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As a time-frequency tool, the Continuous Wavelet Transform (CWT) was applied in radar imaging to reveal that the reflectors' response varies as a function of frequency f and aspect angle θ (orientation of the wave vector). To do so, we constructed a hyperimage expressed as the squared modulus of the wavelet coefficients, allowing to access to the energy distribution of each reflector, in the f -θ plane.

Exploiting the hyperimage, our recent researches were devoted to the classification of the reflectors in function of theirs energy distributions with the objective of discriminating a type of target in the radar image. Althought acceptable results were obtained, the method is not reliable in some cases.

The purpose of this paper is to show that exploiting not only the modulus but also the argument of the wavelet coefficients, can improve the detection of a certain class of reflectors. Results are presented at the end of this article.

PRINCIPLE OF SAR IMAGING

The SAR (Synthetic Aperture Radar) imaging process consists in the formation of high resolution images. To do so, a moving radar emits pulses and collects the elementary signals reflected by scatterers. Once the overall SAR signal is stored, the high-resolution image is obtained by Fourierbased techniques [START_REF] Soumekh | Fourier Array Imaging[END_REF][START_REF] Soumekh | Synthetic Aperture Radar Signal Processing[END_REF][START_REF] Gough | Unified Framework for Modern Synthetic Aperture Imaging Algorithms[END_REF]. The SAR images analysed in this paper are formed with the radar RAMSES [START_REF] Boutry | ONERA Airborne SAR Facilities, 2nd International Airborne Remote Sensing Conference[END_REF] at the ONERA.

As shown in figure 1, the imaging plane is labelised using an xy Cartesian coordinate system with origin at a reference point O. We assume that the radar moves in a straight line and in a direction parallel to the cross-range direction. The radar position is described by the azimuth angle θ defined counter clockwise from the y direction. Moreover, we suppose far zone backscatter, and therefore we obtain plane-wave incidence on objects. In addition, we assume high-frequency radar measurements and consequently the scattering response of a man-made target is well approximated as a sum of responses from individual scatterers. If the radar measurements are carried out over a broad bandwidth and a wide angular window of observation, we have to consider a model that takes the scattering phenomenology into account. For a given polarisation, this scattering model is expressed as a summation of point scatterers multiplied by their respective frequency and aspect dependent complex amplitude σ i ( f , θ ):

H( k) = i=N ∑ i=1 σ i ( f , θ ) exp (-j2π k • r i ) (1) 
where k is the wave vector in the direction of the scattered field:

k = k x k y = k cos(θ ) k sin(θ )
where k = 2 f /c is the wave number with f the frequency and c the speed of light, θ corresponds to the observation aspect (see figure 1). The position vector is r = (x, y) T where x and y represent the slant-range and cross-range locations.

Referring to the Geometrical Theory of Diffraction (GTD) [START_REF] Potter | A Geometrical Theory of Diffraction (GTD)-Based Parametric Model for Radar Scattering[END_REF][START_REF] Potter | Attributed Scattering Centers for SAR ATR[END_REF], the aspect and frequency dependent re-

sponse |σ i ( f , θ )| = A i ( f , θ
) is a 2D-function determined by the geometry, composition and orientation of the scattering mechanism. Indeed, the GTD predicts that the response A i ( f , θ ) depends also on a set of parameters {γ i , L i , θ i } describing the shape, the length and the ori- entation of the scatterer, respectively. We can also suppose that the argument of σ i ( f , θ ) depends on frequency and aspect θ : arg [σ i ( f , θ )] = φ i ( f , θ ). A scatterer is said colored and anisotropic if its response |σ i | depends on the frequency f and the aspect θ , respectively. To highlight the coloration and the anisotropy of the scatterers, we suggested the use of a method based on the Continuous Wavelet Transform (CWT) that is a particular tool of the time-frequency analysis. 

