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A NOTE ON THE MEAN-FIELD LIMIT FOR THE PARTICLE SWARM

OPTIMIZATION

HUI HUANG

Abstract. Recently a continuous description of particle swarm optimization (PSO) based on a system of

stochastic differential equations was proposed in [10] for solving global optimization problems. This note

is devoted to solving the open problem suggested in [10] by providing a rigorous proof of the large particle

limit under the assumption of finite second moment.

Keywords: Swarm optimization, propagation of chaos, consensus based optimization, Laplace’s principle.

1. Introduction

Particle Swarm Optimization (PSO) has fascinated the scientific community ever since it was initially

introduced to model the intelligent collective behavior of complex biological systems such as flocks of birds

or schools of fish [14, 15, 19], and it is now widely recognized as an efficient method for tackling complex

optimization problems [18]. However the mathematical understanding of PSO is still in its infancy. Recently

Grassi and Pareschi [10] took a significant first step towards a mathematical theory for PSO based on a

continuous description in the form of a system of stochastic differential equationsdXi
t = V i

t dt,

dV i
t = − γ

mV i
t dt+

λ
m (Xα

t (ρ
N )−Xi

t)dt+
σ
mD(Xα

t (ρ
N )−Xi

t)dB
i
t, i = 1, · · · , N ,

(1.1)

where Xi
t , V i

t ∈ Rd denote the position and velocity of the i-th particle at time t, m is the inertia weight,

γ = 1 − m ≥ 0 is the friction coefficient, λ > 0 is the acceleration coefficient, σ > 0 is the diffusion

coefficient, and {(Bi
t)t≥0}Ni=1 are N independent d-dimensional Brownian motions. Moreover, we use the

notations D(Xt) := diag{(Xt)1, . . . , (Xt)d} ∈ Rd×d, and the weighted average Xα
t (ρ

N ) :=
∫
Rd xωE

α(x)ρN (t,x)dx∫
Rd ωE

α(x)ρN (t,x)dx

with the empirical measure ρN (t, x) := 1
N

∑N
i=1 δXi

t
(x). Here the initial data (Xi

0, V
i
0 )

N
i=1 is i.i.d. with

common distribution f0 ∈ P2(R2d), where P2(R2d) denotes the set of probability measures with finite second

moment, which is endowed with the 2-Wasserstein distance W2 [1]. The choice of the weight function

ωE
α(x) := exp(−αE(x)) comes from the well-known Laplace’s principle [6,16], a classical asymptotic method

for integrals, which states that for any probability measure ρ ∈ P(Rd), it holds

lim
α→∞

(
− 1

α
log

(∫
Rd

ωE
α(x)dρ(x)

))
= inf

x∈supp(ρ)
E(x) . (1.2)

Thus for α large enough, one expects that Xα
t (ρ

N ) ≈ argmin {E(X1
t ), . . . , E(XN

t )}. Due to the nonlinearity

coming from the local best position Xα
t (ρ

N ), the authors in [10] could only formally derive the mean-field

Vlasov-Fokker-Plank equation in the limit of a large number of particles. This note works as a completion

for a theory gap suggested in [10] by providing the rigorous derivation of the mean-field limit under the

assumption of finite second moment. Before proving the mean-field limit result (see Section 3), we need to
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Fornasier for his encouragement and support during the author’s stay at TUM. This work is partially supported by the Pacific

Institute for the Mathematical Sciences (PIMS) postdoctoral fellowship.
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2 HUI HUANG

establish the well-posedness for both the particle system (1.1) and its limiting equation (1.3) (see Section

2), which was missing in [10].

In the following we give the assumption on our given cost function E .

