taken over 10 gradient directions uniformly placed on the unit
semi-circle in the x − y plane. *: The GPU MC error 2.34% is too large, this computational time ratio should not
be used.
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SpinDoctor
δ = 10ms
∆ = 43ms

b = 1000 b = 4000
GPU MC
δ = 10ms
∆ = 43ms

b = 1000 b = 4000

Emax t (s) Emax t (s) Emax t (s) Emax t (s)
h = 0.5µm
rtol = 10−3

atol = 10−5
0.16 17.1 0.34 26.0

5× 105spins
dt = 0.1ms

0.73
(0.87)

89.1
2.28

(2.40)
89.7

h = 0.5µm
rtol = 10−4

atol = 10−6
0.18 26.6 0.59 39.6

5× 105spins
dt = 0.01ms

0.14
(0.08)

537.8
1.55

(2.01)
538.4

h = 0.1µm
rtol = 10−3

atol = 10−5
0.06 93.5 0.10 137.8

5× 105spins
dt = 0.005ms

0.27
(0.11)

961.9
1.22

(0.84)
966.9

h = 0.1µm
rtol = 10−4

atol = 10−6
0.05 190.4 0.20 274.9

1× 106spins
dt = 0.1ms

0.93
(1.03)

172.5
2.72

(2.13)
172.8

h = 0.1µm
rtol = 10−5

atol = 10−7
0.05 158.8 0.15 228.0

1× 106spins
dt = 0.01ms

0.11
(0.09)

1052.6
1.79

(2.26)
1056.9

h = 0.05µm
rtol = 10−6

atol = 10−8
ref. 523.0 ref. 806.6

1× 106spins
dt = 0.005ms

0.16
(ref.)

1896.6
0.60
(ref.)

1895.9

Table 3: The computational time (in seconds) and the maximum relative error (in percent) of SpinDoctor and
GPU Monte-Carlo simulations for the neuron 03b spindle4aACC. The maximum relative error Emax is taken over
10 gradient directions uniformly placed on the unit semi-circle in the x − y plane. For the Emax of SpinDoctor,
the reference signal is the one with the finest space discretization and the smallest time discretization, i.e. h =
0.05µm, rtol = 10−6, atol = 10−8. For the Emax of GPU Monte-Carlo, two reference signals are used, one is the
signal given by SpinDoctor with h = 0.05µm, rtol = 10−6, atol = 10−8, the other is the signal given by GPU Monte-
Carlo with 106 spins and dt = 0.005ms (Emax for this case is written in the parenthesis). The data in bold are used
in Table 2.

19



SpinDoctor
δ = 10ms
∆ = 43ms

b = 1000 b = 4000
GPU MC
δ = 10ms
∆ = 43ms

b = 1000 b = 4000

Emax t (s) Emax t (s) Emax t (s) Emax t (s)
h = 0.5µm
rtol = 10−3

atol = 10−5
0.52 7.8 0.91 11.8

5× 105spins
dt = 0.1ms

1.36
(0.26)

173.9
1.35

(1.47)
174.7

h = 0.5µm
rtol = 10−4

atol = 10−6
0.65 7.8 1.03 11.4

5× 105spins
dt = 0.01ms

1.48
(0.18)

715.3
3.23

(1.03)
715.2

h = 0.1µm
rtol = 10−3

atol = 10−5
0.10 13.1 0.42 19.6

5× 105spins
dt = 0.005ms

1.44
(0.19)

1487.3
2.78

(1.86)
1488.9

h = 0.1µm
rtol = 10−4

atol = 10−6
0.22 21.4 0.34 32.2

1× 106spins
dt = 0.1ms

0.65
(0.98)

337.3
2.34
(0.46)

342.1

h = 0.1µm
rtol = 10−5

atol = 10−7
0.17 22.6 0.24 31.7

1× 106spins
dt = 0.01ms

1.29
(0.33)

1401.3
1.24

(1.55)
1401.1

h = 0.05µm
rtol = 10−6

atol = 10−8
ref. 65.1 ref. 103.3

1× 106spins
dt = 0.005ms

1.63
(ref.)

2952.9
2.23
(ref.)

