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ABSTRACT
Numerous domains have interests in studying the viewpoints ex-
pressed online, be it for marketing, cybersecurity, or research pur-
poses with the rise of computational social sciences. Current stance
detection models are usually grounded on the specificities of some
social platforms. This rigidity is unfortunate since it does not al-
low the integration of the multitude of signals informing effec-
tive stance detection. We propose the SCSD model, or Sequential
Community-based Stance Detection model, a semi-supervised en-
semble algorithm which considers these signals by modeling them
as a multi-layer graph representing proximities between profiles.
We use a handful of seed profiles, for whom we know the stance, to
classify the rest of the profiles by exploiting like-minded communi-
ties. These communities represent profiles close enough to assume
they share a similar stance on a given subject. Using datasets from
two different social platforms, containing two to five stances, we
show that by combining several types of proximity we can achieve
excellent results. Moreover, we compare the proximities to find
those which convey useful information in term of stance detection.

CCS CONCEPTS
•Applied computing→ Sociology; • Information systems→
Web mining;

KEYWORDS
Stance detection, Social media, Computational Social Science, Polit-
ical discourse

1 INTRODUCTION
Since the launching of SixDegrees in 1997, social media sites became
deeply embedded in users’ lives [10]. This includes well-known
networking sites, such as Facebook and Twitter, but also other
platforms enabling users to interact with their content. Several
domains evolved to take advantage of this overabundance of online
activities, such as marketing [7, 31, 34] or cybersecurity [12, 26].
These domains have an increasing interest in stance detection due
to its wide range of applications. It can be used to detect persons of
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interest [33], like Democrats and Republicans during a political cam-
paign for example. Furthermore, automatic stance detection is also
a precious tool for social scientists. Indeed, it enables researchers
to have a better grasp on some research objects by extending ob-
servations to large corpora of data which used to be unusable. This
task has already been tackled, but the proposed approaches often
rely on large quantity of annotated text or specific social interac-
tions [24, 38]. The written content is indubitably a rich source of
information, and so is the pattern of interactions, but there are
other types of information which could be helping us characterize
profiles.

Profiles on social media are linked by a variety of information:
elements of language, various social interactions, location, etc. If
we try to infer their stance on a topic, we intuitively understand
that using several bodies of evidence is beneficial: while one pro-
file could heavily share the publications of a political candidate,
another one might be more discreet in sharing but could use the
same rethorics in her message, or could be passive but live in an
area known to be in favor of a specific stance. Our hypothesis is
that several evidences hinting at a strong similarity between two
profiles are likely to mean that said profiles share a common stance.
This is reinforced by the body of literature showing that social
media are highly polarized on political topics [14, 25]. We model
these proximities with a multi-layer graph, each layer represent-
ing a specific proximity, with profiles as vertices, and weighted
edges as similarities. On this multi-layer proximity graph, we can
extract communities, which can then be used for stance detection.
We assume that when using adequate proximities, the extracted
communities will be extremely homogeneous in terms of stance,
allowing us to infer the stance of many profiles with only a handful
of seed profiles. The contributions of this paper are:

(1) A detailed analysis strengthening our initial intuition that
communities based on proximities tend to be very homoge-
neous in terms of stance.

(2) A semi-supervised ensemble model for stance detection em-
ploying this combination of proximities, and requiring a min-
imal amount of human investment. Our approach is flexible
and generic in terms of platforms, proximities, and number
of stances.

(3) Higher effectiveness than state-of-the-art methods, with F1-
score as high as 95% while using only 1% of annotated data.

Section 2 presents the background of our work with related work on
polarization on social media and stance detection. The data model
used throughout this paper is detailed in Section 3. In Section 4,
we expose the preliminary analysis questions we addressed before
formalising our model, as well as the datasets and proximities used
in our experiments. The stance detection model is presented and
evaluated in Section 5 and Section 6.
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Table 1: Positioning in the existing literature
[22][36] [9] [27][39] [4] [33][37][24][38][16]SCSD

Textual features ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓
Social interactions ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other information ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓
Few annotations ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓
More than 1 platform ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓
More than 2 stances ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓

2 RELATEDWORK
2.1 Polarization on social media
Several studies showed that online social media were highly po-
larized in some contexts, particularly for political topics [23, 25].
They revealed the presence of “echo chambers” on several platforms
[35]. This term describes a phenomenon characterised by users
prefering to interact with like-minded people. Conservative and
liberal blogs tend to mainly reference blogs from their own ideolog-
ical camp, as shown by their linking patterns and discussion topics
[2]. Similarly, Twitter’s retweet networks concerning the 2010 and
2014 US midterms elections and the 2014 Scottish independance
referendum were highly polarized between left- and right-leaning
profiles, while people interacted more freely in the mention net-
works [14, 20]. Even on Wikipedia, controversies occur mainly in
neighbourhoods of related topics [17]. This suggests that some top-
ics tend to be particularly attractive for users promoting diverse
mindsets. It is important to note however that on non-political
topics, polarization is usually more nuanced [5].

