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Adaptive two- and three-dimensional multiresolution
computations of resistive magnetohydrodynamics
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Kai Schneider
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Abstract Fully adaptive computations of the resistive magnetohydrodynamic
(MHD) equations are presented in two and three space dimensions using a finite
volume discretization on locally refined dyadic grids. Divergence cleaning is used
to control the incompressibility constraint of the magnetic field. For automatic grid
adaptation a cell-averaged multiresolution analysis is applied which guarantees the
precision of the adaptive computations, while reducing CPU time and memory re-
quirements. Implementation issues of the open source code CARMEN-MHD are
discussed. To illustrate its precision and efficiency different benchmark computa-
tions including shock-cloud interaction and magnetic reconnection are presented.

Keywords magnetohydrodynamics · numerical simulation · adaptive grids ·
cell-average multiresolution analysis · divergence cleaning

1 Introduction

The constant need for understanding the nonlinear dynamics of different phenom-
ena encountered in our daily life, which are typically governed by nonlinear partial
differential equations (PDEs), calls for robust and efficient numerical methods to
perform high fidelity numerical simulations. Many complex processes, necessitate
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high resolution computations to represent efficiently the dynamics of a given mul-
tiscale problem [25]. Increasing the resolution of the computational mesh directly
impacts on the computational cost, which thus increases at best linearly, and
thus can lead in many cases to computationally prohibitive simulations. In this
context, dynamically adaptive multiscale methods play a prominent and impor-
tant role, since their purpose is to adapt the computational mesh to the local
structures present in the numerical solution, while preserving the accuracy of the
adaptive computations. In particular, many phenomena in space physics can ben-
efit from such adaptive approaches due to their intrinsic multiscale characteristics.
The presence of multiple time and space scales appears to be optimal for adaptive
methodologies and highly compressed data representation, see e.g. [36].

Different adaptive discretization schemes for magnetohydrodynamic (MHD)
simulations have been proposed in the literature, an exhaustive review is beyond
the scope of the present work. In the following we briefly describe related and com-
petitive adaptive MHD approaches. In [16] a space-time adaptive method using
high order discontinuous Galerkin discretizations (ADER-DG) is proposed and
among others applied to viscous and resistive MHD in two and three space di-
mensions. This work is based on the ADER-DG schemes developed for hyperbolic
conservation laws [56]. A parallel MHD code, NIRVANA, using adaptive mesh
refinement with block-structure and domain decomposition is presented in [57].
A combination of adaptive mesh refinement and central weighted essentially non-
oscillatory schemes has been put forward in [35]. The resulting third order accurate
scheme has been applied to highly super-Alfvenic plasmas and to stiff Sedov-type
explosion problems. A robust second order, shock-capturing numerical scheme for
multidimensional special relativistic magnetohydrodynamics can be found in [53],
again in the framework of adaptive mesh refinement and using a finite volume set-
ting. Applications to relativistic MHD Riemann problems for which exact solutions
are known, are shown to be successfully recovered.

A detailed discussion on space weather forecasting can be found in [51], focusing
on a publicly available Space Weather Modeling Framework (SWMF). The foun-
dations are a Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-
R-US) code that can solve various forms of the MHD equations, including Hall,
semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radia-
tive transport and heat conduction. A block-adaptive mesh in Cartesian and gen-
eralized coordinates is used together with load balancing and message passing for
one, two and three-dimensional problems. Time-stepping of SWMF can be either
explicit, semi-implicit or fully implicit, depending on the application featuring like-
wise local time-stepping. The current status of MHD simulations for space weather
is reviewed in the recent book of Feng [17], including AMR and data driven MHD
modeling within the framework of cell-centered finite volume methods.

The review of Jardin [31] discusses the importance of implicit algorithms in
the context of magnetically confined fusion plasma using the MHD description.
A combination of implicit solvers with highly accurate spatial discretizations and
anisotropic thermal conduction is shown to allow predicting accurately fusion ex-
periments for realistic physical parameters in realistic toroidal geometries.

A Lagrangian parallel MHD code, GRADSPMHD, based on the Smooth Par-
ticle Hydrodynamics (SPH) formalism is introduced in [55]. A mixed hyperbolic-
parabolic correction scheme is used for satisfying the divergence constraint on
the magnetic field and a tree-based code for finding the neighbors. For validation
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classical benchmarks were computed, including the magneto-rotational instability
and simulations of magnetized accretion disks. The performance of the code on a
parallel supercomputer with distributed memory architecture is likewise assessed.

Meshless finite-volume Lagrangian methods for hydrodynamics have been ex-
tended for ideal MHD in [30] using a divergence cleaning scheme. Benchmark
computations illustrate that the developed code GIZMO is competitive with adap-
tive mesh refinement (AMR) techniques. Compared to SPH these methods allow
sharp shock-capturing, reduced noise, divergence errors, and diffusion. However
the convergence of the method is found to be problem dependent.

Here we present an alternative to AMR, which is meanwhile a standard ap-
proach for solving PDEs on adaptive grids [2,1]. We propose using multiresolution
(MR) analysis for introducing adaptivity in MHD simulations. MR is based on the
idea that a data set (i.e. the solution of the PDE) can be represented at different
refinement levels, according to its local regularity. A detailed comparison of MR
and AMR approaches has been carried out in [11,12] for compressible Euler equa-
tions. There we found that the MR method yields a better memory compression
than AMR together with improved convergence.

In particular, we focus on the adaptive multiresolution for cell averages, firstly
introduced by Harten [26,27,28,29] in one dimension, which is directly related
to biorthogonal wavelets. The wavelet coefficients provide the information about
the regularity of the data, which are used to adapt the computational mesh to
the problem of interest. After Harten’s seminal work, numerous publications con-
tributed to the development of this approach in a way that the local regularity
of the solution is detected [8,34,44,47]. Later, the adaptive MR for cell averages
was extended for two and three dimensions [3,47], making it possible to apply this
methodology to different problems of practical interest. In the context of point-
value MR an adaptive solver for the two-dimensional compressible Euler equations
was proposed in [4]. For a detailed review on adaptive MR and wavelet methods
for conservation laws and applications in computational fluid dynamics solving the
Navier–Stokes equations, we refer to [44,50,15].

In this work, we combine the finite volume method with an adaptive MR
approach to solve numerically the resistive magnetohydrodynamic equations, as
discussed in [14,24] for the ideal MHD. Magnetohydrodynamics describes the be-
havior of a macroscopic electrically conducting fluid, which can be used to model
the dynamics of space plasma [19]. The MHD model is characterized by a set
of nonlinear evolutionary partial differential equations, presenting in some cases
strong discontinuities of the solution. In order to solve these equations, we use
robust numerical schemes that evaluate the numerical fluxes precisely, ensure the
stability of the system and keep the physical constraints of the model [10,42]. In
particular, we study here the resistive MHD model, which is more realistic in the
context of space physics. The resistivity adds diffusive effects to the system and
allows the simulation of physical events such as magnetic reconnection, a phe-
nomenon which happens, e.g., when the interplanetary magnetic field is merging
in particular regions with the Earth’s magnetosphere.