Assumption 1. The given cost function E : Rd → R is globally Lipschitz continuous and satisfies the

properties

1. |E(v)− E(u)| ≤ L|v − u| for all u, v ∈ Rd, where L > 0 is the global Lipschitz constant ;

2. E is bounded, i.e. −∞ < E := inf E ≤ E ≤ sup E =: E < +∞ and define δE := E − E .

For later use let us denote [N ] := {1, · · · , N}. As N → ∞, the mean-field limit result [2,3,12,13,20] shall

show that our PSO dynamic (1.1) well approximates solutions of the following mean-field kinetic Mckean-

Vlasov type equationsdX
i

t = V
i

tdt,

dV
i

t = − γ
mV

i

tdt+
λ
m (Xα

t (ρ)−X
i

t)dt+
σ
mD(Xα

t −X
i

t)dB
i
t, i ∈ [N ] ,

(1.3)

where

Xα
t (ρ) =

∫
Rd xω

E
α(x)ρ(t, x)dx∫

Rd ωE
α(x)ρ(t, x)dx

, ρ(t, x) =

∫
Rd

f(t, x, v)dv , (1.4)

and the initial data (X
i

0, V
i

0) is the same as in (1.1). Then the processes (X
i

t, V
i

t)t≥0 are independent

since the initial conditions and driving Brownian motions are independent. Here f(t, x, v) is the common

distribution of (X
i

t, V
i

t) at time t for all i ∈ [N ], which makes the set of equations (1.3) nonlinear. As a direct

application of Itô’s formula, the law ft := f(t, ·, ·) at time t is a weak solution to the following nonlinear

Vlasov-Fokker-Plank equation

∂tft + v · ∇xft = ∇v ·
(

γ

m
vft +

λ

m
(x−Xα

t (ρ)) ft +
σ2

2m2
D (x−Xα

t (ρ))
2 ∇vft

)
(1.5)

with the initial data f0(x, v) = L(Xi

0, V
i

0). It was formally showed in [10] that, in the zero inertia limit

(m → 0), one expects the macroscopic density in the mean-field PSO equation (1.5) to be well approximated

by the mean-field Consensus Based Optimization (CBO) [4,5, 8, 9, 11,17] equation of the form

∂tρt + λ∇x · (ρt(Xα
t (ρ)− x)) =

σ2

2

d∑ ∂2

∂x2
j

(
ρt (xj − (Xα

t (ρ))j)
2
)
. (1.6)

In the sequel we shall use the notation m2
ft

:=
∫∫

R2d(|x|2 + |v|2)f(t, x, v)dxdv for the second moment of ft.

2. Well-posedness for the particle system(1.1) and the mean-field dynamic (1.3)

To start with, we recall a lemma from [8, Lemma 2.1], which implies that the coefficients in (1.1) are

locally Lipschitz and have linear growth.

Lemma 2.1. [8, Lemma 2.1] Let N ∈ N, α > 0 be arbitrary and E satisfy Assumption 1. Then for any

ρN = 1
N

∑N
i=1 δXi and ρ̂N = 1

N

∑N
i=1 δX̂i , it holds

|Xα
t (ρ

N )| ≤ Cα,E

N
∥XN∥1 (2.1)

and

|Xα
t (ρ

N )−Xα
t (ρ̂

N )| ≤
(
Cα,E

N
+

2αCα,EL

N
∥X̂N∥∞

)
∥XN − X̂N∥1 , (2.2)
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where Cα,E = eαδE with δE = E −E. Here we used the notations for norms of vectors ∥XN∥∞ = supi∈[N ] |Xi|
and ∥XN∥1 =

∑N
i=1 |Xi|. Let Xα

t (ρ) be as in (1.4), then it holds

|Xα
t (ρ)| ≤ Cα,E

∫
Rd

|x|ρ(t, x)dx = Cα,E

∫∫
Rd

|x|f(t, x, v)dxdv ≤ C(Cα,E ,m
2
ft) . (2.3)

Theorem 2.1 (Well-posedness of (1.1)). Let f0 ∈ P2(R2d), and assume that (Xi
0, V

i
0 )

N
i=1 are i.i.d. with

the common law f0. Then the particle system (1.1) admits a unique global solution with the initial data

(Xi
0, V

i
0 )

N
i=1. Moreover one has

E

[
N∑
i=1

(|Xi
t |2 + |V i

t |2)

]
≤ E

[
N∑
i=1

(|Xi
0|2 + |V i

0 |2)

]
eCt , (2.4)

for all t ≥ 0, where C depends only on λ,m, σ and Cα,E .