2.2 Stance detection
Text is often the main piece of information used to determine
stance. Several researchers studied debate sites and argumentative
essays [22]. [36] used a topic model to discover viewpoints, topics,
and opinions to classify texts on the Israeli-Palestinian conflict ac-
cording to their ideological leaning. Other studies focused on less
structured platforms: Twitter has, for instance, been largely used,
due to its large popularity and the facility to collect data. [9] used
a statistical model to determine the political stance of politicians
from the Belgian Parliament on Twitter. [27] trained an SVM model
including sentiments as features to detect if profiles were “for” or
“against” given targets. Forums are other exploitable information
silos: [39] used neural networks on a breast cancer forum to identify
the profiles’ stances on complementary and alternative medicine.

Alternatively, some works rely on social interactions between
profiles. [4] built a bayesian model inferring ideology of profiles ac-
cording to which political actors they are following. [33] identified
pairs of profiles with differing opinions thanks to a retweet-based
label propagation algorithm tied to a supervised classifier. [37] pro-
pose an unsupervised topic model taking into account the text and
social interactions to identify viewpoints. [24] used an SVM on tex-
tual content, retweets, and mentions to predict the future attitude
of profiles in the aftermath of a major event. Their results show that
social features are of prime importance for this task. [38] also used
a combination of text and retweets to quantify the political leaning
of media outlets and prominent profiles. [16] consider users’ dis-
cussions and interactions to predict stances using few annotations
on any social media. These works are the most relevant ones for
our task but they are focused on Twitter datasets, or limited by the
fact that they require a large number of annotations or consider
two main stances at most (see Table 1). In contrast, we promote a
generic approach which needs significantly less annotated data to
perform well, as exposed in the following sections.

Table 2: Dataset sizes and stances

Dataset |P | Σ |PTσ | |PT |

SR 604,399 Yes 564 1,101No 537

ME 1,718,131 Democrat 761 1,571Republican 810

PE 22,843

France Insoumise 5,113

18,649
Parti Socialiste 1,832
En Marche ! 3,962
Les Républicains 4,366
Front National 3,376

GC 1,420 Prefers strict gun control 312 801Opposes strict gun control 489

3 DATA MODEL
To take advantage from the numerous available proximities, we
represent them as proximity graphs, and exploit their structure to
predict unknown stances. Formally, let P = {p1,p2, . . .} a set of
profiles, Σ the set of expressed stances, and σ (pi ) the stance of pi .
Each profile has thus one stance, which does not evolve in time. Let
us consider a setting where S ⊂ P the set a profiles with a known
stance, with |S | ≪ |P |. A = {A1, . . . ,Ak } is a set of attributes, with
A
j
i the value of attribute Ai for the profile pj . We define a multiplex
G, i.e., a multi-layer graph with each layer sharing the same vertex
set P . Each layer is defined as a graphGi = (P , Simi ) such that Simi
expresses the proximity between profiles in P according to attribute
Ai . We consider that proximities are symetrical measures, hence
Gi is undirected. The proximities used in this paper are described
in Section 4.3.
Problem formulation. Given G =

{
Gi , i ∈ [1,k]

}
and S , is it

possible to effectively determine σ (pi ) with pi ∈ P \ S?

4 PRELIMINARY STUDY
4.1 Objectives
Our model is based on the double intuition that (1) communi-
ties extracted using proximities and similar stances are correlated
and (2) one single proximity is not sufficient to effectively predict
stances. In this section, we provide results of an extensive analysis
of four real-world datasets to show the validity of our hypotheses.
Specifically, we answer the following three questions:
AQ1. Do proximity graphs have a distinct community structure?
AQ2. Are the main communities homogeneous in terms of stance?
AQ3. Are the detected communities different according to the

considered proximities?

4.2 Datasets
Real-world datasets usually represent a large number of profiles that
cannot be fully manually annotated. We thus focus our analysis
on a subset PT ⊂ P of profiles. We used three Twitter datasets,
and a dataset from CreateDebate.com. Table 2 presents some basic
statistics on these datasets.

4.2.1 2014 Scottish Independence Referendum (SR) [11]. Profiles
in PT were part of the Scottish Independence Referendum Elec-
toral Commission, or unambiguously indicated their stance in their
Twitter biographies, giving us ΣSR = (“Yes”, “No”).

4.2.2 2014 US Midterm Elections (ME) [11]. Stances were deter-
mined thanks to several sources listing official Twitter accounts of
campaigners: ΣME = (“Democrat”, “Republican”).



4.2.3 2017 French Presidential Elections (PE). This Twitter dataset
was collected from November 25th 2016 to May 12th 2017, by moni-
toring several keywords referencing the campaign. These keywords
were selected by researchers familiar with the French political land-
scape on Twitter. Profiles in P referenced one of the five main
political parties in their names or biographies, and had published
at least 10 posts (including tweets or retweets) during the seven
months of collection. They were manually annotated by experts.
We did not consider in PT the profiles having undefined or mul-
tiple party affiliations, hence: ΣPE = (“France Insoumise”, “Parti
Socialiste”, “En Marche !”, “Les Républicains”, “Front National”).

4.2.4 Gun control in the US (GC) [1]. This dataset contains dis-
cussions from CreateDebate.com, a debate site. Each discussion has
two possible stances, decided by its creator, which were mapped by
[1] to 2 global stances: ΣGC = (“prefers strict gun control”, “opposes
strict gun control”). For example, in a discussion titled “The Right
to Bear Arms, necessary?”, the stance “Yes, to defend ourselves” is
mapped to “opposes strict gun control” and “No, it only creates
criminals” to “prefers strict gun control”. When a profile adds a
post to a discussion, it has to indicate its stance, and if the post
supports, clarifies, or disputes another post. Profiles also contain
biographical information, and other profiles indicated as allies. The
88 profiles whose global stance changed from debate to debate were
not included here.