Our goal is to present the verification of the developed framework, that in-
cludes a combination of numerical schemes, and the influence, efficiency and sta-
bility of the adaptive MR approach for solving the ideal and resistive magneto-
hydrodynamic equations for different problems, describing a variety of physical
situations. Our motivation for developing adaptive MHD codes is triggered by
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space weather applications in science and technology for which there is a social
demand. High fidelity real-time space weather predictions including the different
involved physical phenomena and the computational cost are still challenging [37,
43].

MHD model simulations in the context of the adaptive MR approach were
firstly presented for 1D and 2D Riemann problems [14,24], in a two-dimensional
ideal model, followed by the Kelvin–Helmholtz instability [22]. First results with
the three-dimensional implementation were also presented for 1D and 2D Riemann
problems in [23] and compared with results obtained with the FLASH code. The
CARMEN–MHD code for ideal MHD was used in the AMROC framework [40]
and a comparison of the results was performed later in [13], with a wavelet-based
adaptive approach. In this work, we present a revised CARMEN–MHD code with
new features, which is fully 3D, including resistive terms and which allows the
simulation of different problems. Using this new implementation, we present here
2D and 3D resistive and ideal simulations, such as the magnetic reconnection and
shock cloud problems. The results are compared with reference solutions.

The remainder of the manuscript is organized as follows. In Section 2, we
briefly present the resistive MHD model we adopted in its quasi-conservative form
and the MHD variables. The numerical approach, including the adaptive MR for
cell averages, the divergence cleaning and the reference solution information, is
presented in Section 3. In Section 5, we describe the implementation and the de-
veloped open source code in detail. In Section 6 the numerical results are presented
and discussed, and comparisons with reference solutions are given. Conclusions are
drawn in Section 7.

2 MHD model

We present the MHD model and consider the single fluid description of a plasma,
i.e., neglecting the individual identity of each particle of the fluid. We are interested
in the quasi-conservative form of the MHD model, which expresses local and global
conservation of mass and momentum, and quasi-conservation of energy density and
magnetic flux. The resistive MHD model in its quasi-conservative form is given by

∂ρ

∂t
+∇ · (ρu) = 0, (1a)

∂(ρu)

∂t
+∇ ·

[
ρutu +

(
p+
|B|2

2

)
I−BtB

]
= 0, (1b)

∂E
∂t

+∇ ·
[
(E + p)u + u ·

(
|B|2

2
I−BtB

)]
= ∇ · [B× η(∇×B)] , (1c)

∂B

∂t
+∇ ·

(
utB−Btu

)
= −∇× (η∇×B), (1d)

∇ ·B = 0, (1e)

where the magnetic field B = (Bx, By, Bz) is the electromagnetic variable, and
the fluid variables are the mass density ρ, pressure p and velocity u = (ux, uy, uz).
Without any loss of generality, we define the magnetic field as B = B/µ0, where µ0

is the permeability of free space. It is important to note that the MHD variables



Adaptive multiresolution computations of resistive magnetohydrodynamics 5

are normalized. The scalar resistivity is denoted by η = η(x, y, z), and γ is the
adiabatic constant. The energy density E is given by the constitutive law

E =
p

γ − 1
+
ρu2

2
+
B2

2
, (2)

and depends thus on the other variables. The Equations (1a) and (1b) describe
the conservation of mass and momentum, respectively. On the other hand, Equa-
tions (1c) and (1d) describe the quasi conservation of energy density and magnetic
flux. Equation (1e) is the magnetic field constraint, which ensures B is divergence
free in the continuous setting. In the absence of resistivity, i.e., η = 0, the model
is called the ideal MHD model, which describes the dynamics of a perfectly con-
ducting fluid. In this case, each equation of the system acts as a conservation law,
and there is no source term on the right-hand side of the equations.

3 Numerical approach

In this section we present the numerical methods used in this work. We start with
the space discretization of the model, which uses a finite volume formulation. We
also recall the multiresolution approach used to adapt the computational mesh
and the thresholding of the wavelet coefficients. Equation (1e) of the MHD model
is not satisfied numerically, since we are considering a discretized version of the
problem. In order to fix it, we use a divergence cleaning, which is also presented
in this section.

To introduce the numerical approach of the MHD equations, we first rewrite
the System (1) in its vector form

∂U

∂t
+∇ · F(U) = S(U), (3)

where U = (ρ, ρu, E ,B) is the vector of conservative variables, F = F(U) the flux
tensor and S = S(U) the vector of source terms, described in Equation (1).

3.1 Finite Volume Discretization

The Finite Volume (FV) method is based on the integral form of conservation
laws, which define the rate of change of a quantity in a fixed volume [38]. To this
end the 3D computational domain Ω is divided into grid cells of the form

Ci,j,k ≡ [xi−1/2,j,k, xi+1/2,j,k]× [yi,j−1/2,k, yi,j+1/2,k]× [zi,j,k−1/2, zi,j,k+1/2],

with i, j, k ∈ {0, · · · , N − 1}, where N is the number of cells in each direction and
(xi,j,k, yi,j,k, zi,j,k) is the center of the cell Ci,j,k. In each cell center we define a
corresponding cell average, given by

Ui,j,k =
1

|Ci,j,k|

∫

Ci,j,k

U(x, y, z, t) dV, (4)

where U = U(x, y, z, t) is the vector of the variables, V is the volume of the fluid,
|Ci,j,k| = ∆x∆y∆z is the volume of the cell, with ∆x = xi+1/2,j,k − xi−1/2,j,k,
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∆y = yi,j+1/2,k − yi,j−1/2,k and ∆z = zi,j,k+1/2 − zi,j,k−1/2. By integrating the
Equation (3) over Ci,j,k, we obtain

∫

Ci,j,k

∂U

∂t
dV +

∫

Ci,j,k

∇ · F(U) dV =

∫

Ci,j,k

S(U) dV. (5)

By multiplying the Equation (5) by 1
|Ci,j,k| and applying the divergence theorem

on the divergence operator term, we get

∂

∂t
Ui,j,k = − 1

|Ci,j,k|

∫

∂Ci,j,k

F(U) · ni,j,k dS + Si,j,k(U), (6)

where n = ni,j,k is the vector normal to the cell interfaces Ci,j,k, ∂Ci,j,k denotes
the boundary of the cell and dS is the surface element of the cell volume. We
conclude that the flux tensor must be evaluated on the interfaces of the cell Ci,j,k,
instead of its center. The 2D discrete formulation can be obtained analogously by
removing the index k.

