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Principle of a variable capacitor based on
Coulomb blockade of nanometric-size clusters
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A. FRIEDERICH and A. FERT

Unité mixte de Physique CNRS/THALES - Domaine de Corbeville
91404 Orsay Cedex, France and
Université Paris-Sud - 91405 Orsay Cedex, France

Abstract. — We show how Coulomb blockade of electrons in a dispersive set of clusters
embedded in the dielectric of a capacitor can be used to design a voltage tunable variable
capacitor (varactor). We calculate the variation of capacitance for typical size distribution of
the clusters and as a function of the dielectric constants of the insulators. We also discuss the
temperature and frequency dependence of the capacitor.

Introduction. — Studies of single-electron tunneling started more than thirty years ago
with Zeller and Giaver [1], and Lambe and Jaklevic [2]. Nevertheless, it is at the end of
the eighties that Coulomb blockade became the subject of extensive experimental [3—6] and
theoretical [7-12] studies. This has led to the development of the physics of artificial atoms [13]
and also to various applications in microelectronics [14]. However, most of the studies have
been done on I-V or dI/dV-V spectra. Beside the early work of Lambe and Jaklevic [2]
and Cavicchi and Silsbee [15], only few experiments have been performed to measure the
capacitance variation due to single-electron tunneling. In addition, most of those studies were
done on semiconductor quantum dots [16-19].

In this article, we study a configuration similar to the original one of Lambe and Jaklevic.
We show how a progressive change of capacitance can be obtained by using a bias voltage to
control the Coulomb blockade of an appropriate set of clusters. We derive the variation of the
capacitance as a function of the distribution of size in the set of clusters.

Description of the model. — Let us consider the nanometer-sized structure of fig. 1, where
a small nanometric-size island is separated from the left and right electrodes by, respectively,
a thin tunnel junction and a thick insulating barrier. The thickness (capacitance) of the
left and right insulating layers are, respectively, dy, (c) and dr (cgr) with di, < dr. In this
structure, dgr is chosen to be large enough to prevent tunnelling between the island and the
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Fig. 1 — a) A nanometric metallic island is embedded in-between two insulating layers and two
metallic electrodes. Electrons can tunnel from the left electrode to the island. In contrast, the thicker
right insulating layer prevents tunnelling to occur on the measurement timescale. b) Schematic
representation of the structure as two capacitors in series. ¢1,(gr) is the charge build-up on the right
electrode of the left (right) capacitor. ¢, — gr = —ne is the charge in excess on the island.

right electrode in the measurement timescale. As tunnelling depends exponentially upon the
barrier thickness, this condition is easily achieved without having di, < dR.

In the following, we will use the framework of the orthodox theory of Coulomb blockade
and we will consider the case where E, = e?/2(cy, +cr) > kT, E. being the charging energy
of the island. As electrons can only tunnel through the left junction, there is no net current
flowing through the whole structure at a fixed voltage V. Nevertheless, for V. <V <V, .,
(where V., = (2n — 1)e/2cg is the threshold voltage for charging a n-th electron onto the
island), the island has an integer n excess of charges —ne.

In the presence of an applied voltage V' < V,,, there is no excess charge on the island, we
have the same charge build-up on the right and left capacitor ¢, = qr and we obtain

cr, +c¢

ar
CR Cl, CL,CR C

where ¢ is the equivalent capacitance of the global structure (limited to the island zone) and
q its charge. For an applied voltage V. <V <V, we have qp = ¢ for the right electrode

“n+17
which is electrically isolated from the island, w11i1e+tu1111eli11g authorizes a distribution of the
charge of the capacitance between the left electrode and the island, qr, = ¢ — ne. Equation (1)
becomes
=4 1 9 (2)
CR C1, & Cr,

and the charge of the capacitor is written as
g=cV + < ne. (3)
CL

This means that ¢ increases abruptly by nec/cy, at each step V. of the Coulomb staircase.
In other words, the differential capacitance, ¢4 = dq/dV presents d-function-like peaks at
each step n and is constant (¢g = ¢) between two steps.



Let us now consider the capacitor of the type of fig. 1, but of macroscopic size in which
the single metallic island is replaced by a 2D array of N metallic islands with distributed
sizes. Here, S is the area of the electrodes and D = N/S is the island density. For simplicity,
each island will be described as a disk of surface s; having a capacitance ¢; , = €,8;/d,, where
o =L, R. We call p(s) the normalized distribution of s. The structure will be considered as N
nanometer-sized junctions like the one of fig. 1 in parallel. All those nanometer-sized junctions
are also in parallel with the capacitance corresponding to the zones of S without islands, that
is Cy(1 —7) = e ,erS(1 — 7)/(erdy, + €rdr), where 7 is the island covering factor. In the
following the capital letters will refer to a parameter of the whole macroscopic structure of
surface S and the small letters will refer to a parameter of one of the N nanometric capacitors.
We neglect mutual capacitance between islands.

