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Abstract. We propose a novel federated learning paradigm to model data vari-
ability among heterogeneous clients in multi-centric studies. Our method is ex-
pressed through a hierarchical Bayesian latent variable model, where client-specific
parameters are assumed to be realization from a global distribution at the master
level, which is in turn estimated to account for data bias and variability across
clients. We show that our framework can be effectively optimized through expec-
tation maximization over latent master’s distribution and clients’ parameters. We
tested our method on the analysis of multi-modal medical imaging data and clin-
ical scores from distributed clinical datasets of patients affected by Alzheimer’s
disease. We demonstrate that our method is robust when data is distributed either
in iid and non-iid manners: it allows to quantify the variability of data, views and
centers, while guaranteeing high-quality data reconstruction as compared to the
state-of-the-art autoencoding models and federated learning schemes.

Keywords: Federated Learning · Hierarchical Generative Model · Heterogene-
ity.

1 Introduction

The analysis of medical imaging datasets for the study of neurodegenerative diseases,
requires the joint modeling of multiple views, such as clinical scores and multi-modal
medical imaging data. These views are generated through different processes for data
acquisition, as for instance Magnetic Resonance Imaging (MRI) or Positron Emission
Tomography (PET). Each view provides a specific information about the pathology,
and the joint analysis of all views is necessary to improve diagnosis, for the discovery
of pathological relationships or for predicting the disease evolution. Nevertheless, the
integration of multi-views data, accounting for their mutual interactions and their joint
variability, presents a number of challenges.

? Data used in preparation of this article were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators
within the ADNI contributed to the design and implementation of ADNI and/or provided data
but did not participate in analysis or writing of this report. A complete listing of ADNI in-
vestigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/
how_to_apply/ADNI_Acknowledgement_List.pdf

adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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When dealing with high dimensional and noisy data it is crucial to be able to extract
an informative lower dimensional representation to disentangle the relationships among
observations, accounting for the intrinsic heterogeneity of the original complex data
structure. From a statistical perspective, this implies the estimation of a model of the
joint variability across views, or equivalently the development of a joint generative
model, assuming the existence of a common latent variable generating all views.

Several data assimilation methods based on dimensionality reduction have been de-
veloped [4], and successfully applied to a variety of domains. The main goal of these
methods is to identify a suitable lower dimensional latent space, where some key char-
acteristics of the original dataset are preserved after projection. The most basic among
such methods is Principal Component Analysis (PCA) [7], where data are projected
over the axes of maximal variability. More flexible approaches are Auto-Encoders [17],
enabling to learn a low-dimensional representation minimizing the reconstruction error.

In some cases, Bayesian counterparts of the original dimensionality reduction meth-
ods have been developed, such as Probabilistic Principal Component Analysis (PPCA) [16],
based on factor analysis, or, more recently, Variational Auto-Encoders (VAEs) [9].
VAEs are machine learning algorithms based on a generative function which allows
probabilistic data reconstruction from the latent space. Encoder and decoder can be flex-
ibly parametrized by neural networks (NNs), and efficiently optimized through Stochas-
tic Gradient Descent (SGD). The added values of a Bayesian formulation is to provide a
tool for sampling further observations from the estimated data distribution, and quantify
the uncertainty of data and parameters. In addition, Bayesian model selection criteria
such as the Watanabe-Akaike Information Criteria (WAIC) [5] allow to perform auto-
matic model selection.

Multi-centric biomedical studies offer a great opportunity to significantly increase
the quantity and quality of available data, hence to improve the statistical reliabil-
ity of their analysis. Nevertheless, in this context, three main data-related challenges
should be considered. 1) Statistical heterogeneity of local datasets (i.e. center-specific
datasets): observations may be non-identically distributed across centers with respect to
some characteristic affecting the output (e.g. diagnosis). Additional variability in local
datasets can also come from data collection and acquisition bias [8]. 2) Missing not at
random views: not all views are usually available for each center. 3) Privacy concerns:
privacy-preserving laws are currently enforced to ensure the protection of personal data
(e.g. the European General Data Protection Regulation - GDPR1), preventing the cen-
tralized analysis of data collected in multiple biomedical centers [6,3]. These limita-
tions impose the need for extending data assimilation methods to handle decentralized
heterogeneous data and missing views in local datasets.