3.2 Multiresolution Analysis for Cell-Averages

The multiresolution representation of cell average data is the essential building
block to introduce adaptivity and sparse representation of the solution in the
finite volume context [29].

To this end, we consider U = U(x, y, z, t) an absolutely integrable function on
Ω at a given time instant t, and we conceive a hierarchy of dyadic uniform meshes.
The center of each cell C`i,j,k is located by i, j, k ∈ {0, · · · , 2` − 1} and its size is

defined as |C`i,j,k| = h2−D`, where D is the dimension of Ω, ` the refinement level

and h = |Ci,j,k|. The total number of cells in each level ` is 2D` cells.

Starting with the idea of nested meshes, i.e., a coarser mesh is contained in
the finer one, it is possible to navigate between these meshes to obtain cell aver-
age values of interest. For this procedure, it is necessary to define two operators:
projection and prediction. The projection operator is exact and unique, denoted
by P``+1, and consists in computing the values on the coarser level ` from values
on the finer level `+ 1. This evaluation is accomplished from the weighted average
of the cell averages in `+ 1, i.e., for three dimensions it is given by

U
`
i,j,k =

(
P``+1U

`+1
)
i,j,k

=
1

8

1∑

m=0

1∑

p=0

1∑

q=0

U
`+1
2i+m,2j+p,2k+q, (7)

with m, p, q ∈ {0, 1}. Therefore, each cell average on level ` is obtained from eight
or four values, according to the number of dimensions of the problem. On the
other hand, the procedure that consists in obtaining the cell averages on level
` + 1 from the cell averages on the coarser level ` is performed by the prediction
operator, denoted by P`+1

` . Since this operator predicts the cell average values,
it is not exact and can assume different definitions. In this work, we choose the
approach proposed by Harten [28,27,26]. Harten’s approach has been extended
to two dimensions [3] and three dimensions [47,48]. The set of approximated cell
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averages is denoted by Û. Thus, in three dimensions, the approximation is given
by

Û`+1
2i+m,2j+p,2k+q =

(
P`+1
` U

`
)
2i+m,2j+p,2k+q

= I(U
`
, `+ 1, 2i+m, 2j + p, 2k + q), (8)

where I is the interpolation operator. The prediction operator approximates
eight cell averages on each cell in three dimensions, and four in two dimensions.
Moreover, it satisfies the localization property, on which the operator only needs
the neighbor values to perform the approximation.

For each interpolation we have an associated error, computed by the difference

between the cell average U
`+1

on level `+ 1 and its approximation Û
`+1

, i.e.,

d` = U
`+1 − Û`+1 → U

`+1
= I(U

`
) + d`, (9)

where d` = d`i,j,k is the local error, also called detail or wavelet coefficient. These
coefficients, provide information about the local regularity of the numerical so-
lution. The number of local wavelet coefficients for each approximation varies
according to the dimension of the problem: three coefficients for two dimensions
and seven for three dimensions. Thereby, it is possible to establish a one-to-one

correspondence U
`+1 ←→ {U`

,d`}. The wavelet coefficients along with the cell

averages U
`
i,j,k, enable us to obtain the cell averages on level ` + 1 whenever

necessary, resulting in the relation

U
`+1
2i+m,2j+p,2k+q ←→ {U

`
i,j,k,d

`
1,d

`
2, · · · ,d`7}, (10)

where m, p, q ∈ {0, 1} varies in order to obtain every local cell average on level
`+ 1 in three dimensions. By defining the set of every wavelet coefficient obtained
on a local approximation on level ` as

D` = {d`m, 1 ≤ m ≤ 2D ` − 1}, (11)

the relation can be generalized to the entire mesh, reaching a one-to-one corre-

spondence between U
`+1

and {D`,U
`}, given by

U
L ←→ {DL−1,DL−2, · · · ,D0,U

0}, (12)

which characterizes the process of the multiresolution transform operator M, de-
fined as

UMR = M U
L
, U

L
= M−1UMR. (13)

where UMR = (DL−1,DL−2, · · · ,D0,U
0
). The MR transform satisfies the prop-

erties of localization, polynomial cancellation and stability [15]. The stability guar-
antees that small perturbations introduced on transformed data on any scale are
not uncontrollably amplified in the iterative applications of the multilevel trans-
form. Therefore, we conclude the information of every cell average on the coarser
level and the wavelet coefficients of all levels is equivalent to the information of
the cell averages on the most refined level.

The conservation properties of the finite volume method are preserved in our
adaptive multiresolution discretization taking special care in the flux evaluation.
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To ensure the balance of ingoing and outgoing fluxes at the cell interfaces on
adjacent refinement levels, we use the conservative formulation proposed in [48,
44]. To guarantee the conservation the ingoing fluxes at level ` are computed as the
outgoing fluxes of the corresponding cells at level `+ 1, as illustrated in Figure 1.
This is possible due to the graded-tree structure, which keeps the nearest cousins of
a cell or creates a virtual leaf for the flux computations. Thus the flux computation
is conservative between cells at different levels of refinement.

ℓ + 1

ℓU
ℓ+1
i,j U

ℓ+1
i+1,j

U
ℓ+1
2i,2j U

ℓ+1
2i+1,2j

U
ℓ+1
2i+1,2j+1U

ℓ+1
2i,2j+1

Fig. 1 Conservative flux computation in 2D for two different refinement levels, illustrating
ingoing and outgoing fluxes. Adapted from [48].

Dynamic Mesh Adaptation: Thresholding

To define the regions of the computational mesh that need more or less refine-
ment, we apply the threshold operator Tε` on the wavelet coefficients. For each
approximation, this nonlinear operator is defined as

Tε`(d
`
m) =

{
0, if |d`m| ≤ ε`,
d`m, otherwise,

(14)

where ε` is the threshold parameter and m ∈ {1, · · · , 2D ` − 1}. Given the level
`, the thresholding consists in removing the cells in which the magnitude of the
details is smaller than ε`, replacing them by zero. Thereby, the number of cells
required for the numerical simulation can be significantly decreased, impacting the
computational cost which correspondingly decreases with this reduction. Hence the
computational cost becomes smaller when more wavelet coefficients are removed.
In regions where the solution presents smooth behavior, the wavelet coefficients
have small magnitude (|d`| ≤ ε`), allowing locally coarser meshes. On the other
hand, the magnitude of the coefficients is significant (|d`| > ε`) in regions where
local structures are present, requiring more refined meshes [26,27].