CONSTRUCTION OF HYPERIMAGES USING THE CWT

To access to the energy distribution of the scatterers, in the f -θ plane, we constructed the concept of hyperimage which expresses as the squared modulus of the wavelet coefficients divided by the admissibility wavelet coefficient A φ [START_REF] Bertrand | Dimensionalized Wavelet Transform with Application to Radar Imaging[END_REF][START_REF] Bertrand | Frequency Directivity Scanning in Laboratory Radar Imaging[END_REF]:

I H ( r o , k o ) = 1 A φ W H ( r o , k o ) 2 (2) 
By noting φ the mother wavelet localised around (k, θ ) = (1, 0), the admissibility coefficient A φ is defined as:

A φ = |φ ( k)| 2 k 2 d k < ∞. (3) 
The wavelet coefficients W H ( r o , k o ) are introduced as the scalar product between the backscattering signal H and each wavelet Ψ r o , k o :

W H ( r o , k o ) = H( k) Ψ * r o , k o ( k) d k
where the family of wavelets Ψ r o , k o ( k) are generated from the mother wavelet φ ( k) by rotation R θ o , transla- tion r o and contraction with the scale factor 1/k o according to:

Ψ r o , k o ( k) = 1 k o e -2iπ k. r o φ 1 k o R -1 θ o k = 1 k o e -2iπ k. r o φ k k o , θ -θ o . (4) 
The wavelet coefficients W H ( r o , k o ) express literally as : 

W H ( r o , k o ) = 2π 0 dθ +∞ 0 k H(k, θ ) 1 k o e j2π k. r o φ * k k o , θ -θ o dk (5) 2 

IMPROVING THE DETECTION OF A REFLECTOR CLASS BY EXPLOITING THE FULL INFORMATION OF WAVELET COEFFICIENTS

The basic idea we proposed is to select among all the scatterers' energy distributions, one energy distribution susceptible to be characteristic of the type of object to be discriminated : this distribution becomes a reference one. Then, the purpose is to identify the scatterers in the image that have similar distributions to the reference one. We call object a structure with a unique and simple geometry (edge, cylinder, flat plate, ...). The algorithm consisted in selecting a pixel located at (x re f , y re f ) in the SAR image and correlating its corresponding distribution I(x re f , y re f ; f , θ ) ≡ I re f ( f , θ ) with the distributions I(x i , y j ; f , θ ) ≡ I i, j ( f , θ ) corresponding to the others pixels P i, j located at (x i , y j ) in the SAR image, respectively :

C re f (x i , y j ) = I re f ( f , θ ) I i, j ( f , θ ) d f dθ E re f E i, j (6) 
where E i, j and E re f are normalised terms, defined as :

E i, j = I(x i , y j ; f , θ ) 2 d f dθ . E re f = I(x re f , y re f ; f , θ ) 2 d f dθ .
In some SAR images that we analysed, this algorithm proved its efficiency to discriminate a type of object [START_REF] Tria | Imagerie Radar à Synthèse d'Ouverture Par Analyse en Ondelettes Continues Multidimensionnelles[END_REF][START_REF] Tria | The multidimensional continuous wavelet transform in SAR imaging, a tool for the object classification[END_REF][START_REF] Tria | Extracting Real Objets in Radar Imaging by Exploiting the Squared Modulus of the Continuous Wavelet Transform[END_REF]. Unfortunately, the above method is not reliable in some cases. Recalling that the energy distribution I(x, y; f , θ ) expresses from the squared modulus of the wavelet coefficients, the present work consists in exploiting not only the modulus but also the phase of the wavelet coefficients, which is also susceptible to characterise the reflectors. The full exploitation of wavelet coefficients was carried out within the framework of Polarimetry and Interferometry with good results in terms of target classification and target height estimation [START_REF] Colin | SAR Imaging Using The Multidimensional Continuous Wavelet Transform and Applications to Polarimetry and Interferometry[END_REF].

Consequently, in order to improve the object extraction, the function in equation ( 6) is replaced by :

C re f (x i , y j ) = W re f ( f , θ ) W * i, j ( f , θ ) d f dθ E re f E i, j (7) 
where E i, j and E re f are defined as :

E i, j = W (x i , y j ; f , θ ) 2 d f dθ . E re f = W (x re f , y re f ; f , θ ) 2 d f dθ .