2923.7

Table 4: The computational time (in seconds) and the maximum relative error (in percent) of SpinDoctor and
GPU Monte-Carlo simulations for the dendrite 03b spindle4aACC dendrites 1. The maximum relative error Emax

is taken over 10 gradient directions uniformly placed on the unit semi-circle in the x − y plane. For the Emax of
SpinDoctor, the reference signal is the one with the finest space discretization and the smallest time discretization,
i.e. h = 0.05µm, rtol = 10−6, atol = 10−8. For the Emax of GPU Monte-Carlo, two reference signals are used, one
is the signal given by SpinDoctor with h = 0.05µm, rtol = 10−6, atol = 10−8, the other is the signal given by GPU
Monte-Carlo with 106 spins and dt = 0.005ms (Emax for this case is written in the parenthesis). The data in bold
are used in Table 2.
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SpinDoctor
δ = 10ms
∆ = 43ms

b = 1000 b = 4000
GPU MC
δ = 10ms
∆ = 43ms

b = 1000 b = 4000

Emax t (s) Emax t (s) Emax t (s) Emax t (s)
h = 0.5µm
rtol = 10−3

atol = 10−5
0.11 3.4 0.13 4.9

5× 105spins
dt = 0.1ms

0.51
(0.21)

116.1
0.47
(3.19)

116.5

h = 0.5µm
rtol = 10−4

atol = 10−6
0.11 5.8 0.24 8.1

5× 105spins
dt = 0.01ms

0.83
(0.13)

638.5
1.01

(4.36)
638.8

h = 0.1µm
rtol = 10−3

atol = 10−5
0.08 6.5 0.19 8.9

5× 105spins
dt = 0.005ms

0.69
(0.04)

1174.8
2.40

(1.69)
1174.7

h = 0.1µm
rtol = 10−4

atol = 10−6
0.05 9.0 0.07 12.7

1× 106spins
dt = 0.1ms

0.85
(0.14)

226.1
1.30

(2.48)
226.6

h = 0.1µm
rtol = 10−5

atol = 10−7
0.07 12.1 0.11 16.8

1× 106spins
dt = 0.01ms

0.74
(0.04)

1260.1
0.91

(2.83)
1265.7

h = 0.05µm
rtol = 10−6

atol = 10−8
ref. 22.0 ref. 31.8

1× 106spins
dt = 0.005ms

0.72
(ref.)

2339.1
3.56
(ref.)

2320.7

Table 5: The computational time (in seconds) and the maximum relative error (in percent) of SpinDoctor and
GPU Monte-Carlo simulations for the dendrite 03b spindle4aACC dendrites 2. The maximum relative error Emax

is taken over 10 gradient directions uniformly placed on the unit semi-circle in the x − y plane. For the Emax of
SpinDoctor, the reference signal is the one with the finest space discretization and the smallest time discretization,
i.e. h = 0.05µm, rtol = 10−6, atol = 10−8. For the Emax of GPU Monte-Carlo, two reference signals are used, one
is the signal given by SpinDoctor with h = 0.05µm, rtol = 10−6, atol = 10−8, the other is the signal given by GPU
Monte-Carlo with 106 spins and dt = 0.005ms (Emax for this case is written in the parenthesis). The data in bold
are used in Table 2.
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SpinDoctor
δ = 10ms
∆ = 43ms

b = 1000 b = 4000
GPU MC
δ = 10ms
∆ = 43ms

b = 1000 b = 4000

Emax t (s) Emax t (s) Emax t (s) Emax t (s)
h = 0.5µm
rtol = 10−3

atol = 10−5
0.17 5.7 0.23 6.8

5× 105spins
dt = 0.1ms

1.46
(1.31)

52.8
4.16

(4.75)
52.6

h = 0.5µm
rtol = 10−4

atol = 10−6
0.06 8.6 0.23 10.3

5× 105spins
dt = 0.01ms

0.29
(0.20)

311.2
0.90
(1.50)

311.3

h = 0.1µm
rtol = 10−3

atol = 10−5
0.24 29.7 0.55 34.2

5× 105spins
dt = 0.005ms

0.09
(0.23)

564.9
2.34

(3.23)
565.2

h = 0.1µm
rtol = 10−4

atol = 10−6
0.04 36.7 0.11 43.7

1× 106spins
dt = 0.1ms

1.12
(0.99)

101.9
3.75

(3.72)
102.3

h = 0.1µm
rtol = 10−5

atol = 10−7
0.02 55.8 0.12 64.5

1× 106spins
dt = 0.01ms

0.1
(0.07)

612.9
1.37

(1.61)
611.4

h = 0.05µm
rtol = 10−6

atol = 10−8
ref. 222 ref. 247.9

1× 106spins
dt = 0.005ms

0.16
(ref.)