Federated learning (FL) is an emerging paradigm specifically developed for the de-
centralized training of machine learning models. In order to guarantee data privacy,
FL methods are conceived in such a way to avoid any sensitive data transfer among
centers: raw data are processed within each center, which only shares local parame-
ters with the master. The standard aggregation method in FL is Federated Averaging
(FedAvg) [14], which combines local models via weighted averaging. However, this
aggregation scheme is sensitive to statistical heterogeneity, which naturally arises in

1 https://gdpr-info.eu/

https://gdpr-info.eu/
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federated datasets [11], for example when dealing with multi-view data, or when data
are not uniformly represented across data centers (e.g. non-iid distributed). In this case
a faithful representation of the variability across centers is not guaranteed.

Local data
distribution

P (tc|θc)
Local parameters
distribution: prior P (θc|θ̃)

Global parameters
distribution: hyperprior P (θ̃)

Fig. 1: Hierarchical structure of Fed-mv-PPCA. Global parameters θ̃ characterize the
distribution of the local θc, which parametrize the local data distribution in each center.

We present here the Federated multi-view PPCA (Fed-mv-PPCA), a novel FL frame-
work for data assimilation of heterogeneous multi-view datasets. Our framework is de-
signed to account for the heterogeneity of federated datasets through a fully Bayesian
formulation. Fed-mv-PPCA is based on a hierarchical dependency of the model’s pa-
rameters to handle different sources of variability in the federated dataset (Figure 1).
The method is based on a linear generative model, assuming Gaussian latent variables
and noise, and allows to account for missing views and observations across datasets.
In practice, we assume that there exists an ideal global distribution of each parame-
ter, from which local parameters are generated to account for the local data distribu-
tion in each center. The code developed in Python is publicly available at https:
//gitlab.inria.fr/ibalelli/fed-mv-ppca.

The paper is organized as follows: in Section 2 we provide a brief overview of the
state-of-the-art and highlight the advancements provided by Fed-mv-PPCA. In Section
3 we describe Fed-mv-PPCA and in Section 4 we show results with applications to
synthetic data and to data from the Alzheimer’s Disease Neuroimaging Initiative dataset
(ADNI). Section 5 concludes the paper with a brief discussion.

2 State of the art

The method presented in this paper falls within two main categories: Bayesian meth-
ods for data assimilation, and FL methods for heterogeneous datasets. Several methods
for dimensionality reduction based on generative models have been developed in the
past years, starting from the seminal work of PPCA [16], to Bayesian Canonical Cor-
relation Analysis (CCA) [10], which has been extended to include multiple views and
missing modalities [13], up to more complex methods based on multi-variate associa-
tion models [15], developed, for example, to integrate multi-modal brain imaging data
and high-throughput genomics data. More recent methods for the probabilistic anal-
ysis of multi-views datasests include the multi channel Variational Autoencoder (mc-
VAE) [1] and Multi-Omics Factor Analysis (MOFA) [2]. MOFA generalizes PPCA for

https://gitlab.inria.fr/ibalelli/fed-mv-ppca
https://gitlab.inria.fr/ibalelli/fed-mv-ppca
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the analysis of multiple-omics data types, supporting different noise models to adapt to
continuous, binary and count data, while mc-VAE extends the classic VAE [9] to jointly
account for multiple-views data. Additionally, mc-VAE can handle sparse datasets: data
reconstruction in testing can be inferred from available views, if some are missing.

Despite the possibility of performing data assimilation and integrate multiple views
offered by the above methods, these approaches have not been conceived to handle
federated datasets.