The threshold parameter ε` can have either a fixed value or be level dependent.
In the former case, we define the value ε = ε` which remains the same during the
simulation. In the level dependent case, an initial parameter ε0 is defined and it
changes according to the local refinement of the region of interest, given by the
equation

ε` =
ε0

|Ω|2
D(`−L+1), 0 ≤ ` ≤ L− 1, (15)



Adaptive multiresolution computations of resistive magnetohydrodynamics 9

where |Ω| is the global volume of the computational region and L is the maximum
refinement level. Equation (15) is called Harten’s strategy to determine the choice
of the threshold parameter ε` = ε(ε0, `).

Each detail d` is understood as a vector with the details of the MHD con-
servative variables as its components, i.e., d` = (d`ρ,d

`
ρu,d

`
E ,d

`
B). As the MHD

variables are stored in the vector U
`
i,j,k, the detail components are computed from

the approximation error in each variable and its maximum value. In the scalar-

valued approach, the details are computed as d`$ =
d`

$

max(|$|) , where $ denotes
a MHD quantity. In this case, each component of the vector variables ρu and B
is considered separately to compute d`$, as scalar variables. Thus the vector of
details d` has in total 8 components.

After performing some numerical experiments, we found the optimal computa-
tion of the details of the MHD variables in three dimensions, given by the following,

d`ρ =
d`ρ

max |ρ| , (16)

d`ρu =

√
(d`ρux

)2 + (d`ρuy
)2 + (d`ρuz

)2

max(|ρux|, |ρuy|, |ρuz|)
, (17)

d`E =
d`E

max |E| , (18)

d`B =

√
(d`Bx

)2 + (d`By
)2 + (d`Bz

)2

max(|Bx|, |By|, |Bz|)
. (19)

In two dimensions we have a special treatment for the z-components, namely

d`ρu =

√
(d`ρux

)2 + (d`ρuy
)2

max(|ρux|, |ρuy|)
, (20)

d`ρuz
=

d`ρuz

max |ρuz|
, (21)

d`B =

√
(d`Bx

)2 + (d`By
)2

max(|Bx|, |By|)
, (22)

d`Bz
=

d`Bz

max |Bz|
, (23)

which is called vector-based approach. Therefore, for vector-valued variables ρu
and B, the associated wavelet coefficients take into account each component on the
computation. In two dimensions, only two components are used and the third one
is computed in a independent way. We found that this vector-based approach op-
timizes the local mesh refinement, compared to the scalar-valued approach, where
we compute the details for each vector component individually [21].

The adaptive mesh is organized into a tree data structure where the different
levels define the resolution, which are represented in the tree hierarchically. Fol-
lowing the tree nomenclature, the children of a given cell C = C` are the cells
descendent of C in level ` − 1. The neighborhood of a cell at the same level cor-
responds to their brothers and in the upper level to their uncles. The adaptive
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mesh must follow a graded structure as discussed in [5]. This contributes to main-
tain the accuracy and stability in the time evolution with the inclusion of extra
neighbors and uncles cells in the neighborhood of the selected cells. We also add
virtual leaves to avoid unnecessary computation. Virtual leaves are not evolved in
time. More details can be found in [48]. The following Algorithm 1 describes the
procedure to construct the adaptive mesh at t = t0. The adaptive mesh is then
updated at each time step.

Algorithm 1 Adaptive Mesh Construction
Require: Consider the adaptive mesh, containing all cells at level L
Require: Threshold parameter ε`

Obtain the set of details D` of every level `
for ` = L− 1; ` ≥ `min; ` = `− 1 do

for Every cell C at level ` do
if Every child of C is in the adaptive mesh then

if The significant details are kept, i.e. the detail correspondents to cell C is smaller
then ε then

if The refinement level of every cell adjacent to the set of cells to be merged is
greater than ` then

Remove the child of C from the adaptive mesh
Insert C in the adaptive mesh
Check if the tree is graded, if not impose it.
Add virtual leaves.

end if
end if

end if
end for

end for
Refine every cell at a level ` < L;

In Figure 2, we present two adaptive meshes obtained at the final time for 2D
shock-cloud simulations for the same ε using either the (a) scalar-valued or (b)
a vector-based threshold approach. By comparing the adaptive meshes with the
solutions of the variables presented in Figure 11, computed with the vector-based
approach on a adaptive mesh, we can observe that the vector-based approach is
more efficient to capture the structures of the numerical solution, avoiding unnec-
essary refinement in smoother regions of the solution.

Fig. 2 2D MHD shock-cloud problem: adaptive meshes obtained at the final time of simulation
with (a) scalar-value and (b) vector-based threshold approaches.

(a) (b)
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To apply the threshold operator to previously defined values, we define the
maximum value among the details, i.e., max |d`| = max{|d`ρ|, |d`ρu|, |d`E |, |d`B|}.
Thus, after this procedure, the threshold operator is applied to the details of the
MHD variables. In this way, the adaptive mesh becomes the union of the mesh of
each variable, since the wavelet coefficients of each variable are used to decide in
which local region a more refined mesh is necessary.

3.3 Divergence of the Magnetic Field Correction

Gauss’ law of magnetism, given by Equation (1e), imposes a physical constraint
on the magnetic field, which is satisfied in the continuous medium. To ensure
the absence of nonphysical behavior in the numerical MHD solution, we add to
the MHD system the so-called parabolic-hyperbolic divergence cleaning [10,41],
which does not impose a vanishing divergence of the magnetic field, but damps
and propagates the associated numerical divergence errors. In this case, we add a
new scalar variable ψ to the MHD System (1), thus modifying Equation (1d) and
adding a transport equation for ψ,

∂B

∂t
+∇ ·

(
utB−Btu

)
+∇ψ = −∇× (η∇×B) , (24)

∂ψ

∂t
+ c2h∇ ·B = −c

2
h

c2p
ψ, (25)

where cp and ch are the parabolic and hyperbolic constants, with ch > 0. The com-
plete model is called MHD model with Generalized Lagrange Multipliers (GLM–
MHD). It is important to note that the GLM–MHD model is originally proposed
for ideal MHD and we use this formulation here too. In the resistive case, we are
only considering the additional source terms present Equations (1c) and (1d).

By using appropriated initial and boundary conditions, the MHD system pre-
sented is completed and ready for the numerical simulation in two or three space
dimensions.

4 Time Evolution

The adaptive mesh has to be updated at each time step, because the local struc-
tures present in the numerical solution can change at each iteration. By defining the

operators E : U
n → U

n+1
of the time evolution, T : {dL−1, · · · ,d`,U`} → U

n?

the thresholding operator, M : U
L → {dL−1, · · · ,d`,U`} of the multiresolution

transform and M−1 : {dL−1, · · · ,d`,U`} → U
L

of the inverse multiresolution
transform, the adaptive MR process can be described as follows

U
n
MR = M(U

n
) (26)

U
n?
MR = T (U

n
MR), (27)

U
n+1
MR = E(U

n?
MR), (28)

U
n+1

= M−1(U
n+1
MR ). (29)
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This process indicates that, after the MR representation of the solution U
n

, we
apply the thresholding operator T and obtain the cell averages at the intermediate
step n?. Then, these values are evolved to the time tn+1. To finish the process,
the inverse MR operator is performed [48].