The total charge of the structure, @Q, is obtained by adding up the contributions from all
the islands, given by eq. (3) with n = n;, ¢ = ¢; and ¢, = ¢; 1, for the i-th island, and the
contribution Cy(1 — 7) from the zones without islands. We have
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C;V + Z [ e, nie] . (5)

erdr, + erdr

When a small a.c. voltage v is added to the bias voltage V', the differential capacitance
Cy = dQ/dv can be written as

- ERdLE
CalV) =Cot o i erdL + eLdr [du (Z 772)1 L : (6)

The islands accommodating a n-th additional electron at the potential V' are those of surface

2n — 1 dgre
2 ERV.

s(n, V) = (7)

From that, the number of those islands accommodating an additional electron in the voltage
range between V and V + dv is

N
d(Zm) = ZNp(s)ds (8)

1 €dR
Np( V) ——dv. 9
2 Nolsn V=5 (©)

In fine, the differential capacitance can be written as

on—1 2
2 VZ

Co= 0y —Tlr [Np<s<n, V)

10
€rdL + eLdr 4 (10)



1400

1200 4

1000 4

800 -

600 -

AC/C (%)

400

200+

Fig. 2 — Variation of differential capacitance vs. d.c. voltage (solid curve) expected for a set of
gold clusters having a Gaussian diameter distribution (extracted from ref. [20]) with 7 = 2.2 nm,
o =0.5nmand D = 3.99-10'°/m?. The two insulating barriers are SiO2 and SrTiO3 with respective
parameters: dr, = 2.5 nm, dg = 5 nm and e, = 3.9, eg = 332. The respective capacitance contribu-
tions of the first three orders of n are also given: n = 1 (dash-dotted curve), n = 2 (dashed curve)
and n = 3 (dotted curve).

This gives for the variation AC of Cy between V =0 and V:

AC Cd — CJ 2n—1 62
_— e — = D
CJ C’J deR p(S(n, V)) 2 ELERV2

(11)

We have calculated AC/C; from eq. (11) for the typical size distribution which has been
found for a set of gold clusters embedded in an oxide layer (sets easy to produce by sputter-
ing) [20]. We have supposed that these clusters are embedded between SiO2 (low dielectric
constant, e, = 3.9) and SrTiOgz (high dielectric constant, er, = 332) layers. As shown in
fig. 2, the variation of the differential capacitance as a function of the bias voltage reaches
1400%. The first three orders in n are detailed as a guideline as the total capacitance varia-
tion corresponds mainly to the sum of these three contributions. The variation of AC/C of
fig. 2 is typical of a relatively narrow size distribution, with a main peak (for n = 1) weakly
overlapping with the higher-order contributions. Sharper peaks with higher values of AC/C
could be obtained with narrower size distributions. In fig. 3, we illustrate the opposite case
for which AC/C is smaller but extends over a broader voltage range: in this example, this is
due to a larger cluster size distribution and a lower eg.

Following eq. (11), for a Gaussian distribution of the islands surfaces p(s) with a mean value
5 and a narrow standard deviation o < 'S, the maximum variation of differential capacitance
occurs at V =~ edr/2egs for n =1 and is

<2
& N |:2D9 dLER:| ) (12)

C;  lov2rdres
A lecture of eq. (12) gives in a simple physical way the pertinent parameters of the differential
capacitance variation amplitude. The amplitude of the effect is raised by choosing a cluster
distribution with a high density (D) and a low-size dispersion (32/c) and also by choosing
two different dielectric constant (eg > €1,) and enlarging dy,/dg while keeping di, < dg. The



Fig. 3 — Variation of capacitance vs. voltage (solid curve) expected for a set of clusters having a
Gaussian diameter distribution with 7 = 1.56 nm and ¢ = 1 nm and D = 3.17 - 10'®/m®. The two
insulating barriers are SiO; and Al,Os with respective parameters: di, = 2.5 nm, dg = 5 nm and
e, = 3.9, e = 9. The respective capacitance contributions of the first three orders of n are also
given: n = 1 (dash-dotted curve), n = 2 (dashed curve) and n = 3 (dotted curve).

voltage range of the rising slope corresponds, approximately, to a surface variation from s+ 20
to 5, so that the effective voltage control range is
N edR 20

AV = 2er 5(5 + 20) (13)

Increasing (decreasing) eg (dr) increases the capacitance variation but decreases the voltage
range. A narrower cluster size distribution has similar consequences. Capacitance variation
could be increased by one order of magnitude with narrower clusters distributions [21] and by
using a very high dielectric constant as thick insulator (BaTiOg, € ~ 1600).

Frequency and temperature dependence. — The influence of frequency and temperature
can be described by cut-off effects. Concerning frequency, if the alternative voltage period
1/f is lower than the rcp, product of an island, then this island will not be able to charge-
discharge during a cycle and no capacitance variation will arise from it. This gives rise to
a cut-off frequency for the effect. As an example, for a 2 nm diameter cluster associated
with a thin SiOs barrier the capacitance ¢p, is within the order of 10~ F. To ensure the
Coulomb-blockade regime, the junction resistance will have to be at least of the order of
r;, = €2/h giving a maximum cut-off frequency of the order of 100 THz. With respect to
temperature, in order to have Coulomb-blockade effect, the cluster charging energy E¢ has to
satisfy Ec > kT. The charging energy of a cluster in a “set of cluster” environment will be
less lower than that of an isolated one. Coulomb blockade of clusters of 2 nm diameter in a
“set of clusters” environment has been observed [22] at room temperature for densities close
to the ones given in examples in figs. 3 and 2.

Conclusion. — In conclusion, we have described and assessed a concept of capacitor the
a.c. capacitance of which can be varied by applying a bias voltage. The variation of the
capacitance is governed by Coulomb-blockade effects on metallic clusters embedded in the
dielectric of the capacitor. The amplitude of the capacitance variation and its bias voltage



range are controlled by the size distribution of the clusters and the dielectric insulators. We
have discussed the condition for obtaining a device working at room temperature and up to
high frequency. We have shown that effects of interest for applied devices can be obtained with
typical arrays of clusters that are currently fabricated with standard deposition techniques.
Reversibly, this effect could also be used as a probe to obtain the size distribution of a set of
clusters through a differential capacitance measurement.
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