Statistical heterogeneity is a key challenge in FL and, more generally, in multi-
centric studies [11]. To tackle this problem, Li et al. recently proposed the FedProx al-
gorithm [12], which improves FedAvg by allowing for partial local work (i.e. adapting
the number of local epochs) and by introducing a proximal term to the local objective
function to avoid divergence due to data heterogeneity. Other methods have been de-
veloped under the Bayesian non-parametric formalism, such as [18], where the local
parameters of NNs are federated depending on neurons similarities.

Despite significant improvements in the handling of statistical heterogeneity have
been made since the development of FedAvg, state-of-the-art FL methods are currently
essentially formulated for training schemes based on stochastic gradient descent, with
principal applications to NNs based models. Beyond the specific application to NNs,
we still lack of a consistent Bayesian framework for the estimation of local and global
data variability, as part of a global optimization model, explicitly accounting for data
heterogeneity. This provides us motivation for the development of Fed-mv-PPCA, a
Bayesian framework for data assimilation from heterogeneous multi-views federated
datasets.

3 Federated multi-views PPCA

3.1 Problem setup

We consider C independent centers. Each center c ∈ {1, . . . , C} disposes of its private
local dataset Tc = {tc,n}n, with |Tc| = Nc. We assume that a total of K distinct
views have been measured across all centers, and we allow missing views in some local
dataset (i.e. some local dataset could be incomplete, including only measurements for
Kc < K views). For every k ∈ {1, . . . ,K}, the dimension of the kth-view (i.e. the
number of features defining the kth-view) is dk, and we define d :=

∑K
k=1 dk. We

denote by t
(k)
c,n the raw data of subject n in center c corresponding to the kth-view, hence

tc,n =
(
t
(1)
c,n, . . . , t

(K)
c,n

)
.

3.2 Modeling assumptions

The main assumption at the basis of Fed-mv-PPCA is the existence of a hierarchi-
cal structure underlying the data distribution. In particular, we suppose that there exist
global parameters θ̃, following a distribution P (θ̃), able to describe the global data
variability, i.e. the ensemble of local datasets. For each center, local parameters θc are
generated from P (θc|θ̃), to account for the specific variability of the local dataset.
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Finally, local data tc are obtained from their local distribution P (tc|θc). Given the fed-
erated datasets, Fed-mv-PPCA provides a consistent Bayesian framework to solve the
inverse problem and estimate the model’s parameters across the entire hierarchy.

We assume that in each center c, the local data corresponding to the kth-view, t(k)c,n,
follows the generative model:

t(k)c,n =W (k)
c xc,n + µ(k)

c + ε(k)c , (1)

where xc,n ∼ N (0, Iq) is a q-dimensional latent variable, and q < mink(dk) is the
dimension of the latent-space. W (k)

c ∈ Rdk×q provides the linear mapping between
latent space and observations for the kth-view, µ(k)

c ∈ Rdk is the offset of the data

corresponding to view k, and ε(k)c ∼ N
(
0, σ

(k)
c

2
Idk

)
is a Gaussian noise for the kth-

view. This formulation induces a Gaussian distribution over t(k)c,n, implying:

t(k)c,n ∼ N (µ(k)
c , C(k)

c ), (2)

where C(k)
c = W

(k)
c W

(k)
c

T
+ σ

(k)
c

2
Idk
∈ Rdk×dk . Finally, a compact formulation for

tc,n (i.e. considering all views concatenated) can be derived from Equation (1):

tc,n =Wcxc,n + µc + Ψc, (3)

where Wc,µc are obtained by concatenating all W (k)
c ,µ

(k)
c , and Ψc is a block diagonal

matrix, where the kth-block is given by ε(k)c .The local parameters describing the center-

specific dataset thus are θc :=
{
µ

(k)
c , W

(k)
c , σ

(k)
c

2}
. According to our hierarchical

formulation, we assume that each local parameter in θc is a realization of a common
global prior distribution described by θ̃ :=

{
µ̃(k), σµ̃(k) , W̃ (k), σ

W̃ (k) , α̃
(k), β̃(k)