5 Implementation issues and the CARMEN–MHD code

The CARMEN–MHD code is based on the CARMEN code, originally developed
by O. Roussel during his PhD thesis [47,48] using finite volumes together with
adaptive MR for cell-averages. This C++ code with tree-data structures was im-
plemented to simulate reaction-diffusion equations modeling combustion problems
and later also extended for the compressible Euler and Navier–Stokes equations.

The implementation of the CARMEN–MHD code started with the ideal 2D
MHD equations, with HLL and HLLD numerical fluxes and GLM divergence clean-
ing [20,14]. After some adjustments, including an eigenvalue fix, TVD limiters for
the conservative variables and improvement of the boundary conditions [24,22],
we started the implementation of the 3D MHD equations, first for 2.5D simula-
tions [23]. The uniform mesh MHD implementation in 2D and 3D, which allowed
the CPU time comparison, resistive terms, artificial diffusion terms, fixed time
steps and more, were implemented later [21]. The code became more robust and
different types of MHD simulations could be done properly.

The adaptive MR algorithm creates a computational mesh which becomes more
refined in regions where local structures are present. The mesh refinement reduces
the cost of the numerical flux computation significantly, which normally requires
the major memory percentage. The numerical simulation of the ideal and resistive
MHD equations is performed with the CARMEN–MHD code.

To compute the flux F on the cell interface, we firstly reconstruct the conser-
vative variables using a MUSCL-type monotonized central scheme [54] to achieve
second order accuracy in space. These reconstructed values are used to compute
the intermediate states of the Harten-Lax-Van Leer-Discontinuities Riemann solver
[42] and then the numerical flux is evaluated on the cell interfaces. We should note
that the FV method is strictly conservative, since the outflux of a volume is im-
posed to be equal to its influx. The physics of the problem can be reproduced in
such way that the conservative principles of the model are sustained.

The current CARMEN–MHD code is able to solve ideal and resistive MHD
equations, by using the adaptive MR for cell averages or a uniform finite volume
computational mesh. The simulations performed are stable and the numerical so-
lution remains coherent and does not show oscillations or non physical behavior.
The code and its documentation are available on a repository for download and
all the presented problems can be reproduced and visualized properly1.

In Figure 3, we present a flowchart illustrating the algorithm of the CARMEN–
MHD code. First, the code is initialized with the initial condition (IC) and other
parameters. The cell averages are computed and the initial mesh is created. In the
second step, the time evolution is performed. In this part, the code evolves the
quantities of the MHD model, by evaluating the numerical fluxes, GLM divergence
cleaning and evolving in time with a second order Runge–Kutta scheme. The

1 waveletapplications.github.io/carmenMHD/
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stability of the new solution is checked and the time step of the next iteration
is computed. After that, we proceed to the third step, where the adaptive mesh
is updated based on the new cell averages, and the mesh is adapted again. To
finish the algorithm, the mesh and solution are written into a file. The procedure
is repeated until the final time is reached.

1. Initialization

Read IC

Initialize Parameters

Create Initial Mesh

3. Rebuild Mesh

Update Mesh

Adapt Mesh

4. Output

Write Mesh

Write Solution

-Evolve Quantities-

Compute Fluxes

Runge-Kutta

Divergence Cleaning

repeat twice

2. Time Evolution

Evolve Quantities

Check Stability

Adapt Time Step

Fig. 3 Flowchart of the CARMEN–MHD code.

As a reference solution for our results, we use the FLASH code2, developed
in the Flash Center at the University of Chicago. This code includes the imple-
mentation of the ideal and resistive (constant resistivity) MHD models, as well
as the FV discretization. It is possible to perform adaptive simulations by using
an adaptive mesh refinement algorithm. However, here we are interested only in
the results obtained on a uniform mesh, as the comparison between two adap-
tive methods is not part of this work. The FLASH code results are used only for
the comparison of the solutions and error computations. The version of the code
used here is 4.3. For the FLASH code simulations, the following settings are used:
one-step Hancock for time evolution, 8-wave divergence cleaning, MC limiter and
HLLD Riemann solver. These settings yield second order of the numerical scheme
in time and space.

6 Numerical Simulation

In the following we present several test cases to verify the CARMEN–MHD code,
and, in particular, the adaptive multiresolution algorithm for the MHD equations.
These test cases can assess how our solvers deal with different physical situations,
such as, magnetohydrodynamic shocks, local structures and magnetic field lines
topology changes, and also numerical challenges, such as stability, strong discon-
tinuities and divergence free correction.

In previous works, we found that the MR approach is efficient to represent
the numerical solution 2D and 2.5D for ideal MHD problems [14,24,23]. The MR
algorithm decreases significantly the number of the cells in the computational mesh
and, consequently, the required CPU time. It also provides an accurate solution,
compared to the regular mesh solution, demanding much less cells and memory.
To verify the solutions of the CARMEN–MHD code, we use the FLASH code [18]
as reference solution for our results. The reference solutions obtained with FLASH
code are simulated using finite volumes on a regular Cartesian mesh.

2 flash.uchicago.edu/site/flashcode/
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6.1 Orszag–Tang Vortex

The Orszag–Tang vortex (O-T) in two dimensions [45] is a well-known benchmark
for MHD simulations, which allows us to test the transition to two-dimensional
supersonic MHD turbulence. Thus, the Orszag–Tang vortex is adequate to verify
the robustness of the code when it comes to deal with the formation of magneto-
hydrodynamic shocks and shock-shock interactions. It is also interesting to quanti-
tatively estimate how significant the magnetic monopoles affect the numerical so-
lution, by testing the divergence constraint of the magnetic field. In summary, this
problem is a common and classical numerical test for MHD codes and consistent
to perform comparisons between codes. This problem presents physical structures
over the entire domain, characterizing a challenge to our proposed adaptive mul-
tiresolution algorithm. We want to measure the quality of the CARMEN–MHD
solution and compare it to the reference. The initial condition for the O-T prob-
lem is given in Table 1. The domain interval is defined by Ω = [0, 2π] × [0, 2π],
L = 9 (512 × 512) is the most refined level, the final time is t = π, the Courant
number ν = 0.4, and αp = 0.4 and γ = 5/3. The boundary conditions are periodic
in all directions.

Table 1 Initial condition of the Orszag–Tang vortex.