1112.5
1.06
(ref.)

1110.1

Table 6: The computational time (in seconds) and the maximum relative error (in percent) of SpinDoctor and GPU
Monte-Carlo simulations for the soma 03b spindle4aACC soma. The maximum relative error Emax is taken over
10 gradient directions uniformly placed on the unit semi-circle in the x − y plane. For the Emax of SpinDoctor,
the reference signal is the one with the finest space discretization and the smallest time discretization, i.e. h =
0.05µm, rtol = 10−6, atol = 10−8. For the Emax of GPU Monte-Carlo, two reference signals are used, one is the
signal given by SpinDoctor with h = 0.05µm, rtol = 10−6, atol = 10−8, the other is the signal given by GPU Monte-
Carlo with 106 spins and dt = 0.005ms (Emax for this case is written in the parenthesis). The data in bold are used
in Table 2.

4.7. Choice of space and time discretization parameters for diffusion MRI simulations

This section concerns the choice of discretization parameters for diffusion MRI simulations. First
we discuss time discretization. The Monte-Carlo implementations usually decide on a time step dt
that is used throughout the entire simulation. SpinDoctor uses residual tolerances for the Matlab
ODE solver to control the time step size. The advantage of using residual tolerances is that the time
step is automatically made smaller when the magnetization is oscillatory, and it is automatically
made larger when the magnetization is smooth. In Figure 10 we show the SpinDoctor simulated
magnetization solution during the time interval t ∈ [0, δ + ∆] for the PGSE sequence (δ = 10ms,
∆ = 43ms) for the full neuron and the soma, where we integrated the magnetization over the
computational domain, in this case, the whole neuron and the soma, respectively. This integral was
evaluated at SpinDoctor time discretization points. Because the magnetization is a complex-valued
quantity and the imaginary part of the magnetization , which encodes the spin phase information,
is usually more oscillatory than the real part, we show only the integral of the imaginary part of
the magnetization. We note during (0, TE), the magnetization is complex-valued and both the
real and imaginary parts are significant and contribute to the time-evolution. After reforcusing,
the imaginary part should be zero theoretically. At t = TE, the non-zero imaginary part of the
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simulated magnetization is due to “numerical discretization error”, whose size is related to the FE
mesh size and the ODE solver tolerances.

It is clear from Figure 10 that at the higher b-value the total magnetization has more oscillations
in time for both the whole neuron and the soma. In addition, there are many more oscillations
in time for the whole neuron than for the soma. This justifies the SpinDoctor choice of using 54
(low gradient amplitude) and 506 (high gradient amplitude) non-uniformly spaced time steps to
simulate the whole neuron, whereas it used 38 (low gradient amplitude) and 145 (high gradient
amplitude) non-uniformly spaced time steps to simulate its soma.

Figure 10: The integral of the imaginary part of the magnetization over the computational domain as a function of
time. The time discretization points chosen by SpinDoctor are indicated by the (time) positions of the markers. The
experimental parameters are: PGSE (δ = 10ms,∆ = 43ms), gradient direction ug = [−0.3536 − 0.6124 − 0.7071].

Two gradient amplitudes, |g| = 0.0075T/m and |g| = 0.3745T/m were simulated, equivalent to b = 15.9 s/mm2

and b = 39666.7 s/mm2, respectively. For these two b-values, SpinDoctor used a total of 54 (shown in black, left)
and 506 (shown in red, left) non-uniformly spaced time steps to simulate the whole neuron; it took 38 (shown in
black, right) and 145 (shown in red, right) non-uniformly spaced time steps to simulate its soma. (a) the neuron
03b spindle4aACC. (b) its soma.

To give an indication why more time discretization points are needed at higher gradient ampli-
tudes, we computed the eigenfunctions and eigenvalues of Bloch-Torrey operator, which governs
the dynamics of the magnetization during the gradient pulses (t ∈ [0, δ], t ∈ [∆,∆+ δ], g 6= 0). The
Bloch-Torrey eigenfunctions and eigenvalues on the neuron and the soma are numerically computed
using the Matrix Formalism Module [49] within the SpinDoctor Toolbox.