4.3 Proximities
Many proximities belonging to various categories, e.g., textual,
social, can be exploited. This flexible definition enables a generic
model that can be used on any social platform. In this work, several
proximities exploiting different aspects of social media were used
(Table 3). Since each proximity is used separately, it is not necessary
to normalize the edges’ weights.

4.3.1 Content-based proximities. This type of proximities links
profiles using similar textual tokens in their posts.
• Use of keywords (kw): Simkw (pi , pj ) =

���A
i
kw ∩ A

j
kw

���
with Aikw being the hashtags (for Twitter datasets), or nouns (for
CreateDebate), used in pi ’s publications.
• Reference to a piece of information (ref ): Simref =

���A
i
ref ∩A

j
ref

���
with Airef the websites mentionned by pi .1 Urls are truncated to
domain names for CreateDebate due to the fact that, of all the full
urls present in the publications, only three were shared by several
profiles.

4.3.2 Social-based proximities. Proximities based on social con-
text rely on the number of social interactions. We considered the
following proximities:
• Citation (cite): share of another profile’s post, via retweets
for Twitter and quotes for CreateDebate.
• Call: interpellation of another profile, i.e. mentions for Twit-
ter, and supporting and clarifying posts for CreateDebate
(see Section 4.2.4).
• Association (asso): profiles explicitly monitored, friends on
Twitter and allies on CreateDebate. Only associations of the
profiles in PT were collected.

We define Aisoc = {s ik } as the set of interactions s
i
k = (pk , tk ), with

soc being the considered social interaction, pk a profile which in-
teracted with pi , and tk the date of the interaction. As explained

1Urls coming from shortening services, such as bit.ly or goo.gl, were expanded for
an optimal matching when possible.

by [13], symmetric and non-symmetric relationships rationale vary
greatly. To take this into account, we considered three versions
of these proximities. The first one (all) considers all interactions,
while the second one (rec) focuses only on reciprocal interactions,
and the third one (rec) on non-reciprocal interactions. Their for-
mal definitions are given by equations 1, 2, and 3 respectively. By
construction, Asocall = Asocrec ∪ Asocrec .

Simsocall (pi , pj ) =
���{s

i
k | pk = pj }

��� +
���{s

j
l | pl = pi }

��� (1)

Simsocrec (pi , pj ) = min
(���{s ik | pk = pj }���, ���{s jl | pl = pi }���) (2)

Simsocrec (pi , pj ) =
����
���{s

i
k | pk = pj }

��� −
���{s

j
l | pl = pi }

���
���� (3)

CreateDebate profiles contained more information which was
used as another way to measure social similarity between profiles:
• Socio-demographic criteria: Simsocio (pi , pj ) =

���A
i
sex ∩ A

j
sex

��� +���A
i
school level ∩ A

j
school level

��� +
���A

i
decade ∩ A

j
decade

���
• Religious and political beliefs:

Simbelief (pi , pj ) =
���A

i
religion ∩ A

j
religion

��� +
���A

i
party ∩ A

j
party

���
4.3.3 Geographic context. This type of proximities relies on the

locations signalled in profiles. The construction is similar for city,
region, and country: Simcity (pi , pj ) =

���A
i
city ∩ A

j
city

���
Since variations in format made it necessary to manually clean the
entries, for Twitter, only locations of the profiles in PT were used.

4.4 Metrics
To answer AQ1, we compute the transitivity of our proximity
graphs. The transitivity measures the probability that two neigh-
bors of a vertex are connected, and the higher it is, the stronger
the community structure in the graph is [29]. It is the average
weighted clustering coefficient [6]. To answer AQ2, we measure
the homogeneity of the communities for each proximity graph. We
used the average intra-community purity [21]. Communities are
extracted using label propagation [32]. It has been shown to be effi-
cient for this task, despite not being deterministic [20]. To measure
how much information was shared between proximities and thus
answerAQ3, we computed the Normalized Mutual Information [15].

4.5 Findings
AQ1. Table 4 presents the transitivity of our proximities. Most prox-
imities have a non-negligible transitivity, suggesting an underlying
community structure, more or less pronounced depending on the
dataset. Despite being often successfully used in stance detection
models, all versions of cite exhibit a low or medium transitivity.
AQ2. To confirm that some proximities give us homogeneous com-
munities in terms of stance, we measured the average purity of
the 10 biggest communities containing at least 5 profiles in PT (see
Table 5). While this is an incomplete picture – we have a median
of 50% of annotated profiles – we can see that some proximities
have extremely high purity. On Twitter datasets, citeall , citerec , and
assoall consistently obtain a mean purity close to or higher than
0.90. Ref and callrec are not as efficient but still give good results.
On the other hand, scores for callall , assorec , and assorec vary a lot
depending on the considered dataset.
AQ3. Table 6 presents the normalized mutual information between
proximities. The first observation we can make is that the relation-
ships between proximities is heavily dataset-dependent. In most
cases, each proximity brings unique information about profiles in
regards to others. The proximities having similar communities struc-
ture are not surprising: city and region are often strongly related,



Table 3: Number of edges in Simi . avgw represents their average weight, and maxw their maximum weight.