}
. In

particular we assume that µ(k)
c and W (k)

c are normally distributed, while the variance

of the Gaussian error, σ(k)
c

2
, follows an inverse-gamma distribution. Formally:

µ(k)
c |µ̃(k), σµ̃(k) ∼ N

(
µ̃(k), σ2

µ̃(k)Idk

)
, (4)

W (k)
c |W̃ (k), σ

W̃ (k) ∼MN k,q

(
W̃ (k), Idk

, σ2
W̃ (k)Iq

)
, (5)

σ(k)
c

2|α̃(k), β̃(k) ∼ Inverse-Gamma(α̃(k), β̃(k)), (6)

whereMN k,q denotes the matrix normal distribution of dimension dk × q.

3.3 Proposed framework

The assumptions made in Section 3.2 allow to naturally define an optimization scheme
based on Expectation Maximization (EM) locally, and on Maximum Likelihood esti-
mation (ML) at the master level (Algorithm 1). Figure 2 shows the graphical model of
Fed-mv-PPCA.
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W̃ (k) µ̃(k)
σ̃(k)2Master

t
(k)
c

W
(k)
c

tc

σ
(k)
c

2
µ(k)

c

View

xc

Center

Legend:

Communication master-centers

Generative model
Complete data to views-specific subset

Fig. 2: Graphical model of Fed-mv-PPCA. Thick double-sided red arrows relate nodes
which are shared between center and master, while plain black arrows define the rela-
tions between the local dataset and the generative model parameters. Grey filled circles
correspond to raw data: the dashed double-sided arrow simply highlights the complexity
of the dataset, composed by multiple views.

Algorithm 1: Fed-mv-PPCA algorithm
Input : Rounds R; Iterations I; Latent space dimension q
Output: Global parameters θ̃

for r = 1, . . . , R do
if r = 1 then

Each center c initializes randomly local parameters θc;
I iterations of EM estimation to optimize θc;

else
Each center initializes θc using P (θc|θ̃);
I iterations of MAP estimation (EM + prior) to optimize θc using θ̃ as

prior;
end
Each center c returns θc to the master;
The master collects θc, c = 1, . . . , C and estimates θ̃ through ML;
The master sends θ̃ to all centers

end

With reference to Algorithm 1, the optimization of Fed-mv-PPCA is as follows:
Optimization. The master collects the local parameters θc for c ∈ {1, . . . , C} and

estimates the ML updated global parameters characterizing the prior distributions of
Equations (4) to (6). Updated global parameters θ̃ are returned to each center, and serve
as priors to update the MAP estimation of the local parameters θc, through the M step
on the functional Ep(xc,n|tc,n) ln

(
p(tc,n,xc,n|θc)p(θc|θ̃)

)
, where:

p(xc,n|tc,n) ∼ N
(
Σ−1c Wc

TΨ−1c (tc,n − µc), Σ
−1
c

)
, Σc := (Iq +WT

c Ψ
−1
c Wc)
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and

〈ln (p(tc,n,xc,n|θc))〉 = −
Nc∑

n=1

{
K∑

k=1

[
dk
2

ln
(
σ(k)
c

2
)
+

1

2σ
(k)
c

2 ‖t(k)c,n − µ(k)
c ‖2+

1

2σ
(k)
c

2 tr
(
W (k)

c

T
W (k)

c 〈xc,nx
T
c,n〉
)

− 1

σ
(k)
c

2 〈xc,n〉TW (k)
c

T
(
t
(k),g
c,i − µ(k)

c

)]
+
1

2
tr
(
〈xc,nx

T
c,n〉
)}

,

Initialization. The latent-space dimension q, the number of local iterations I for
EM and the number of communication roundsR (i.e. number of complete cycles centers-
master) are user-defined parameters. For the sake of simplicity, we set here the same
number of local iterations for every center. Note that this constraint can be easily
adapted to take into account systems heterogeneity among centers, as well as the size of
each local dataset. At the first round, each center initializes randomly every local param-
eter and performs EM through I iterations, maximizing the functional 〈ln (p(tc,n,xc,n|θc))〉.