We projected the initial spin density, which is a constant function, onto the Bloch-Torrey eigen-
functions. We normalized the initial spin density as well as the Bloch-Torrey eigenfunctions so
that they have unit L2 norm (integral of the square of the function over the geometry). We call
a Bloch-Torrey eigenfunction significant if the projection coefficient is greater than 0.01 and the
real part of its eigenvalue is greater than −1ms−1. The latter requirement means we are looking
at Bloch-Torrey eigenfunctions that do not decay too fast. In Figure 11 we show the complex
eigenvalues of the significant Bloch-Torrey eigenfunctions for the whole neuron and for the soma.
Since we projected the initial spin density, this corresponds to t = 0ms. We see that at the higher
gradient amplitude, the Bloch-Torrey eigenvalues have a wider range in both their real parts as
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well as their imaginary parts, than at the smaller gradient amplitude. A larger range of real parts
indicates faster transient dynamics during the two gradient pulses, and a larger range of imaginary
parts indicates more time oscillations. Both explain why more time discretization points are needed
at higher |g|. For the whole neuron, at the higher gradient amplitude, there is a much larger range
in the imaginary parts of the Bloch-Torrey eigenvalues than for the soma, which is why there are so
many more oscillations in the whole neuron magnetization than the soma magnetization in Figure
10.

Figure 11: The eigenvalues of the significant Bloch-Torrey eigenfunctions after the projection of the initial spin density
(t = 0ms) onto the space of Bloch-Torrey eigenfunctions. Along the x-axis is plotted the real part of the Bloch-
Torrey eigenvalues and along the y-axis is plotted the imaginary part of the Bloch-Torrey eigenvalues. The gradient
direction is ug = [−0.3536− 0.6124− 0.7071] and two gradient amplitudes, |g| = 0.0075T/m and |g| = 0.3745T/m,
were computed. (a) the neuron 03b spindle4aACC. (b) its soma.

To give some indication of the needed space discretization for diffusion MRI simulations, we com-
puted the eigenfunctions and the eigenvalues of the Laplace operator, which governs the dynamics
of the magnetization between the gradient pulses (t ∈ [δ,∆]). The Laplace eigenfunctions and eigen-
values on the neuron are numerically computed using the Matrix Formalism Module [49] within the
SpinDoctor Toolbox.

We projected the magnetization solution at t = δ = 10ms for PGSE (δ = 10ms,∆ = 43ms) for
the whole neuron onto the space of the Laplace eigenfunctions and we show the magnitude of the
coefficients of the projections in Figure 12. We see that there are significant Laplace eigenfunctions
with eigenvalues ranging from λ = −0.52ms−1 to 0. We plot the significant Laplace eigenfunction
with the most negative eigenvalue and we see that this eigenfunction is very oscillatory in space. To
correctly capture the dynamics of this eigenfunction, it is necessary to have a space discretization
that is small compared to the “wavelength” of this eigenfunction, which we estimate to be about
10µm by visual inspection of the space variations shown in Figure 12. By choosing Htetgen =
0.5µm, we are putting about 20 space discretization points per “wavelength”.
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Figure 12: (a) The magnitude of the coefficients of significant Laplace eigenfunctions, after the projection of the
magnetization at t = δ = 10ms unto the space of the Laplace eigenfunctions, plotted against the Laplace eigenvalues,
for the whole neuron 03b spindle4aACC. The experimental parameters are: PGSE (δ = 10ms,∆ = 43ms), gradient
direction ug = [−0.3536− 0.6124− 0.7071]. Two gradient amplitudes, |g| = 0.0075T/m and |g| = 0.3745T/m were

simulated, equivalent to b = 15.9 s/mm2 and b = 39666.7 s/mm2, respectively. The magnitude of the coefficients are
shown in the log 10 scale. (b) The significant Laplace eigenfunction with the most negative eigenvalue. The color
scale is intentionally limited to have a smaller range than the extreme values of the eigenfunction to make the spatial
oscillations of the eigenfunction more visible.

4.8. Biomarkers of the soma size

As we have shown in Figure 8, the linear relationship between Save(b) and 1√
b
, in other words, the

power law scaling of the direction-averaged diffusion MR signal [17], doesn’t hold due to the presence
of the the soma and the exchange effects between the soma and the dendrites. The breakdown of
the power law is also observed in [65] and [66]. By leveraging the collection of the realistic neuron
meshes, in this section, we statistically show that the deviation from the power law has the potential
to serve as biomarkers for revealing the soma size.