RESULTS

The analysed SAR image is composed of a warehouse : Here, our objective is to show that making correlation between the wavelet coefficients (see equation [START_REF] Bertrand | Dimensionalized Wavelet Transform with Application to Radar Imaging[END_REF]) and a reference one, can be more efficient than correlating only the modulus of them with a reference one (see equation ( 6)) in terms of object extraction. In order to extract the lateral buildings, we select a pixel located on one lateral building and consider its corresponding wavelet coefficient as the reference one. The figure 3 (a) shows the location of the reference pixel P re f located at (x re f , y re f ) and illustrates the corresponding wavelet coefficient W (x re f , y re f ; f , θ ) (represented in modulus and phase). The figures 3 (b) and 3 (c) illustrate the correlation map corresponding to the reference pixel and resulting from equation ( 6) and equation [START_REF] Bertrand | Dimensionalized Wavelet Transform with Application to Radar Imaging[END_REF], respectively : we can notice that the the lateral buildings are extracted better in the figure 3 (c) than in the figure 3 (b). Precisely, two kind of improvements are obtained with the exploitation of the full information of wavelet coefficients : first, more reflectors composing the lateral buildings are detected, especially these ones localised on the left-hand buildings (see figures 3 (c) and 3 (d)); secondly, we improve accuracy in the localization of these reflectors (see figures 3 (c) and 3 (d)).

CONCLUSION AND PERSPECTIVES

By considering not only the modulus but also the argument of the wavelet coefficients, we obtain a better characterisation of each reflector. By analysing some reflectors localised on the lateral buildings, we observe that the corresponding wavelet coefficients present some similarities especially in phase. These observations lead us to correlate the wavelet coefficients for improving the detection of the reflectors belonging to the lateral buildings. Comparing with the method exploiting only the squared modulus of the wavelets coefficients, we notice that the extraction of the lateral buildings is improved. Moreover, the method proposed in this paper seems to be robust to noise : thorough studies in simulation have to be made to confirm the robustness to noise.

As perspectives, we can propose to apply this new method to other SAR images in order to see if the targets composing these images can be successfully extracted. Again, a comparison with the method involving the squared modulus of the wavelet coefficients must be envisaged. The reference wavelet coefficient can be obtained leaning on a priori information concerning the object to be extracted; for example, the theory of diffraction provides frequency and aspect dependent responses of canonical objects (flat plate, cylinder, edge, ...). In addition, the method can be easily applied to others 1-D nonstationary physical signals (radar, sonar, seismic, acoustic, sound, ... ) with the aim of classifying the different sources. Finally, separation source methods could be applied to SAR signals and compared with the previous wavelet based-algorithm in terms of target extraction. 
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 1 Figure 1: Illustration of a scatterer irradiated at two different aspect angles (i.e. two different positions of the moving radar) in SAR imaging.
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 1 Interpretation of the hyperimage I( r, k)Let us rewrite I( r, k) ≡ I(x, y; f , θ ). For each reflector located at r o = (x o , y o ), we can extract its energy distribution I(x o , y o ; f , θ ), in the f -θ plane. Examples of energy distribution corresponding to real target reflectors can be found in[START_REF] Ovarlez | Analysis of SAR Images by Multidimensional Wavelet Transform[END_REF][START_REF] Tria | SAR imaging using multidimensional continuous wavelet transform[END_REF][START_REF] Tria | Imagerie Radar à Synthèse d'Ouverture Par Analyse en Ondelettes Continues Multidimensionnelles[END_REF].

  lateral buildings are attached to a big one on both sides (see figures 2 (a) and 2 (b)). In the figure2(c), we select some pixels P o located at (x o , y o ) on the lateral buildings and we illustrate the corresponding wavelet coefficients W (x o , y o ; f , θ ) (represented in modulus and phase), in the f -θ plane : we can observe that these wavelet coefficients present some similarities especially in phase. Wavelet coefficients (represented in modulus and phase) corresponding to some pixels located on the lateral buildings.

Figure 2 :

 2 Figure 2: We reveal that the wavelet coefficients corresponding to the analysed pixels present some similarities (especially in phase).

  Choice of the reference pixel P re f located at (x re f , y re f ) on one lateral building and representation of W (x re f , y re f ; f , θ ) in modulus and phase. Correlation between the energy distributions and the reference one I re f . (c) Correlation between the wavelet coefficients and the reference one W re f . Cross-section (at x o = 4.3 m) of the correlation map : five reflectors belonging to one lateral building are clearly detected by making correlation between the wavelet coefficients and W re f .
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 3 Figure 3: Improvement of the lateral buildings extraction by correlating the wavelet coefficients with W re f .