Interaction SR ME PE GC

|Simi | avgw maxw |Simi | avgw maxw |Simi | avgw maxw |Simi | avgw maxw
ref 315,326 16 3,257,193 16,865 47 169,368 17,367,840 10 99,704 74 3 32
kw 422,767 5,142 5,319,272 1,304,290 24 222,379 78,440,288 80 29,006 236,976 49 29,854
citeall 1,426,966 1 324 713,052 2 672 1,262,484 3 7,983 128 6 68
citerec 11,911 1 65 7,986 2 73 123,853 7 7,983 23 8 53
callall 335,191 3 1,296 66,179 3 377 1,787,127 5 10,473 226 2 14
callrec 24,205 2 1,255 4,351 2 356 227,400 8 8,658 48 2 11
assoall 1,914,298 1 1 3,330,134 1 1 3,135,200 1 1
assorec 1,740,077 1 1 2,817,081 1 1 1,532,825 1 1 4,034 1 1
assorec 295,315 1 1 473,271 1 1 1,602,375 1 1
socio 312,795 1 3
beliefs 240,323 1 2
city 11,833,595 1 1 2,023 1 1 2,929,622 1 1
region 12,196,762 1 1 20,447 1 1 7,780,336 1 1
country 445,407 1 1

Table 4: Proximity graphs transitivity
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SR 0.61 0.95 0.02 0.09 0.15 0.11 0.16 0.16 0.03 1.00 1.00
ME 0.44 0.79 0.06 0.12 0.11 0.04 0.12 0.10 0.03 0.73 1.00
PE 0.69 0.87 0.38 0.24 0.48 0.24 0.41 0.31 0.26 0.95 0.99
GC 0.59 0.91 0.03 0.07 0.05 0.01 0.09 0.80 0.82 0.98

Table 5: Average purity of the 10 biggest communities con-
taining at least 5 profiles in PT . Values above 0.80 are bolded for
readability.
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SR 0.82 0.52 0.94 1.00 0.52 0.79 0.98 0.99 0.75 0.61 0.61
ME 0.84 0.62 0.99 0.98 0.78 0.96 0.94 0.52 0.52 0.69 0.58
PE 0.68 0.25 0.93 0.95 0.93 0.85 0.87 0.79 0.84 0.33 0.30
GC 0.76 0.63 0.67 0.60 0.66 0.66 0.66 0.64 0.64 0.62

as well as reciprocal versions of proximities with their complete
versions. There is a lot more of redundant information between
proximities onME, with callall , citeall , and ref being closely related.
This is interesting since we do not observe this phenomenon on
the other Twitter datasets.

4.6 Implications for Stance Detection
The results of these experiments demonstrate that communities
detected on social media elements can yield extremely high ho-
mogeneity in terms of stance, and therefore be an effective way
to propagate stance from some known profiles. Moreover, as indi-
cated by moderate NMI values, the communities extracted from the
different considered proximities look different. This suggests that
each one brings a specific piece of information about the profiles
entourage, allowing for a better characterization. Unsurprisingly,
reciprocal versions of the proximities are semantically close to their
complete versions (we see high NMI scores between the pairs) but
their higher purities may be of interest for our task.

Even when extracted from the same platform, each dataset has
its own particularities. Indeed we can see that some proximities
can be useful or hurtful depending on the dataset, and that the
similarity between proximities varies across datasets. On Twitter,
citeall and assoall seem particularly encouraging for our task: they
have very homogeneous communities and bring unique information

compared to other proximities (apart from their reciprocal version).
On CreateDebate, ref and assorec seem interesting for the same
reasons. These measures could help us determine which proximity
to discard in order to optimize our process, but for the time being
we will consider all the defined proximities.

5 SEQUENTIAL COMMUNITY-BASED
STANCE DETECTION MODEL

Based on the previous results, we propose the Sequential Community-
based Stance Detection model, or SCSD. Algorithm 1 exposes the
main mecanism of our model, i.e., the assignation of one stance per
community iteratively: first, different sets of communities are built
according to different profile proximities, then a specific function is
used to order them, and a set of seed profiles is selected from these
communities. Finally, an iterative stance detection step is performed
based on these seed profiles to find the stance of the remaining
profiles in P . This algorithm features two crucial elements:

(1) the order in which the proximities are considered,
(2) and the profiles selected as seeds.

The following sections present our answers to these questions.

Algorithm 1 : SCSD framework – X = (x1, . . . ,xn ) is the se-
quence of proximities to be used. The functions designed to order
the proximities and to select the seed profiles are presented in
Section 5.1 and Section 5.2 respectively. The algorithm of getMajor-
ityStance is detailed in Algorithm 2.
1: for xi in X do ▷ Initialisation
2: Cxi ← detectCommunities(xi )
3: X ord ← orderProximities(X , ω)
4: S ← selectSeedProfiles(x ord

1 , s , scom, smin, φ )
5: for pi in S do
6: P (pi ) ← getGroundTruth(pi )
7: for x ord

i in X ord do ▷ Stance detection process
8: for c in Cx ord

i
do

9: for pi in c do
10: if σ (pi ) is undefined then
11: σ (pi ) ← getMajorityStance(c )

5.1 Proximities ordering
In SCSD, a profile’s stance cannot change once it has been assigned.
The order in which the proximities are considered in the stance
detection loop is thus crucial. The ordering function ω computes
the ordered sequence of proximities to be used during the rest