In order to do this, we conducted the following simulations that are slightly different than the
constant (δ,∆) experiments in [17, 65, 66] and shown in Figure 8. The signals are numerically
computed using the Matrix Formalism Module within the SpinDoctor Toolbox. In the following,
we held the gradient amplitude constant, γ|g| = 10−5s−1 ·mm−1, and varied δ to obtain a wide
range of b-values, all the while choosing ∆ = δ (PGSE sequence). The simulations were conducted
in 64 gradient directions and the signals were averaged over these directions. This was performed
for the full set of 65 neuron meshes.

In Figure 13 we show an example of the simulated signal curve and the power law approximation for
the neuron 03a spindle2aFI. From the direction-averaged simulated signals, we find the inflection
point (blue dot) of the signal curve (black curve). We fit the power law (straight blue dashed line)
around the inflection point. The power law region is the range where the relative error between the
simulated signal curve and the power law fit is less than 2% (width of the yellow region) and the
approximation error is estimated by the area between the signal curve and the power law fit to the
left of the inflection point (the green area) .
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Figure 13: The direction-averaged signal curve for the neuron 03a spindle2aFI. The signals are numerically computed
using the Matrix Formalism Module within the SpinDoctor Toolbox. The Save(b) was averaged over 64 diffusion
directions, uniformly distributed in the unit sphere, and it is normalized so that Save(b = 0) = 1. The b-values
are greater than 278 s/mm2 and the diffusivity is D0 = 2 × 10−3 mm2/s. The gradient amplitude is constant,
γ|g| = 10−5s−1 ·mm−1, and δ was varied to obtain a wide range of b-values, all the while choosing ∆ = δ (PGSE
sequence). The blue dot indicates the inflection point of the simulated signal curve. The power law is fitted around
the inflection point. The power law region is the width of the range where the relative error between the simulated
signal and the power law approximation is less than 2%. The area between the simulated curve and the power law
to the left of the inflection point represents the approximation error of the power law.

In order to characterize the influence of soma on the power law approximation, we chose the following
6 candidate biomarkers:

• x0: the x-coordinate of the inflection point;

• y0: the y-coordinate of the inflection point;

• c0: the y-intercept of the power law fit;

• c1: the slope of the power law fit;

• E : the power law approximation error;

• w: the width of the power law region.

A statistical study of the above 6 candidate biomarkers on the collection of the 65 neurons in the
Neuron Module was performed. Since the undersampling when 1√

b
approaches 0 could produce

significant numerical error, we only kept the neurons whose x0 are greater than 0.016 mm · s−1/2.
In total, 28 spindle neurons and 21 pyramidal neurons were retained.
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We first plot the candidate biomarkers with respect to the soma volume vsoma in Figure 14. Each
data point in the figure corresponds to a neuron (for a total of 49). It can be seen that x0, c0, c1,
E , and w exhibit an exponential relationship with the soma volume. The fitted equations allow us
to infer the soma volume by measuring the biomarkers. We also see that y0 is not a biomarker for
the soma volume. Similarly, we show the scatter plot of the candidate biomarkers with respect to
the soma volume fraction fsoma in Figure 15. In this case, the x0, c1 and w are not biomarkers of
the soma volume fraction. The candidate biomarkers y0, c0 and E seem capable of indicating the
lower bound for the soma volume fraction.

We note that the objective of this section is to give an example of the possible research that can be
conducted using the Neuron Module. A more systematic study is needed to get plausible biomarkers
for the soma size but this is out of the range of this paper.

Figure 14: (a) the logarithm of soma volume vs. the x-coordinate of the inflection point x0. (b) the logarithm of
soma volume vs. the y-coordinate of the inflection point y0. (c) the logarithm of soma volume vs. the y-intercept of
the power law c0. (d) the logarithm of soma volume vs. the slope of the power law c1. (e) the logarithm of soma
volume vs. the power law approximation error E. (f) the logarithm of soma volume vs. the width of the power
law region w. Each blue dot represents the data from one of the 49 neurons (28 spindle neurons and 21 pyramidal
neurons) retained for this study.
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Figure 15: (a) the soma volume fraction vs. the x-coordinate of the inflection point x0. (b) the soma volume fraction
vs. the y-coordinate of the inflection point y0. (c) the soma volume fraction vs. the y-intercept of the power law
c0. (d) the soma volume fraction vs. the slope of the power law c1. (e) the soma volume fraction vs. the power
law approximation error E. (f) the soma volume fraction vs. the width of the power law region w. Each blue dot
represents the data from one of the 49 neurons (28 spindle neurons and 21 pyramidal neurons) retained for this study.