4 Applications

4.1 Materials

In the preparation of this article we used two datasets.
Synthetic dataset (SD): we generated 400 observations from (1), consisting of

k = 3 views of dimension d1 = 15, d2 = 8, d3 = 10. Each view was generated from a
common 5-dimensional latent space. We randomly chose parameters W (k),µ(k), σ(k).
Finally, to simulate heterogeneity, a randomly chosen sub-sample composed by 250 ob-
servations was shifted in the latent space by a randomly generated vector: this allowed
to simulate the existence of two distinct groups in the population.

Alzheimer’s Disease Neuroimaging Initiative dataset (ADNI)2: we consider 311
participants extracted from the ADNI dataset, among cognitively normal (NL) (104
subjects) and patients diagnosed with AD (207 subjects). All participants are associated
with multiple data views: cognitive scores including MMSE, CDR-SB, ADAS-Cog-11
and RAVLT (CLINIC), Magnetic resonance imaging (MRI), Fluorodeoxyglucose-PET
(FDG) and AV45-Amyloid PET (AV45) images. MRI morphometrical biomarkers were
obtained as regional volumes using the cross-sectional pipeline of FreeSurfer v6.0 and
the Desikan-Killiany parcellation. Measurements from AV45-PET and FDG-PET were
estimated by co-registering each modality to their respective MRI space, normalizing
by the cerebellum uptake and by computing regional amyloid load and glucose hy-
pometabolism using PetSurfer pipeline and the same parcellation. Features were cor-
rected beforehand with respect to intra-cranial volume, sex and age using a multivariate

2 The ADNI project was launched in 2003 as a public-private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD. The primary goal of ADNI was to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers, and
clinical and neuropsychological assessments can be combined to measure the progression of
early Alzheimer’s disease (AD) (see www.adni-info.org for up-to-date information).

www.adni-info.org
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linear model. Data dimensions for each view are: dCLINIC = 7, dMRI = 41, dFDG = 41
and dAV45 = 41.

4.2 Benchmark

We compare our method to two state-of-the art data assimilation methods: Variational
Autoencoder (VAE) [9] and multi-channel VAE (mc-VAE) [1]. In order to obtain the
federated version of VAE and mc-VAE we used FedAvg [14], which is specifically
conceived for stochastic gradient descent optimization.

4.3 Results

We apply Fed-mv-PPCA to both SD and ADNI datasets, and quantify the quality of
reconstruction and identification of the latent space with respect to the increasing num-
ber of centers, C, and the increasing data heterogeneity. We investigate also the ability
of Fed-mv-PPCA in estimating the data variability and predicting the distribution of
missing views. To this end, we consider 4 different scenarios of data distribution across
multiple centers, detailed in Table 1.

Table 1: Distribution of Datasets Across Centers.
Scenario Description
IID Data are iid distributed across C centers with respect to groups and all subjects dispose

of a complete data raw
G Data are non-iid distributed with respect to groups across C centers: C/3 centers in-

cludes subjects from both groups; C/3 centers only subjects from group 1 (AD in the
ADNI case); C/3 centers only subjects from group 2 (NL for ADNI). All views have
been measured in each center.

K C/3 centers dispose of all observations; in C/3 centers the second view (MRI for
ADNI) is missing; in C/3 centers the third view (FDG for ADNI) is missing. Data
are iid distributed across C centers with respect to groups.

G/K Data are non-iid distributed (scenario G) and there are missing views (scenario K).

Model selection The latent space dimension q is an user defined parameter, with the
only constraint q < mink{dk}. To assess the optimal dimension, we consider the IID
scenario and let the latent space dimension q vary. We perform 10 times a 3-fold Cross
Validation (3-CV), and split the train dataset across 3 centers. For every test, we per-
form 100 rounds each consisting of 15 iterations for local optimization. The resulting
models are compared using the WAIC criterion. In addition, we consider the Mean Ab-
solute reconstruction Error (MAE) in an hold-out test dataset: the MAE is obtained by
evaluating the mean absolute distance between real data and data reconstructed using
the global distribution. Figure 3 shows the evolution of WAIC and MAE with respect
to the latent space dimension.
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(a) SD (b) ADNI

Fig. 3: WAIC score and MAE for (a) the SD dataset and (b) the ADNI dataset. In both
figures, the left y-axis scaling describes the MAE while the right y-axis scaling corre-
sponds to the WAIC score.