Table 6: NormalizedMutual Information between proximity
communities for each dataset. Values above 0.80 are bolded for
readability.
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callall 0.03 0.08 0.60 0.66 0.62 0.38
callrec 0.28 0.45 0.30 0.37 0.33
assoall 0.02 0.07 0.62 0.73
assorec 0.04 0.09 0.63
assorec 0.02 0.06
city 0.70

(d) GC
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kw 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ref 0.25 0.26 0.00 0.10 0.67 0.51 0.50 0.54
citeall 0.33 0.27 0.00 0.34 0.74 0.72 0.94
citerec 0.27 0.27 0.00 0.26 0.73 0.70
callall 0.26 0.20 0.02 0.31 0.98
callrec 0.34 0.18 0.05 0.43
assorec 0.09 0.05 0.00
socio 0.03 0.01
beliefs 0.15

of the model, X ord . The ideal strategy is to order them in order
of decreasing like-mindedness of the communities. Since, in most
cases, it is impossible to know this element beforehand, let us
discuss two options to design this ordering function ω:
Manual ordering function. This mode is useful if the user al-

ready has expertise on the dataset, and when he wants to
choose the order in which the proximities are to be used.

Automatic ordering function. Themodel can also automatically
arrange proximities according to a user-defined function.
Some examples are:

Algorithm 2 : getMajorityStance – c is the community whose
majority stance must be determined.
1: stances← ∅ ▷ Table mapping stances with frequencies
2: for pi in c do
3: if σ (pi ) is defined then
4: stances[σ (pi )].increment()
5: sorted← sortByDecreasingFreq(stances)
6: if stances , ∅ and sorted[0].freq , sorted[1].freq then
7: return sorted[0].stance
8: else
9: return undefined

Mod Ordering by decreasing modularity.
NbCAsc Ordering by ascending number of communities.
NbCDesc Ordering by descending number of communities.
NbPAsc Ordering by ascending number of profiles.
NbPDesc Ordering by descending number of profiles.

Section 6.3 presents a comparison of these functions.

5.2 Seed selection

Algorithm 3 : Seed selection – s is the size of the seed, scom
the minimum number of seed communities to consider, smin the
minimum number of seed profiles in each seed community, and
φ the importance function determining how the seed profiles are
selected.
1: seedP← ∅ ▷ Selected seed profiles
2: seedC← ∅ ▷ Selected seed communities
3: nbPossibleP← 0 ▷ Number of possible seed profiles
4: ▷ in selected seed communities
5: for c in sortByDecreasingSize

(
Cxord1

)
do

6: if |c | ≥ smin then
7: seedC← seedC ∪ c
8: nbPossibleP← nbPossibleP + |c |
9: if |seedC | ≥ scom and nbPossibleP ≥ s then
10: break
11: for c in seedC do

12: nbProfiles← min
(
|c |, max

(
smin,

|c | × s
nbPossibleP

))
13: newSeedProfiles← selectSeedProfiles(c , nbProfiles, φ )
14: seedP← seed P ∪ newSeedProfiles
15: return seedP

We now detail our strategy for seed selection. Indeed, manually
annotating data is time-consuming and expensive. SCSD is designed
to be efficient with a very small seed (i.e., less than 5% of the number
of profiles to classify), and seed selection is dependent on the global
cost of annotation s the final user wishes to put into it: s is the size
of our seed S , i.e., the total number of seed profiles to manually
annotate. Seed profiles are profiles contained in the seed, and seed
communities the communities containing seed profiles.

In order to accurately detect the |Σ| stances present in the con-
sidered dataset, we sample at least scom seed communities, with
scom ≥ |Σ|. The number of seed profiles in each seed community
is proportional to its size, and each seed community contains at
least smin seed profiles. The importance function φ indicates the
method of selection for the seed profiles. It can be deterministic or
not – random for example. Algorithm 3 details this process.

The importance functions translate greater importance by larger
values, and can be divided into 2 families. The first family is based
on raw information from the profiles, for example:



• For Twitter datasets: number of followers (#Fo), number of
friends (#Fr), number of posts (#P), number of retweets of the
profile’s posts (#Rt), seniority (Se).
• For the CreateDebate dataset: efficiency (E), number of debates
(#D), number of posts, number of relations (#R), seniority.

The second one is based on the proximity graphs: degree (D), strength
(St), pagerank (Pr) [30], closeness centrality (CC) [8], eigenvector
centrality (EC) [28]. Section 6.1 presents a comparison of these
functions.

6 EXPERIMENTS
In this section we examine the effectiveness of the SCSD model.
We use standard metrics in a classification settings, namely the
macro-averaged precision, recall, and F1-score, computed on the
subset PT defined in Section 4.2. We consider several questions in
order to measure the impact of the different components of the
SCSD model:
Q1. What is the influence of the importance function φ, used in

the seed selection step, on the performance?
Q2. What is the contribution of each proximity?
Q3. How well do the automatic ordering functions perform com-

pared to a manual ordering of proximities?
Q4. How robust is SCSD with regards to seed size variations?
Q5. How does SCSD perform compared to baselines?