4.9. Additional neuron simulations

Now we show some simulation results on other neuron meshes in our collection. In Figure 16 we
compare the diffusion MRI signals due to two different dendrite branches, one from 04b spindle3aFI
and one from 03b spindle7aACC. The first branch has a single main trunk whereas the second branch
divides into two main trunks. We see at the higher b-value b = 4000 s/mm

2
, at the longest diffusion

time, the signal shape is more elongated (perpendicular to the main trunk direction) for the first
dendrite branch than the second.
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Figure 16: The normalized diffusion MRI signals in 180 directions lying on the x − y plane, uniformly distributed
on a unit circle. The distance from each data point to the origin represents the magnitude of the normalized signal
which is dimensionless. The simulation parameters are rtol = 10−3, atol = 10−5, Htetgen = 0.5µm. The diffusion
coefficient is 2 × 10−3 mm2/s. (a) one dendrite branch of 04b spindle3aFI (finite elements mesh: 29854 nodes and
95243 elements). (b) one dendrite branch of 03b spindle7aACC (finite elements mesh: 10145 nodes and 28731
elements).

In Figure 17 we show 3 dimensional HARDI (High Angular Resolution Diffusion Imaging) simulation
results of the spindle neuron 03a spindle2aFI (cf. Figure 3). We plot in Figure 17 the normalized

signal in 720 directions uniformly distributed in the unit sphere for b = 1000 s/mm
2

and b =

4000 s/mm
2
. We see the normalized signal shape in these 720 directions is ellipsoid at the lower

b-value and the shape becomes more complicated at the larger b-value. At b = 4000 s/mm
2
, there

is more signal attenuation at the shorter diffusion time than at the higher diffusion time.
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Figure 17: The normalized diffusion MRI signals for the neuron 03a spindle2aFI in 720 directions uniformly dis-
tributed on a unit sphere. The color and the distance to the origin of each data point represent the magnitude of
the normalized signal, which is dimensionless. The simulation parameters are rtol = 10−3, atol = 10−5, Htetgen =
0.5µm. The diffusion coefficient is 2× 10−3 mm2/s. (a) PGSE (δ = 10ms, ∆ = 13ms), b = 1000 s/mm2. (b) PGSE
(δ = 10ms, ∆ = 73ms), b = 1000 s/mm2. (c) PGSE (δ = 10ms, ∆ = 13ms), b = 4000 s/mm2. (d) PGSE (δ = 10ms,
∆ = 73ms), b = 4000 s/mm2. The number of finite elements nodes and elements for the neuron are 49833 and
169601, respectively.

5. Discussion

In a previous publication [44], SpinDoctor, a MATLAB-based diffusion MRI simulation toolbox, was
presented. SpinDoctor allows the easy construction of multiple compartment models of the brain
white matter, with the possibility of coupling water diffusion between the geometrical compartments
by permeable membranes. In [44], in addition to white matter simulations, SpinDoctor’s ability to
import and use externally generated meshes provided by the user was illustrated with a neuronal
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dendrite branch simulation. This capability is expected to be very useful given the most recent
developments in simulating ultra-realistic virtual tissues, typified by recent work such as [47, 48],
which were meant to facilitate Monte-Carlo type simulations.

In order to enrich the publicly available geometrical meshes that can be used for diffusion MRI
simulations, we implemented the Neuron Module inside SpinDoctor. We have created high quality
volume tetrahedral meshes for a group of 36 pyramidal neurons and a group of 29 spindle neurons.
Surface triangulations can be obtained from the volume meshes in a natural way and can be used
for Monte-Carlo simulations.

We cite two very recent works in [47, 48] that describe new algorithms for generating relevant tissue
and cell geometries for diffusion MRI simulations. These two works are similar in spirit to ours,
namely, the common idea is to provide synthetic but realistic cell/tissue geometries. While they use
the generated geometries to conduct Monte-Carlo simulations, we principally use finite elements.
However, in theory, there is nothing preventing conducting either types of simulations on any high
quality surface triangulation.