Concerning the SD dataset, the WAIC suggests q = 5 latent dimensions, hence
demonstrating the ability of Fed-mv-PPCA to correctly recover the ground truth latent
space dimension used to generate the data. Analogously, the MAE improves drastically
up to the dimension q = 5, and subsequently stabilizes. For ADNI, the MAE improves
for increasing latent space dimensions, and we obtain the best WAIC score for q = 6,
suggesting that a high-capacity model is preferable to describe this larger dimensional
dataset. Despite the agreement of MAE and WAIC for both datasets, the WAIC has the
competitive advantage of providing a natural and automatic model selection measure in
Bayesian models, which does not require testing data, conversely to MAE.

In the following experiments, we set the latent space dimension q = 5 for the SD
dataset and q = 6 for the ADNI dataset.

Increasing heterogeneity across datasets To test the robustness of Fed-mv-PPCA’s
results, for each scenario of Table 1, we split the global dataset in C centers, hence
we perform 3-CV in each center to obtain local train and test datasets. We compare
our method to VAE and mc-VAE. To keep the modeling setup consistent across meth-
ods, both auto-encoders were tested by considering linear encoding and decoding map-
pings [1]. For all methods we consider the MAE in both the train and test datasets, as
well as the accuracy score in the Latent Space (LS) discriminating the groups (syn-
thetically defined in SD or corresponding to the clinical diagnosis in ADNI). The clas-
sification was performed via Linear Discriminant Analysis (LDA) on the individual
projection of test data in the latent space. In what follows we present a detailed descrip-
tion of results corresponding to the ADNI dataset. Results for the SD dataset are in line
with what we observe for ADNI, and confirm that our method outperforms VAE and
mc-VAE both in reconstruction and in discrimination (not shown for space limitations).

IID distribution. We consider the IID scenario and split the train dataset across 1 to 6
centers. Table 2 shows that results from Fed-mv-PPCA are stable when passing from
a centralized to a federated setting, and when considering an increasing number of
centers C. We only observe a degradation of the MAE in the train dataset, but this does
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Table 2: Heterogeneous Distribution of ADNI Dataset.
Scenario Centers Method MAE Train MAE Test Accuracy in LS

IID

1
Fed-mv-PPCA 0.0804±0.0003 0.1113±0.0012 0.8839±0.0293
VAE 0.1061±0.0277 0.1350±0.0380 0.7364±0.0246
mc-VAE 0.1392±0.0197 0.1678±0.0279 0.8327±0.0303

3
Fed-mv-PPCA 0.1059±0.0019 0.1102±0.0011 0.8962±0.0181
VAE 0.1183±0.0355 0.1206±0.0340 0.8681±0.0170
mc-VAE 0.1606±0.0234 0.1567±0.0216 0.8746±0.0084

6
Fed-mv-PPCA 0.1258±0.0041 0.1116±0.0014 0.8930±0.0179
VAE 0.1340±0.0433 0.1176±0.0342 0.8071±0.0339
mc-VAE 0.1837±0.0281 0.1569±0.0200 0.8811±0.0236

G

3
Fed-mv-PPCA 0.1090±0.0041 0.1112±0.0013 0.8586±0.0272
VAE 0.1185±0.0372 0.1194±0.0359 0.7588±0.0581
mc-VAE 0.1654±0.0262 0.1613±0.0251 0.7985±0.0522

6
Fed-mv-PPCA 0.1312±0.0113 0.1126±0.0014 0.8538±0.0354
VAE 0.1386±0.0453 0.1188±0.0360 0.7608±0.0492
mc-VAE 0.1909±0.0323 0.1600±0.0238 0.7872±0.0476