ρ p ux uy uz Bx By Bz

γ2 γ − sin y sinx 0.0 − sin y sin 2x 0.0

Firstly, we present a comparative study of the numerical solution obtained on
a regular full mesh, to ensure the reference solution is adequate and to show that
CARMEN–MHD results are coherent. To evaluate the local convergence of the
solution, we present cuts of the variable p at y = 0.64π, which is largely used
on the literature, see e.g., [42,39,32,49]. By collecting a set of 200 points of the
solution presented in Londrillo e Del Zanna [39], Miyoshi e Kusano [42], along
with the FLASH code solution, we can observe in Figure 4 (a) that these cuts
present similar behavior. It also suggests that the reference solution obtained with
the FLASH code is adequate to be used as a benchmark for the CARMEN–MHD
code solution. The solutions at levels L = 7, 8 and 9 obtained with CARMEN–
MHD are shown in Figure 4 (b). For each resolution level, the solution behaves as
expected.
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Fig. 4 Cuts in variable p on a uniform mesh: (a) comparison between reference solution (solid
line), Londrillo e Del Zanna 2000 (cross) e Miyoshi e Kusano 2005 (dot); (b) CARMEN–MHD
code solution obtained for L = 7 (cross), L = 8 (dot) and L = 9 (solid line).
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In the adaptive context, the simulations are performed by choosing fixed trun-
cation parameters ε = 0.01, ε = 0.03 and the level-based one, ε0 = 0.02. In
Figure 5, we show the visualization of the MHD variables p and uy obtained with
ε = 0.03 at t = π. The symmetry of the solution is kept and the physical struc-
tures are well represented over the computational domain. The one dimensional
cuts for p at x = π and y = π, including the reference solution, are presented
in Figure 6. We can notice that the similarity between the solutions, and observe
the convergence towards the reference thus reproducing the expected physical be-
havior. In particular, the total pressure is a macroscopic entity that is the result
of the environment variables B, u and ρ, which makes it a suitable numerical
sensor in studies such as instabilities, environment morphology, and reconnection
phenomena.

Fig. 5 Variables p and uy at t = π and L = 9, obtained with resistive CARMEN–MHD code
for the 2D Orszag–Tang vortex and ε = 0.03.

p uy
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Fig. 6 Cuts of the variable p (from top to bottom) at t = π and L = 9, for reference solution
(line) and CARMEN–MHD adaptive solutions with ε = 0.01 (cross), ε = 0.03 (circle), ε0 = 0.2
(dot), at x = π and y = π
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The optimal threshold parameter found for this problem is ε = 0.03, because it
provides a significant economy of cells and CPU time. Moreover, it also maintains
the error in the same order of accuracy when compared to the other adaptive
cases, as presented in Figure 8 for the density variable. For ε = 0.03, only 26%
of the cells over time are needed for the simulation, decreasing the CPU time by
77%. The percentage of cells required for ε = 0.01 and ε0 = 0.2 simulations are,
respectively, 45% and 85%, leading to a 56% and 11% CPU time reduction. The
adaptive meshes for ε = 0.01 and ε = 0.03 at t = π are shown in Figure 7. In
both cases, the cells are located in regions that present stronger discontinuities,
according to the visualization of the variables provided, allowing the structures to
be well represented even in the case with less cells.

The L1 and L2 errors for the uniform and adaptive simulations are shown
in Table 2 for p and uy. The uniform mesh errors are slightly smaller, which is
expected since the number of cells is significantly larger. In Figure 8, we show that
as we increase the ε value, the error values also increase. We are comparing the
uniform mesh, denoted by ε = 0, and two adaptive cases, ε = 0.01 and ε = 0.03.
It is important to notice here that the ε value is also related to the number of
cells, i.e., the number of cells tends to decrease as we increase ε. Thus having
more cells implies smaller. This shows that in the adaptive simulations we should
find the optimal relation between computational gain and accuracy. We can also
observe that the errors of the pressure variable are larger, which happens because
this variable is obtained from the other 7 MHD variables and thus their errors
accumulate.
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Table 2 Errors for the ideal 2D O–T vortex for the uniform and adaptive, compared to the
reference solution at L = 9.

CARMEN–MHD
Variables

Errors (×10−2)

solver L1 L2

Uniform
p 2.256 7.052
uy 0.628 1.653

Adaptive p 5.337 11.79
(ε = 0.03) uy 1.954 3.582

Fig. 7 Adaptive meshes at t = π and L = 9, for the 2D Orszag–Tang vortex with ε = 0.01
and ε = 0.03.

ε = 0.01 ε = 0.03

Fig. 8 Mass density ρ errors at t = π and L = 9, for uniform and adaptive cases
(a) ε × L1 error (b) ε × L2 error
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To evaluate the conservation of the total energy density E , we present the
values referring to log10(EMR/EUM ) in Figure 9, where EMR and EUM are the
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integral values of E over time on adaptive and uniform meshes, respectively. By
using this measure, it is possible to study the energy conservation for ε0 = 0.2
(circle), ε = 0.01 (cross) and ε = 0.03 (dotted) and also to verify how close these
values are to the uniform case (solid line). The conservation of energy over time
holds for every case presented, maintaining the physical properties. As much as
we increase the number of cells of the simulations, the integral values converge to
the uniform case, e.g. the ε0 = 0.2 case.

Fig. 9 Global values of log10(EMR/EUM ) over t, obtained for the uniform mesh (black) and
adaptive cases with ε0 = 0.2 (circle), ε = 0.01 (cross) e ε = 0.03 (dotted).
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In Figure 10, values of the divergence error εdiv are presented for two different
values of ε and the uniform mesh computation with L = 9. For all cases, the
values are below 10−1 and, consequently, the computations satisfy the restriction
εdiv < 1. This shows that the GLM-MHD parabolic-hyperbolic strategy combined
with the adaptive MR technique still presents small numerical values of ∇ ·B, as
expected. Hence this combination preserves the desired precision of the numerical
solution at the final time of the simulation.

6.2 Shock-cloud interaction

The shock-cloud interaction models the disruption of a dense cloud with a shock-
wave. The problem presents strong discontinuities and it is a challenging test case
to evaluate the stability of numerical schemes. This type of simulation was firstly
proposed in [9] and the initial condition we use is based on [52], given in Table 6.2
and with uy = uz = Bx = 0.0. We consider a circular cloud, 10 times denser than
its background, with radius r = 0.15 and center (0.25, 0.5, 0.5) in three dimensions
and (0.25, 0.5) in two dimensions. The shock is located at x = 0.05.
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Fig. 10 Quantity ε × εdiv at t = π and L = 9, for uniform (ε = 0) and adaptive cases with
ε = 0.01, ε = 0.03.
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As simulation parameters we choose the physical time t = 0.06, the divergence
cleaning parameter α = 0.4, the threshold parameter ε0 = 0.01 and γ = 5/3.

Table 3 Shock-cloud initial condition.