In terms of the synthetic tissue/cell mesh generation problem, the work in [48] is more about the
brain white matter. The work that is closer to ours is [47], which is about creating 3-dimensional
synthetic neurons based on realistic neuron morphology statistics. That paper contained detailed
information about generating synthetic neuron skeletons (tree structure and branch diameter infor-
mation), which is analogous to the neuron information in the SWC format available from NeuroMor-
pho.Org. In addition, they used BLENDER and the BLENDER added-on ”SWC Mesh” to generate
surface triangulations for some neurons using the neuron information from NeuroMorpho.Org. The
salient points of our work described in this paper, contrasted with [47], are the following:

1. we do not generate synthetic neuron skeletons, we only import existing neuron skeletons from
NeuroMorpho.Org;

2. we tested the BLENDER added-on ”SWC Mesh”, and we found that we were not able to use
it to generate surface triangulations from the neuron skeletons provided by NeuroMorpho.Org
in a simple or automatic way, at least not for our collection of neurons;

3. following the approach described in this paper, we generated 65 high quality surface triangu-
lation of realistic neurons;

4. we provide the high quality realistic neuron meshes as a publicly available library; we provide
a User Guide to explain how to use these meshes in diffusion MRI simulations; this saves
the user from having to spend a lot of time to generate surface meshes from neuron skeleton
information;

5. we showed that the neuron and cell component meshes can be used by both finite elements
and Monte-Carlo simulations.

6. the neuron meshes we generated can be coupled with finite elements discretization to compute
the eigenfunctions and eigenvalues of the Bloch-Torrey and the Laplace operators;

In addition, in this paper,
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1. we performed an accuracy and computational timing study of the serial SpinDoctor finite
elements simulation and a GPU implementation of the Monte-Carlo simulation; We showed
that at equivalent accuracy, if only one gradient direction needs to be simulated, SpinDoctor is
faster than GPU Monte-Carlo. Because the GPU Monte-Carlo method is inherently parallel, if
many gradient directions need to be simulated, there is a break-even point when GPU Monte-
Carlo becomes faster than SpinDoctor. In particular, at equivalent accuracy, we showed the
ratio between the GPU Monte-Carlo computational time and the SpinDoctor computational
time for 1 gradient direction ranges from 31 to 72 for the whole neuron simulations.

2. we explained the choice of space and time discretization parameters in terms of the eigenvalues
and the eigenfunctions of the Laplace and Bloch-Torrey operators of the computational do-
main in question and illustrated the differences between high gradient amplitude simulations
versus low gradient amplitude simulations. We believe this will help to guide the choice of
simulation parameters (number of spins and the time step size) for Monte-Carlo simulations
as well.

The HARDI simulations we performed on the neurons confirm some established views of diffusion
measurements [67]: 1) the diffusion tensor is the prevalent contribution at long diffusion times and
low gradient amplitudes, exemplified by the elliptical shape of the signal attenuation; 2) the time
dependence of the diffusion tensor can be seen by the fact that the ellipses become larger (more sig-
nal, less attenuation, a smaller apparent diffusion coefficient) at longer diffusion times; 3) at higher
gradient amplitudes and shorter diffusion times, the HARDI signal attenuation has a more compli-
cated shape, probably due to the “stick” contributions of the dendrites; this additional complexity
of the diffusion behavior could be explainable with higher order diffusion characteristics, in other
words, higher order cumulants beyond the diffusion tensor. A more detailed theoretical analysis of
diffusion in neurons would be made in the future using the numerically computed eigenvalues and
the eigenfunctions of the Laplace and Bloch-Torrey operators.

Taking advantage of the realistic neuron meshes, we were able to illustrate the potential of our work.
We achieved this through 3 examples: first, we showed the capability to accelerate diffusion MRI
simulations; second, we tested the hypotheses of the compartment-based imaging models; third, we
showed how our tool can help to design new imaging methods.

Regarding the first point, we compared the computational times used by SpinDoctor and the GPU
Monte-Carlo program thoroughly in Section 4.6 (see Table 2). Our methodology has advantages
in speed and accuracy, thereby making our work a promising alternative to Monte-Carlo methods
which are widely used in many diffusion MRI studies, e.g., [22, 68, 69]. As for the testing of
imaging models, most compartment-based imaging models, e.g., [70–74] assume that the brain
micro-structure consists of two impermeable compartments, namely intra-neurite space and extra-
neurite space. These models succeeded in extracting micro-structure information such as neurite
orientation dispersion, axon radii and neurite density in white matter, e.g., [75, 76]. However, some
studies [16, 17, 66, 77–79] have shown that their assumptions are invalid in gray matter at large
b-values. Such a conclusion is in accordance with our results shown in Figure 8 and discussed
in Section 4.4, illustrating that we are capable of simulating recent experimental findings, and
according to Table 2, much faster than previous approaches.