K
3

Fed-mv-PPCA
0.1056±0.0118 0.1300±0.0154 0.8713±0.0227

6 0.1220±0.0108 0.1287±0.0103 0.8642±0.0162

G/K
3

Fed-mv-PPCA
0.1020±0.0087 0.1301±0.0110 0.7098±0.0329

6 0.1246±0.0147 0.1313±0.0105 0.7172±0.0315

not affect the performance of Fed-mv-PPCA in reconstructing the test data. Moreover,
irrespective of the number of training centers, Fed-mv-PPCA outperforms VAE and mc-
VAE both in reconstruction and in preserving subjects separation in the latent space.

Heterogeneous distribution. We simulate an increasing degree of heterogeneity in 3
to 6 local datasets, to further challenge the models in properly recovering the global
data. In particular, we consider both a non-iid distribution of subjects across centers,
and missing not at random views in some local dataset. It is worth noting that scenarios
implying datasets with missing views cannot be handled by VAE nor by mc-VAE, hence
in these cases we reported only results obtained with our method.

In Table 2 we report the average MAEs and Accuracy in the latent space for each
scenario, obtained over 10 tests for the ADNI dataset. Fed-mv-PPCA is robust despite
an increasing degree of heterogeneity in the local datasests. We observe a slight deteri-
oration of the MAE in the test dataset in the more challenging non-iid cases (scenarios
K and G/K), while we note a drop of the classification accuracy in the most heteroge-
neous setup (G/K). Nevertheless, Fed-mv-PPCA demostrates to be more stable and to
perform better than VAE and mc-VAE when statistical heterogeneity is introduced.

Figure 4 (a) shows the sampling posterior distribution of the latent variables, while
in Figure 4 (b) we plot the predicted global distribution of the corresponding origi-
nal space against observations, for the G/K scenario and considering 3 training cen-
ters. We notice that the variability of centers is well captured, in spite of the hetero-
geneity of the distribution in the latent space. In particular center 2 and center 3 have
two clearly distinct means: this is due to the fact that subjects in these centers belong
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(a) Latent space (b) Original space

Fig. 4: G/K scenario. First two dimensions for (a) sampling from posterior distribution
of latent variables xc,n, and (b) predicted distribution t

(k)
c,n against real data.

Fig. 5: G/K scenario. Predicted
testing distribution (blue curve)
of sample features of the missing
MRI view against real data (his-
togram).

to two distinct groups (AD in center 2 and NL in
center 3). Despite this, Fed-mv-PPCA is able to
reconstruct correctly all views, even if 2 views are
completely missing in some local datasets (MRI
is missing in center 2 and FDG in center 3).

After convergence of Fed-mv-PPCA, each
center is supplied with global distributions for
each parameter: data corresponding to each view
can therefore be simulated, even if some are miss-
ing in the local dataset. Considering the same si-
mulation in the challenging G/K scenario as in
Figure 4, in Figure 5 we plot the global distri-
bution of some randomly selected features of a
missing imaging view in the test center, against
ground truth density histogram, from the original

data. The global distribution provides an accurate description of the missing MRI view.

5 Conclusions

In spite of the large amount of heterogeneous multi-view biomedical data currently
available, we still lack of reliable and privacy-compliant analysis methods. To tackle
this challenge, Fed-mv-PPCA proposes a hierarchical generative model to perform data
assimilation of federated heterogeneous multi-view data. The Bayesian approach al-
lows to naturally handle statistical heterogeneity across centers and missing views in
local datasets, while providing an interpretable model of data variability. Our appli-
cations demonstrate that Fed-mv-PPCA is robust with respect to an increasing degree
of heterogeneity across training centers, and provides high-quality data reconstruction,
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outperforming competitive methods in all scenarios. Further improvements of Fed-mv-
PPCA are possible, such as introducing sparsity in the estimation of parameters, or
accounting for non-Gaussian data likelihood, to better account for outlier centers.
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