Proof. We can rewrite (1.1) as the SDE

dZN
t = σN (ZN

t )dBN
t + b

(
ZN

t

)
dt , (2.5)

in R2dN , where ZN
t =

(
X1

t , V
1
t , . . . , X

N
t , V N

t

)
. Then it holds∥∥σN (ZN )

∥∥ ≤ σ

m
|Xα

t (ρ
N )−Xi

t |2 ≤ 2σ

m
(|Xi|2 + |Xα(ρN )|2)

≤ 2σ

m
(
∥∥ZN

∥∥2 + C2
α,E

N2
(

N∑
i=1

|Xi|)2) ≤ 2σ

m
(
∥∥ZN

∥∥2 + C2
α,E

N

∥∥ZN
∥∥2) . (2.6)

Moreover one has ⟨
ZN ,b

(
ZN

)⟩
=

N∑
i=1

Xi · V i −
N∑
i=1

γ

m
|V i|2 +

N∑
i=1

λ

m
V i · (Xα(ρN )−Xi)

≤ (
1

2
+

γ

2m
)
∥∥ZN

∥∥2 + λ

2m
(

N∑
i=1

|V i|2 +N |Xα(ρN )|2)

≤ (
1

2
+

γ

m
)
∥∥ZN

∥∥2 + Nλ

2m

C2
α,E

N2
(

N∑
i=1

|Xi|)2 ≤ (
1

2
+

γ

m
+

λC2
α,E

2m
)
∥∥ZN

∥∥2 . (2.7)

This is a sufficient condition for the global existence and path-wise uniqueness [7, Chapter 5, Theorems 3.7

and 3.11]. Moreover for any i ∈ [N ] we compute

d

dt
E[|Xi

t |2 + |V i
t |2] = 2Xi · V i − 2γ

m
|V i|2 + 2λ

m
V i · (Xα(ρN )−Xi) +

σ2

m2

d∑
k=1

(Xα(ρN )−Xi)2k . (2.8)

Summation of the previous equality over i ∈ [N ] yields

d

dt
E[
∥∥ZN

t

∥∥2] ≤ 2E
[⟨
ZN

t ,b
(
ZN

t

)⟩]
+

2Nσ2

m2
E[|Xα

t (ρ
N )|2] + 2σ2

m2
E[
∥∥ZN

t

∥∥2]
≤(1 +

2γ

m
+

2λC2
α,E

2m
+

2σ2

m2
+

2σ2C2
α,E

m2
)
∥∥ZN

t

∥∥2 , (2.9)

which leads to (2.4) by Gronwall’s inequality. □

To prove the well-posedness of (1.3), let us first introduce a related linear problem:dXt = V tdt,

dV t = − γ
mV tdt+

λ
m (Xα

t (ρ̃)−Xt)dt+
σ
mD(Xα

t (ρ̃)−Xt)dBt ,
(2.10)

where Xα
t (ρ̃) =

∫
Rd xωE

α(x)ρ̃(t,x)dx∫
Rd ωE

α(x)ρ̃(t,x)dx
, ρ̃(t, x) =

∫
Rd f̃(t, x, v)dv for any given f̃ : [0, T ] → P2(R2d).
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Proposition 2.2 (Well-posedness of (2.10)). For any T > 0, let f0 ∈ P2(R2d) and f̃ : [0, T ] → P2(R2d) be

a given continuous curve in the W2 topology. Assume that (X0, V 0) is distributed according to f0. Then the

linear SDE (2.10) admits a unique solution up to time T with the initial data (X0, V 0). Moreover one has

sup
t∈[0,T ]

E[|Xt|2 + |V t|2] ≤
(
E[|X0|2 + |V 0|2] + C

)
eCT , (2.11)

where C depends only on λ,m, σ,Cα,E and sup
t∈[0,T ]

m2
f̃t
. Here we have used the second moment notation

m2
f̃t

:=
∫∫

R2d |x|2f̃(t, x, v)dxdv .