6.1 Comparison of importance functions φ
6.1.1 Study of compared importance functions. We suppose that

some importance functions are heavily correlated to others. In
order to consider relevant functions only, we study their pairwise
similarities. Table 7 presents the Spearman correlation [18] between
profiles ranks returned by the importance functions indicated in
Section 5.2. As expected, a lot of functions seem to be redundant.
Degree (D), pagerank (Pr), and strength (St) returns similar profiles,
as shown by their high correlations. It is not surprising given their
definitions and the existing literature [19]. The closeness (CC) and
eigenvector centralities (EC) are close to each other, suggesting their
evaluation of the profiles’ importance is also similar. The number
of posts (#P) is often correlated to the number of retweets (#Rt) and
of followers (#Fo) for Twitter, and to the number of debates (#D)
and relations (#R) for CreateDebate. For the Twitter datasets, the
numbers of followers and friends (#Fr) returns a majority of similar
profiles. This is probably due to the atypical profiles (i.e. public
figures) having a large number of friends and of followers. Based on
these observations, we can omit some functions from our analysis.
We will only consider degree, closeness centrality, number of posts,
and seniority for the remaining analyses.

6.1.2 Influence of importance function on seed selection. In or-
der to compare the importance functions in an optimal setting,
we chose to manually order the proximities. We built an optimal
sequence per dataset: the proximities are manually ordered by de-
creasing purity (see Table 5). The first observation we can make is
that, with the correct proximities ordering, we successfully assign
stance to a large majority of profiles. And, surprisingly, the scores
do not vary while using different functions (see Table 8). This is
probably a consequence of seed communities being so homoge-
neous in terms of stance that the importance metric used does not
make a difference.

This result has a very interesting practical application: once the
seed communities, and how many profiles to pick in each one, has
been determined, it is possible to select profiles from which the
stance is known beforehand. This is particularly useful when used

Table 7: Spearman correlation between profiles ranks re-
turned by different importance functions φ – values above
0.50 are bolded for readability.

(a) SR

EC CC Pr St D Se #Fo #Fr #Rt
#P 0.22 0.29 0.52 0.48 0.51 0.47 0.58 0.57 0.71
#Rt 0.53 0.59 0.61 0.73 0.75 0.20 0.42 0.47
#Fr 0.23 0.23 0.27 0.27 0.30 0.34 0.60
#Fo 0.16 0.21 0.39 0.33 0.34 0.42
Se -0.13 -0.09 0.12 0.02 0.03
D 0.66 0.75 0.88 0.97
St 0.65 0.70 0.89
Pr 0.37 0.45
CC 0.92

(b)ME

EC CC Pr St D Se #Fo #Fr #Rt
#P 0.10 0.14 0.24 0.24 0.24 0.62 0.80 0.64 0.50
#Rt 0.36 0.43 0.74 0.79 0.76 0.21 0.32 0.38
#Fr 0.01 0.04 0.13 0.11 0.14 0.48 0.58
#Fo 0.01 0.02 0.03 0.02 0.02 0.63
Se 0.03 0.06 -0.01 0.02 0.01
D 0.45 0.59 0.90 0.94
St 0.45 0.57 0.89
Pr 0.25 0.34
CC 0.85

(c) PE

EC CC Pr St D Se #Fo #Fr #Rt
#P 0.23 0.40 0.23 0.36 0.39 0.47 0.69 0.53 0.25
#Rt 0.52 0.59 0.37 0.76 0.75 0.02 0.40 0.31
#Fr 0.10 0.25 0.18 0.29 0.29 0.39 0.78
#Fo 0.09 0.25 0.26 0.36 0.36 0.45
Se 0.06 0.05 0.01 0.07 0.06
D 0.68 0.80 0.35 0.88
St 0.56 0.61 0.52
Pr -0.10 -0.03
CC 0.80

(d) GC

EC CC Pr St D Se E #R #D
#P 0.21 0.20 0.28 0.37 0.23 0.08 -0.21 0.78 0.79
#D 0.12 0.05 0.22 0.46 0.09 0.09 -0.19 0.71
#R 0.13 0.27 0.14 0.22 0.09 0.16 -0.03
E 0.02 -0.24 -0.07 -0.08 -0.31 -0.40
Se -0.51 0.01 0.31 0.06 -0.06
D 0.51 0.52 0.48 0.55
St 0.46 -0.06 0.68
Pr 0.00 -0.17
CC 0.41

Table 8: SCSDmodel scores using (s, scom, smin) = (3%×|PT |, 3×
|Σ|, 3) and ω = Manual. These scores are identical when using the
following importance functions φ : degree, closeness centrality, number of
posts, seniority, and random (average scores on 10 runs).

Dataset s p r F1
SR 33 0.95 0.95 0.95
ME 47 0.95 0.95 0.95
PE 560 0.90 0.86 0.87
GC 24 0.58 0.52 0.45

by an expert user, since there is a high probability that he / she
already knows the stance of a fraction of the profiles in the studied
dataset.

6.2 Contribution of each proximity
In order to measure the contribution of each considered proxim-
ity, we computed scores for SCSD-Basic, a simplified version of
SCSD with X = (x ) for each proximity x , with (s, scom, smin,φ) =
(3%×|PT |, 3 × |Σ|, 3,Degree). We note that despite the small seed



Table 9: SCSD-Basicmodel scores with (s, scom, smin,φ) = (3%×
|PT |, 3×|Σ|, 3,Degree).