ρ p ux By Bz

x ≤ 0.05 3.86859000 167.34500000 0.00000000 2.18261820 -2.18261820
x > 0.05 1.00000000 1.00000000 11.25360000 0.56418958 0.56418958

In two dimensions, we consider a high density cloud such as a circle centered in
(0.25, 0.5), with radius r = 0.15 and ρ = 10. The variables ρ and Bz are presented
in Figure 11, obtained with the CARMEN–MHD simulations. We can notice there
is a strong discontinuity present in the interval x ∈ [0.4, 0.5], which appears after
the explosion coming from the interaction between the shock and the cloud. There
are several local structures that are well represented in the visualization.
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Fig. 11 Variables ρ and Bz at t = 0.06 and L = 9, obtained with the CARMEN–MHD code
for ideal MHD, for the 2D shock-cloud problem and ε0 = 0.01.

ρ Bz

In Figure 12, we present cuts of the variable Bz at x = 0.5, y = 0.5 and t = 0.06,
for ε0 = 0.01 and ε = 0.003. The variable Bz presents many discontinuities over
the domain and the adaptive MR approach captures them. Moreover, these results
reinforce the convergence of our numerical solutions. A slightly different topology
may be observed in the solution, mainly due to the different numerical schemes.
Nevertheless the solutions present the same behavior and have the same accuracy
order.

Fig. 12 Cuts of the variable Bz at t = 0.06, and L = 9, for reference solution (solid line) and
CARMEN–MHD adaptive solutions with ε0 = 0.01 (cross).
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The adaptive meshes are presented in Figure 13 for simulations with threshold
parameter ε0 = 0.01, that uses approximately 40% of the cells over time at t = 0.06.
It implies a 55% reduction of CPU time. The meshes outline the local structures of
the problem at times t = 0 and t = 0.06, with most of the cells being concentrated
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in the shock front and the border of the cloud for the initial time, and on the
sharper local structures for the final time.

Fig. 13 Adaptive meshes at t = 0, t = 0.06 and L = 9, for the ideal 2D shock-cloud problem
with ε0 = 0.01.

t = 0 t = 0.06

In Table 4, the errors evaluate quantitatively the proximity of the results ob-
tained with uniform and adaptive meshes. The L1 and L2 errors remain of order
10−1 for both cases, showing that it is possible to obtain the same order of accuracy
by using only 40% of the cells. We should recall at this point that the complexity
of the shock-cloud problem, as it models an explosion with strong discontinuities,
can influence on the elevated error values presented.

Table 4 Errors obtained for the ideal 2D shock-cloud problem compared to the reference
solution at level L = 9.

CARMEN–MHD
Variables

Errors (×10−1)

solver L1 L2

Uniform
ρ 1.543 11.55
Bz 0.391 1.509

Adaptive ρ 1.539 11.60
(ε0 = 0.01) Bz 0.390 1.511

In three dimensions, the magnetic cloud is centered on (0.25, 0.5, 0.5). We
present the 3D shock-cloud simulation at level L = 7 (1283 cells) and ε0 = 0.01.
Figure 14 shows variables ρ andBz obtained with the ideal MHD model at t = 0.06.
The adaptive structures are coherent with the expected ones from the reference.
The approximation errors are presented in Table 5. The errors L1 and L2 stay at
the order 10−3 and 10−4, respectively, for both adaptive and uniform cases. If we
compare these values to the two dimensional case, we can notice that they decrease
for the three dimensional case. This probably occurs because of the z component,
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which can present a solution with a globally smoother behavior compared to the
two dimensional case, where complex structures are located all over the domain.

Fig. 14 Variables ρ and Bz at t = 0.06 and L = 7, obtained with ideal CARMEN–MHD code
for the 3D shock-cloud problem and ε0 = 0.01.

ρ Bz

Table 5 Errors obtained for the ideal 3D shock-cloud problem for the uniform and adaptive
(ε0 = 0.01), compared to the reference solution at level L = 7.

CARMEN–MHD
Variables

Errors (×10−3)

solver L1 L2

Uniform
ρ 0.143 4.798
Bz 0.132 3.966

Adaptive
ρ 0.146 4.818
Bz 0.138 4.089

The adaptive mesh is presented in Figure 15 for ε0 = 0.01, decomposed ac-
cording to the xy, yz and zx, as we take sections at the interval [0.45, 0.55] on z,
x and y axes, respectively. This type of visualization makes the mesh adaptivity
clearer for the 3D case. It is possible to observe that the cells of this simulation are
located exactly in regions of the stronger discontinuities. The xy mesh is similar
to the 2D case, in a coarser level. The 3D simulation demands 58% of the cells
over time, when compared to a uniform mesh, and causes a reduction of 34% in
CPU time. When we increase the refinement level to L = 8, the percentage of cells
required decreases to 42% and reduces the CPU time by 54%. This suggests that
the adaptivity tends to improve as we increase the maximum level of refinement
of the 3D case.
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Fig. 15 Ideal 3D shock-cloud problem: adaptive mesh (ε0 = 0.01) sections on planes xy, yz,
zx at t = 0.06 and L = 7.

xy yz zx

For the simulation of the resistive 3D shock-cloud, we add a constant resistivity
η = 0.02 all over the computational domain. Numerical tests showed that this value
is reasonable for this problem, as the diffusive effect is sufficient to smooth the local
structures of the problem without losing its intrinsic topology.

To allow a quantitative comparison with the reference, we choose a coarser
level, L = 6, corresponding to 643 cells. In Figure 16, we present visualizations
of the variables ρ and Bz. Due to the dissipative effects and the refinement level,
the structures of the solution are much smoother, compared to the ideal case.
However, we can notice that the topology of the solution is maintained. This
adaptive simulation requires 76% of the cells over time for L = 6. When we refine
the mesh, we obtain a reduction of the cells with an improvement of the CPU
time. In particular, for a simulation with L = 7 , 55% of the cells are needed
over time and there is a 35% reduction in CPU time, which is significant in the
computational context and reinforces the efficiency of the adaptive MR approach.
The corresponding errors are presented in Table 6.

Table 6 Errors obtained for the constant resistive 3D shock-cloud problem for the uniform
and adaptive (ε0 = 0.01) cases, compared to the reference solution at level L = 6.

CARMEN–MHD
Variables

Errors (×10−3)

solver L1 L2

Uniform
ρ 0.401 5.549
Bz 0.214 3.234

Adaptive
ρ 0.403 5.558
Bz 0.214 3.230
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Fig. 16 Constant resistive 3D shock-cloud problem: adaptive simulation for variables ρ and
Bz with ε0 = 0.01 at t = 0.06 with L = 6, and η = 0.02

ρ Bz

6.3 Magnetic reconnection

When we include Ohmic resistivity effects in the MHD equations, there is no con-
servation of magnetic flux anymore. This type of physical situation can change the
topology of the magnetic field lines, allowing us to study different plasma problems,
in particular, magnetic reconnection phenomena. The magnetic reconnection is a
fundamental process in highly electrically conductive plasmas, which allows the
conversion of magnetic energy to kinetic energy. It occurs when the magnetic field
lines disconnect and reconnect again, changing its directions and restructuring the
macroscopic plasma quantities.