Proof. We rewrite (2.10) as

dZt = σ(Zt)dBt + b(Zt)dt . (2.12)

It easy to check that

∥σ(Z)∥ ≤ 2σ

m

(
C2

α,E

∫∫
R2d

|x|2f̃(t, x, v)dxdv + |Z|2
)

(2.13)

and

⟨Z, b(Z)⟩ = X · V − γ

m
|V |2 + λ

m
V · (Xα(ρ̃)−X) ≤ (

1

2
+

λ

m
)|Z|2 + λ

2m
C2

α,E

∫∫
R2d

|x|2f̃(t, x, v)dxdv .

Notice that f̃ : [0, T ] → P2(R2d), so we again obtain a sufficient condition for the global existence and

path-wise uniqueness.

Moreover by Itô’s formula one has

d

dt
E[|Xt|2 + |V t|2] = 2E [⟨Zt, b(Zt)⟩] +

σ2

m2

d∑
k=1

(Xα
t (ρ̃)−Xt)

2
k ≤ 2E [⟨Zt, b(Zt)⟩] +

2σ2

m2
E[|Xt|2 + |Xα

t (ρ̃)|2]

≤ C(λ,m, σ)E[|Xt|2 + |V t|2] + C(λ,m, σ,Cα,E)

∫∫
R2d

|x|2f̃(t, x, v)dxdv . (2.14)

So Gronwall’s inequality implies that the second moment E[|Xt|2 + |V t|2] is bounded on [0, T ] as desired in

(2.11). □

Before we state our theorem on the well-posedness of (1.3), let us introduce the following lemma.

Lemma 2.2. [8, Lemma 2.2] Assume that f, f̂ ∈ P2(R2d). Then the following stability estimate holds

|Xα(ρ)−Xα(ρ̂)| ≤ CW2(ρ, ρ̂) , (2.15)

where C depends only on Cα,E , α, L, m
2
f and m2

f̂
.

Theorem 2.3 (Well-posedness of (1.3)). For any T > 0, let f0 ∈ P2(R2d), and assume that (X0, V 0) is

distributed according to f0. Then the following nonlinear SDEdXt = V tdt,

dV t = − γ
mV tdt+

λ
m (Xα

t (ρ)−Xt)dt+
σ
mD(Xα

t (ρ)−Xt)dBt .
(2.16)

has a unique solution up to time T with the initial data (X0, V 0). Here the nonlinearity comes from the

requirement that (Xt, V t) has the law ft, and ρt(x) =
∫
Rd ft(x, v)dv.

Proof. Take the random variable (X0, V 0) with distribution f0 ∈ P2(R2d). We define the stochastic process

(X
n

t , V
n

t ) recursively bydX
n

t = V
n

t dt,

dV
n

t = − γ
mV

n

t dt+
λ
m (Xα

t (ρ
n−1)−X

n

t )dt+
σ
mD(Xα

t (ρ
n−1)−X

n

t )dBt ,
(2.17)
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for n ≥ 1, where

Xα
t (ρ

n−1) =

∫
Rd xω

E
α(x)ρ

n−1(t, x)dx∫
Rd ωE

α(x)ρ
n−1(t, x)dx

, ρn−1(t, x) =

∫
Rd

fn−1(t, x, v)dv . (2.18)

Here fn
t (n ≥ 1) is the distribution function of (X

n

t , V
n

t ) and f0
t := f0 for all t ∈ [0, T ]. Below we will also use

the alternate notation fn(t, x, v) for fn
t (x, v). According to Proposition 2.2, for any given fn−1, the linear

SDE (2.17) is well-posed up to time T , and the second moment m2
fn
t
of (X

n

t , V
n

t ) is bounded on [0, T ].