SR ME PE GC
p r F1 p r F1 p r F1 p r F1

ref 0.51 0.37 0.33 0.87 0.15 0.25 0.48 0.51 0.45 0.38 0.02 0.03
kw 0.25 0.46 0.32 0.57 0.34 0.38 0.05 0.13 0.07 0.31 0.50 0.39
citeall 0.91 0.71 0.78 0.97 0.29 0.37 0.91 0.84 0.87 0.58 0.04 0.08
citerec 1.00 0.34 0.50 1.00 0.03 0.06 0.96 0.22 0.35 0.83 0.02 0.04
callall 0.25 0.42 0.31 0.72 0.02 0.04 0.90 0.88 0.89 0.60 0.05 0.09
callrec 0.78 0.23 0.35 0.94 0.03 0.06 0.84 0.27 0.39 0.72 0.03 0.05
assoall 0.97 0.84 0.90 0.97 0.81 0.88 0.89 0.74 0.79
assorec 0.99 0.85 0.91 0.25 0.43 0.31 0.89 0.70 0.78 0.59 0.17 0.24
assorec 0.55 0.39 0.31 0.25 0.38 0.30 0.67 0.63 0.63
socio 0.39 0.21 0.25
beliefs 0.56 0.21 0.27
city 0.60 0.08 0.14 0.64 0.05 0.09 0.41 0.06 0.08
region 0.56 0.10 0.16 0.56 0.14 0.22 0.37 0.10 0.12
country 0.64 0.23 0.25

Table 10: Comparison of ordering functions on SCSDmodel
F1-scores, using (s, scom, smin,φ) = (3%× |PT |, 3× |Σ|, 3,Deдree ).
Scores presented for Random are the average scores on 10 runs.

Random Manual Mod NbCAsc NbCDesc NbPAsc NbPDesc
SR 0.67 0.95 0.49 0.38 0.79 0.50 0.90
ME 0.53 0.95 0.50 0.43 0.40 0.55 0.91
PE 0.63 0.87 0.83 0.11 0.74 0.21 0.89
GC 0.43 0.45 0.47 0.43 0.48 0.41 0.34

size, some proximities obtain extremely high precision scores, but
they usually retrieve few profiles, leading to a poor recall. This
phenomenon is less present in PE, where we see that we can obtain
excellent results in detecting the five different stances. The weak
scores obtained by assorec on ME are surprising. After further in-
vestigation, this is due to the fact that on this dataset, profiles are
highly connected using this proximity. When detecting communi-
ties, the majority of profiles in PT are assigned to the same cluster,
leading to one stance being largely ignored during the classification
process. Despite gun control being often presented as a “right-wing
versus left-wing” debate, or like a generational conflict, the socio
and beliefs proximities did not perform well. This is probably due
to the small size of the dataset, and to the profiles in GC not being
representative of the US society.

6.3 Comparison of ordering functions ω
The order of the proximities is a key element of the model. The in-
teractions providing the most homogeneous communities should be
used first in order to obtain the best results. We decided to compare
the performances of our model using different proximity sequences,
given by the ordering functions ω presented in Section 5.1, with
(s, scom, smin,φ) = (3%×|PT |, 3×|Σ|, 3,Deдree ).2 We also consider
a random ordering of the proximities (whose scores are averaged
on 10 runs). Figure 1 presents the evolution of precision and recall
during the process, and Table 10 the final F1-scores. For Twitter, we
see that NbProfilesDesc is a strong contender to the manual order-
ing. For SR and PE, nbComDesc could be an acceptable alternative,
probably because a higher number of communities means smaller,
more homogeneous ones on these datasets. For GC,modularity and
nbComDesc give us slightly better results than the manual order-
ing, and only nbProfilesDesc gives us significantly weakened scores.
Contrary to our initial intuition that modularity could be a good in-
dicator for proximities ordering, its results shows it vastly depends
2Given the results presented in Section 6.1, we use only one importance function for
the remaining analyses.

Table 11: Influence of s and scom on SCSD model F1-scores,
using (smin,φ) = (3,Deдree ) and ω = Manual.
The missing values represent cases where the seed selection is impossible
because s < scom × smin.

s 1%× |PT | 3%× |PT | 5%× |PT | 7%× |PT |
scom 1× |Σ | 2× |Σ | 1× |Σ | 2× |Σ | 1× |Σ | 2× |Σ | 1× |Σ | 2× |Σ |
SR 0.95 0.95 0.95 0.95 0.95 0.95 0.95
ME 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
PE 0.47 0.87 0.47 0.87 0.47 0.88 0.48 0.88
GC 0.29 0.45 0.45 0.45 0.45 0.45 0.45

Table 12: Baselines scores.

SVM RFcite RFasso LPcite LPasso SCSD

Annotations: 80% Annotations: 3%

SR
p 0.92 0.94 0.95 0.89 0.95 0.95
r 0.92 0.91 0.94 0.76 0.93 0.95
F1 0.92 0.90 0.94 0.78 0.94 0.95

ME
p 0.88 0.93 0.96 0.20 0.11 0.95
r 0.87 0.92 0.93 0.33 0.08 0.95
F1 0.87 0.92 0.93 0.24 0.07 0.95

PE
p 0.75 0.91 0.87 0.21 0.11 0.90
r 0.76 0.89 0.82 0.19 0.09 0.88
F1 0.75 0.89 0.83 0.20 0.10 0.89

GC
p 0.43 0.62 0.55 0.45 0.40 0.57
r 0.37 0.54 0.51 0.04 0.17 0.53
F1 0.37 0.51 0.50 0.08 0.19 0.48

on the studied dataset. Good results characterise PE and GC, but
we see a great loss of performance on SR and ME.