We consider the Petschek reconnection model [46], in which the reconnection
rate is faster compared to the Sweet–Parker setting. The simulation proposed here
was first presented in [33] with the following configuration: The initial condition
for the magnetic reconnection is given by ρ = 1, p = 0.1, u = 0, Bx = 0 and

By =





−1, if x < −0.05

sin(πx/0.01), if |x| ≤ 0.05

1, if x > 0.05

(30)

The computational domain is Ω = [−0.5, 0.5]×[−2, 2], where the diffusion region is
defined as [−0.05, 0.05]× [0.2, 0.2], and the resistivity inside this region is given by
η(x, y) = 0.25 η0 (cos(πx/0.1) + 1) (cos(πy/0.4) + 1), where η0 = 0.00075 is the
initial resistivity.

In absence of a reference solution, we compare our results to the ones presented
in [33]. The benchmark results are obtained on a 2048 × 4096 high resolution
mesh, while we use a 512× 512 mesh (corresponding to a refinement level L = 9),
employing a WENO scheme with Lax-Friedrich flux, a second order TVD Runge-
Kutta time scheme and a damping approach at the boundaries.
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In the presented simulations we use the final time t = 2.5, the adiabatic
constant γ = 5/3, the parabolic-hyperbolic correction parameter αp = 0.4, the
Courant number ν = 0.4, the threshold parameter ε = 0.0005, and Neumann
boundary conditions in all directions.

The cuts at y = 0.5 are presented for the variables ρ, uy, in Figure 17, for the
interval [−0.2, 0, 2]. These cuts are similar between each other, however we can
find some differences in the solutions, which can be attributed to the resolution
or the chosen numerical scheme. High resolution can increase the accuracy of the
numerical solution, however, the solution obtained at L = 9 with the CARMEN–
MHD code already presents the expected structures.

Fig. 17 Cuts in variables p, uy , at t = 2.5 and L = 9, obtained with non-constant resistive
CARMEN–MHD with an adaptive simulation using ε0 = 0.005 (dotted); and the reference
solution presented in [33, p. 1630, Fig. 11](solid line).
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The variables Bx and Bz obtained with the CARMEN–MHD code are shown
in Figure 18. The reconnection structure occurs well defined and is present in
the computational domain in each variable. Neither numerical instabilities nor
oscillations are observed during the simulation.

The adaptive approach needs 55% of the cells over time for this simulation,
leading to a 40% reduction in CPU time. We found that the threshold parameter
ε = 0.005 is optimal for this case, since we can obtain a good compromise be-
tween compression and coherent representation of the physical structures. When
we choose a slightly larger value, e.g., ε = 0.008, the central structures of the
problem are not well represented anymore. It is also possible to use smaller val-
ues for ε, nevertheless this would lead to lower compression. The majority of the
refined cells in the adaptive mesh is located in the central region of the domain
(corresponding to darker symbols). The other regions present a coarser refinement
(corresponding to lighter symbols).

If we compare the structures present in the variables Bx and By with the
adaptive mesh, we can conclude that the mesh is efficiently adapted where large
discontinuities and diffusion regions are located. This shows that the adaptive
algorithm is indeed efficient to represent and identify automatically the structures
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of the problem. Moreover, we expect that higher resolution simulations will further
improve the adaptive representation and thus the gains in memory and CPU time
reduction.

Fig. 18 Resistive magnetic reconnection problem: adaptive simulations with ε = 0.005 for the
variables Bx, Bz , and the adaptive mesh at t = 2.5, and L = 9 .

Bx Bz adaptive mesh

In this adaptive simulation the physical behavior of the magnetic reconnection
phenomena is sustained. In particular, we verified that the velocity field is com-
patible with the magnetic reconnection settings, in which the velocity direction
initially points to the diffusion region and, after reconnection, its orientation does
change.

7 Conclusion

Fully adaptive numerical simulations using the CARMEN–MHD code were per-
formed in two and three space dimensions in order to verify the implementation
and its computational efficiency. The numerical method is based on a finite volume
discretization on Cartesian grids and uses an adaptive multiresolution approach
for introducing dynamically refined dyadic meshes. Our choice using Cartesian
geometries instead of general geometries is motivated by the fact that multires-
olution analysis is particularly attractive in this context. However generalization
are possible in future work considering e.g. mutliresolution on triangles proposed
by Cohen et al. [7] or more general tesselations borrowing techniques introduced
in the field of computer graphics, e.g. using hierarchy refinement procedures [6].
This would allow designing adaptive multiresolution solvers on unstructured grids
considering also complex geometries. Selected benchmarks were chosen in order
to comprehend different physical and numerical phenomena, and to ensure the
correct behavior of the code in capturing the intrinsic topology of each situation.
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The obtained results were then compared with the FLASH code which served as
reference.

Quantitative and qualitative comparisons of the numerical solutions were car-
ried out and their convergence towards reference solutions was shown. The ob-
tained results are coherent for both, adaptive and uniform grid approaches. The
physical restrictions of the MHD model are maintained in the context of the nu-
merical solution, contributing to the reliability of the results and its adequate
reproduction.

Depending on the benchmark the structures present in the solution of the
MHD model are located in different regions of the domain, varying according to
the chosen variable. This type of situation is challenging in the context of the
adaptivity, since the mesh must be adapted adequately. The adaptivity criteria
used here were shown to be efficient for identifying the structures of the solution,
even in cases where the structures do not present local features at all. We also
showed that the numerical simulations are stable and do not require additional
stabilization, e.g. adding numerical diffusion.

Moreover, we observed that it is possible to design an optimal mesh adaptivity,
by evaluating the relation between the threshold parameter and the approximation
errors. The optimal choice can decrease the CPU time, while ensuring the accu-
racy of the numerical solution. The adaptive multiresolution approach can increase
significantly the computational gains of the simulations, even in non-parallel sim-
ulations. Thereby, this approach is shown to be computationally efficient to deal
with the proposed MHD models.

Finally, let us mention that in the context of MHD, adaptive multiresolution
computations, especially in 3D, are recent and in this work we presented their
potential, by showing their efficiency using adaptive meshes, while preserving the
accuracy of the underlying discretization. We thus conclude that the verification
of the CARMEN–MHD code was successful and we provide its open source-code
and documentation for the community, in order to continue the research on MHD
simulations of other interesting and challenging physical problems.
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