Step 1: Cauchy estimate. Denote

ynt := X
n+1

t −X
n

t , un
t := V

n+1

t − V
n

t , ent := |ynt |2 + |un
t |2 . (2.19)

We compute by Itô’s formula and for any n ≥ 1,

d

dt
E[|ynt |2] = 2E[⟨ynt , un

t ⟩] ≤ E[|ynt |2 + |un
t |2] = E[ent ] , (2.20)

and

d

dt
E[|un

t |2] = 2E
[⟨

un
t ,−

γ

m
un
t − γ

m
ynt +

γ

m
(Xα

t (ρ
n)−Xα

t (ρ
n−1))

⟩]
+

σ2

m2

d∑
k=1

E[(Xα
t (ρ

n)−Xα
t (ρ

n−1)− ynt )
2
k]

≤ (
γ

m
+

2σ2

m2
)E[ent ] + 2E

[⟨
un
t ,

γ

m
(Xα

t (ρ
n)−Xα

t (ρ
n−1))

⟩]
+

2σ2

m2
E[|Xα

t (ρ
n)−Xα

t (ρ
n−1)|2] .

It follows from Lemma 2.2 and the definition of Wasserstein metric that one has

|Xα
t (ρ

n)−Xα
t (ρ

n−1)|2 ≤ CW 2
2 (ρ

n
t , ρ

n−1
t ) ≤ CE[|yn−1

t |2] , (2.21)

where C depends only on Cα,E , α, L, sup
t∈[0,T ]

m2
fn−1
t

and sup
t∈[0,T ]

m2
fn
t
. Thus we have

2⟨un
t , X

α
t (ρ

n)−Xα
t (ρ

n−1)⟩ ≤ |un
t |2 + |Xα

t (ρ
n)−Xα

t (ρ
n−1)|2 ≤ |un

t |2 + CE[|yn−1
t |2] . (2.22)

This yields

d

dt
E[|un

t |2] ≤ (
γ

m
+

σ2

m2
)E[ent ] +

γ

m
E[|un

t |2] + CE[|yn−1
t |2] + σ2

m2
CE[|yn−1

t |2]

≤ CE[ent ] + E[en−1
t ] . (2.23)

Collecting estimates (2.20) and(2.23), we conclude that

d

dt
E[ent ] ≤ CE[ent ] + CE[en−1

t ] . (2.24)

Let us denote ηn(t) := E[ent ] , then one has

d

dt
ηn(t) ≤ Cηn(t) + Cηn−1(t) . (2.25)

Applying Gronwall’s inequality leads to

ηn(t) ≤ C

∫ t

0

eC(t−s)ηn−1(s)ds , (2.26)

and iterating this inequality gives

ηn(t) ≤ Cn

∫ t

0

eC(t−s)η0(s)
(t− s)n−1

(n− 1)!
ds ≤ CneCttn sup

s∈[0,t]

η0(s) ≤ CneCnttn sup
s∈[0,t]

η0(s) . (2.27)

Hence we obtain

ηn(t) ≤ exp (n(Ct+ ln(Ct))) sup
s∈[0,t]

η0(s) , (2.28)
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where C depends only on Cα,E , α, L, sup
t∈[0,T ]

m2
fn−1
t

and sup
t∈[0,T ]

m2
fn
t
. Note here that sup

t∈[0,T ]

m2
fn−1
t

and sup
t∈[0,T ]

m2
fn
t

can be uniformly bounded in n. Choosing 0 < T∗ < T small enough such that β := CT∗+ln(CT∗) < 0, then

sup
t∈[0,T∗]

ηn(t) ≤ eβn sup
s∈[0,T∗]