6.4 Influence of seed size
We then looked at the influence of the seed size and the number of
initial communities on scores. Table 11 presents the F1-scores of
the SCSD model when s and scom vary, using (smin,φ) = (3,Degree)
andω = Manual. With our compared configurations, SR andME do
not vary, however PE and GC show the influence of s and scom. GC
shows degraded performances when considering a minimal seed,
i.e. (s, scom) = (1%×|PT |, 1×|Σ|). For PE, scom seems to hold more
importance than s , since with scom = 1×|Σ| we see a drastic drop
in F1-score which is not compensated by the increase in s , while
we obtain good results with scom = 2×|Σ| even when taking into
account only 1% of annotated profiles. Finally, these results confirm
that SCSD model is built to be effective with a very small seed, the
benefit given by a seed larger than 3% of the number of profiles
being non-existent.

6.5 Comparison with baselines
We compare the performance of the SCSDmodel to several baselines
traditionally used for stance detection. For the social aspect, we
use the two main proximities used for this task: citeall and assorec .3
These baselines being supervised models, we use a 5-fold cross-
validation.
SVM We use an SVM model based on the concatenation of each

profile’s posts, with a vocabulary consisting of the 10,000
most distinctive tokens according to χ2 stats.

RFcite For the social aspect, we build a Random Forest classifier
based on the citeall proximity.

RFasso Similar to RFcite but using the assorec proximity.

3Weuse assorec because assoall is undefined forGC, the ally interaction being inevitably
reciprocal.
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Figure 1: Comparison of ordering functions on SCSDmodel precision and recall evolution, using (s, scom, smin,φ) = (3%×|PT |, 3×
|Σ|, 3,Deдree ). Scores presented for Random are the mean scores on 10 runs.

These baselines being supervised, they need a lot more of an-
notated data than the SCSD model. In order to compare to models
using the same amount of annotated data, we define the following
baselines:
LPcite A semi-supervised label propagation process using the citeall

proximity. The seed selection being random, we present the
average scores on 10 runs.

LPasso Similar to LPcite but using the assorec proximity.
Table 12 presents the results of SCSD using the optimal con-

figurations, deduced from previous experiments, compared to our
baselines. We can see that SCSD obtains, with at least 30 times
less annotated data, scores higher than or close to our supervised
baselines. When comparing to the semi-supervised baselines using
the same amount of annotated data, it has an average gain in F1-
score of 49 points (ranging between 1 and 88 percentage points).
ForME, the low scores obtained by LPasso are probably linked to the
overabundance of links observed in Section 6.2. This is a problem
posed by relying on a unique proximity: if it is not adapted to the
studied dataset, there is no way to rectify the situation. Since we
observed high purities for citeall and assorec on both SR and PE, the
differences in scores are probably due to the multiple stances of PE
which are a lot harder for label propagation to deal with than the
simple bipartite problematic represented by SR. We see that for all
models, GC profiles were significantly harder to classify, probably
because of the small size of the dataset.

6.6 Discussion
The analysis of the different proximities supports previous findings
in the literature. The precision scores of citeall and ref suggest
people tend to construct their discourse on social media by sharing
arguments they agree on rather than refuting opposing ones. Note
that while people can call out their opponents, they tend to engage a
lot more to their allies. This is demonstrated by the better precision
usually obtained by callrec compared to callall . The assoall precision
tends to demonstrate that they also select the profiles they follow [3,
14]. Interestingly, and contrary to the observation made above,
another behaviour appears. Some profiles, mainly profiles of public
figures, decided to follow their opponents as well as their allies.
This is probably a way of monitoring their actions and discourse,
suggesting that on Twitter, retweets and following are not always
endorsements. This phenomenon is visible in the 2014 US midterms

elections, when profiles are so closely linked that they are assigned
to the same cluster.

The results seem to indicate that the majority of keywords are
more related to the topic than to a specific stance. Moreover, the
importance of the geographical proximity appears to vary depend-
ing on the topic. Unfortunately it was not possible to investigate all
possible granularities for the geographical proximity. In addition,
finer granularities were not always provided and inferring which
granularity would be the most effective for a given topic is not an
easy task. Since the focus of the study was stance detection, we used
a naive version of geographical proximity, but this issue requires
further attention.

7 CONCLUSION
Our aim was to detect profiles’ stance using their likeliness to other
profiles with a very small seed, to reduce annotation costs. We
proposed SCSD, a generic semi-supervised model which can easily
be customized to suit any requirement. The results of this study
on 4 corpora suggest that it is possible to accurately predict stance
using this method, even when using as little as 1% of annotated
profiles and considering more than two stances. Moreover, they
showed that since all proximities do not carry as much information
in terms of stance, using several proximities allows to strengthen
stance assignment. We do think this model could be a great help
for computational social scientists wishing to exploit large datasets
without having the resources to manually annotate them. The basic
principles do not require advanced technical skills to grasp. More-
over, social scientists usually have the expert knowledge needed
to order the proximities in an optimal manner according to the
platform they wish to study.

The present study did not investigate the whole Twitter follow
graphs due to their computational cost, and the excellent perfor-
mance of more focused graphs. It would be interesting in the future
to compare the performance of follow graphs to the friends graphs.
A more complete and finer use of the textual content would surely
be helpful as well, since keywords alone are not easily exploitable.
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