Regarding the use of SpinDoctor to assist the design of new voxel-level models, we take the example
recently published by Palombo et al. [65]. In their work, they took the diffusive restriction effect
caused by soma into account and proposed a new compartment-based model that can hold in
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gray matter. To assess the validity regime of the non-exchanging compartment model for different
diffusion times and b-values, they simulated simplified neuron models in Camino. Specifically,
Palombo et al. compared the simulated ADC by connecting or disconnecting the cylinders and
the sphere. In Section 4.3, we compared the diffusion MRI signal of a connected neuron and
a disconnected neuron, which we show in Figure 7. Since we have shown that SpinDoctor has
advantages in speed and accuracy, studies such as Palombo et al.’s could gain by simulating realistic
neurons with less use of computational resources. Besides helping to design novel compartment-
based models, our work also points to new research possibilities that have been previously limited
by the moderate efficiency of Monte-Carlo methods, for example, the statistical study performed
in Section 4.8.

In summary, we believe our work can add substantially to the understanding of the imaging of
neuronal micro-structure (neurite density, neurite orientation dispersion, neuronal morphology)
[8, 9, 12, 13, 80–82]. In this paper, we have conducted a detailed numerical study of one neuron,
the 03b spindle4aACC, to validate our approach. We have also shown a preliminary statistical
study of the entire collection of neurons. For the interested reader, we have included numerical
simulations of other neurons and cell components in the Supplementary Material. Clearly, further
detailed statistical studies of a large number of neurons is the logical next step to our work.

Our work sets the stage for a systematic study of the connection between the diffusion MRI signal
and neuron morphology by the diffusion MRI community (for preliminary results, see [42, 43] and
Section 4.8). We hope this work contributes to further understanding of that relationship and aids
in better signal model formulation in the future. If there is sufficient interest from the modeling
community, we will add high quality meshes of other realistic neurons in the future.

As this time, we have not implemented the Neuron Module for coupled compartments linked by
permeable membranes. Rather, the diffusion MRI signal is computed with zero permeability on
the compartment boundaries. The current emphasis of the Neuron Module is to show how the
geometrical structure of the neurons affect the diffusion MRI signal. Thus, some of the input
parameters related to multiple compartment models in SpinDoctor are not applicable in the current
version of the Neuron Module. However, we have kept the exactly same input file formats in
anticipation of the future development of the Neuron Module for permeable membranes.

In the Supplementary Material, we list the expected input files, as well as the important functions
relevant to the Neuron Module. Sample output figures are also provided there. The toolbox
SpinDoctor and the Neuron Module as well as the User Guide are publicly available at:

https://github.com/jingrebeccali/SpinDoctor

The complete set of the volume tetrahedral meshes of the whole neurons as well as the corresponding
soma and dendrite branches for the group of 36 pyramidal neurons and the group of 29 spindle
neurons are publicly available at:

https://github.com/van-dang/RealNeuronMeshes

The names and sizes of the finite elements meshes of the 65 neurons and the morphological charac-
teristics of the neurons are listed in the Supplementary Material.
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6. Conclusion

We presented the Neuron Module that we implemented in the Matlab-based diffusion MRI simula-
tion toolbox SpinDoctor. We constructed high quality volume tetrahedral meshes for a group of 36
pyramidal neurons and a group of 29 spindle neurons. Using the Neuron Module, the realistic neu-
ron volume tetrahedral meshes can be seamlessly coupled with the functionalities of SpinDoctor to
provide the diffusion MRI signal attributable to spins inside neurons for general diffusion-encoding
sequences, at multiple diffusion-encoding gradient amplitudes and directions. In addition, we have
demonstrated that these neuron meshes can be used to perform Monte-Carlo diffusion MRI simula-
tions as well. We gave guidance in the choice of simulation parameters for both finite elements and
Monte-Carlo approaches using the eigenfunctions and eigenvalues of the Bloch-Torrey and Laplace
operators that we computed numerically on these neuron meshes with finite elements discretization.
Finally, we performed a statistical study on the collection of neurons in the Neuron Module and
tested some candidate biomarkers that can potentially reveal the soma size. We hope this study
can inspire new imaging methods in the future.
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