η0(s) → 0, as n → ∞ . (2.29)

Step 2: Passing the limit. The last step proves that {(Xn

t , V
n

t )t∈[0,T∗]}n≥1 is a Cauchy sequence. Denote

by (Xt, V t)t∈[0,T∗] the limit point such that

sup
t∈[0,T∗]

E[|Xn

t −Xt|2 + |V n

t − V t|2] → 0 as n → ∞ . (2.30)

Assume that (Xt, V t)t∈[0,T∗] has the distribution (ft)t∈[0,T∗], then by the definition of the Wasserstein metric

one has

WT∗
2 (fn, f) := sup

t∈[0,T∗]

W2(f
n
t , ft) ≤ sup

t∈[0,T∗]

(E[|Xn

t −Xt|2 + |V n

t − V t|2])
1
2 → 0 as n → ∞ , (2.31)

and f ∈ C(0, T∗;P2(R2d)) since C(0, T∗;P2(R2d)) is complete w.r.t. the metric WT∗
2 . Lastly, taking n → ∞

(up to a subsequence) in (2.17), one obtains that the limit process (Xt, V t)t∈[0,T∗] is a solution to the

Nonlinear SDE (2.16) up to time T∗. Next, we can easily extend the existence to the whole interval [0, T ]

by iterating this procedure starting from T∗.

Step 3: Uniqueness. Assume that (X
1

t , V
1

t )t∈[0,T ] and (X
2

t , V
2

t )t∈[0,T ] are two solutions to SDE (2.16)

with the same Brownian motion. Similar to Step 1, it is easy to derive

d

dt
E
[
|X1

t −X
2

t |2
]
≤ E

[
|X1

t −X
2

t |2 + |V 1

t − V
2

t |2
]
,

and

d

dt
E
[
|V 1

t − V
2

t |2
]

≤(
γ

m
+

σ2

m2
)E

[
|X1

t −X
2

t |2 + |V 1

t − V
2

t |2
]
+

γ

m
E
[
|V 1

t − V
2

t |2
]
+ CE[|X1

t −X
2

t |2] +
σ2

m2
CE[|X1

t −X
2

t |2] .

Applying Gronwall’s inequality yields

sup
t∈[0,T ]

E
[
|X1

t −X
2

t |2 + |V 1

t − V
2

t |2
]
≤ E

[
|X1

0 −X
2

0|2 + |V 1

0 − V
2

0|2
]
eCT , (2.32)

showing uniqueness of solutions to (2.16). □

3. Mean-field limit

Let us start this section with introducing the following lemma on a large deviation bound.

Lemma 3.1. [8, Lemma 3.1] For any T > 0, let {(Xi

t, V
i

t)t∈[0,T ]}Ni=1 be the solution to the mean-field

dynamics (1.3), which are i.i.d. with common distribution f ∈ C([0, T ],P2(R2d)). Then it holds

sup
t∈[0,T ]

E
[
|Xα

t (ρ
N )−Xα

t (ρ)|2
]
≤ ( sup

t∈[0,T ]

m2
ft)C

3
α,EN

−1 , (3.1)

where we have used the notation ρN = 1
N

∑N
i=1 δXi .

We now state our main result on the mean-field limit, which states that the intermediate dynamics (1.3)

well approximates the interacting particle system (1.1).
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Theorem 3.1. For any T > 0, let f0 ∈ P2(R2d), and assume that {(Xi
t , V

i
t )t∈[0,T ]}Ni=1 and {(Xi

t, V
i

t)t∈[0,T ]}Ni=1

are solutions to (1.1) and (1.3) respectively with the same i.i.d. initial data distributed according to f0. Then

it holds that

sup
t∈[0,T ]

sup
i=1,··· ,N

E[|Xi
t −X

i

t|2 + |V i
t − V

i

t|2] ≤ CN−1 , (3.2)

where C depends only on γ, λ, σ,m, T,m2
f0

and Cα,E .

Remark 3.1. By the assumption f0 ∈ P2(R2d) and the computation similar to (2.14), one can easily obtain

a uniform bound of the second moment: sup
t∈[0,T ]

m2
ft

≤ m2
f0
eC(λ,m,σ,Cα,E)T .

Proof. For all i = 1, · · · , N , one can compute

d

dt
E[|Xi

t −X
i

t|2] = 2E[⟨Xi
t −X

i

t, V
i
t − V

i

t⟩] ≤ E[|Xi
t −X

i

t|2 + |V i
t − V

i

t|2] . (3.3)

Applying the Itô formula to |V i
t − V

i

t|2 we get

d

dt
E[|V i

t − V
i
t|2]

=2E
[⟨

V i
t − V

i
t,−

γ

m
(V i

t − V
i
t)−

γ

m
(Xi

t −X
i
t) +

γ

m
(Xα

t (ρ
N )−Xα

t (ρ))
⟩]

+
σ2

m2

d∑
k=1

E[(Xα
t (ρ

N )−Xα
t (ρ)− (Xi

t −X
i
t))

2
k]

≤(
γ

m
+

2σ2

m2
)E[|Xi

t −X
i
t|2 + |V i

t − V
i
t|2] + 2E

[⟨
V i
t − V

i
t,

γ

m
(Xα

t (ρ
N )−Xα

t (ρ))
⟩]

+
2σ2

m2
E[|Xα

t (ρ
N )−Xα

t (ρ)|2]

≤(
2γ

m
+

2σ2

m2
)E[|Xi

t −X
i
t|2 + |V i

t − V
i
t|2] + (

γ

m
+

2σ2

m2
)E[|Xα

t (ρ
N )−Xα

t (ρ)|2] .

It follows from Lemma 2.2, Lemma 3.1 and the definition of Wasserstein distance that

E
[
|Xα

t (ρ
N )−Xα

t (ρ)|2
]
≤ 2E

[
|Xα

t (ρ
N )−Xα

t (ρ
N )|2

]
+ 2E

[
|Xα

t (ρ
N )−Xα

t (ρ)|2
]

≤2CE
[
W 2

2 (ρ
N , ρN )

]
+ 2( sup

t∈[0,T ]

m2
ft)C

3
α,EN

−1 ≤ 2C sup
i∈[N ]

E[|Xi
t −X

i

t|2] + 2( sup
t∈[0,T ]

m2
ft)C

3
α,EN

−1 ,

where C depends only on Cα,E , α, L, T and m2
f0
. This implies that

d

dt
E[|V i

t − V
i

t|2] ≤ C sup
i∈[N ]

E[|Xi
t −X

i

t|2 + |V i
t − V

i

t|2] + CN−1 . (3.4)

where C depends only on γ, λ, σ,m, T,m2
f0

and Cα,E . Collecting (3.3) and (3.4), one has

sup
i∈[N ]

E[|Xi
t −X

i

t|2 + |V i
t − V

i

t|2] ≤ C

∫ t

0

sup
i∈[N ]

E[|Xi
s −X

i

s|2 + |V i
s − V

i

s|2]ds+ CN−1t ,

which leads to

sup
i∈[N ]

E[|Xi
t −X

i

t|2 + |V i
t − V

i

t|2] ≤ CN−1teCt , (3.5)

for all t ∈ [0, T ], where C depends only on γ, λ, T, σ,m,m2
f0

and Cα,E . □

Remark 3.2. We point out here that the proof in this note can be easily extended to the case of the PSO

dynamic with memory and local best [10, Equation (3.6)] since the only difference there is an additional

variable Y i
t , which satisfies an ODE with globally Lipschitz coefficients.
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[2] François Bolley, José A Canizo, and José A Carrillo, Stochastic mean-field limit: non-Lipschitz forces and swarming,

Mathematical Models and Methods in Applied Sciences 21 (2011), no. 11, 2179–2210.
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