Gilad Dar 
  
Giorgio Di 
  
Osnat Keren 
  
Nonlinear Code-based Low-Overhead Fine-Grained Control Flow Checking

Keywords: Embedded Security, Control Flow Checking, Non-Linear Codes, Signature, Countermeasures

A hardware-based control flow monitoring technique enables the detection of errors in both the control flow and the instruction stream executed on a processor. However, as shown in recent publications, these techniques fail to detect malicious carefully-tuned manipulations of the instruction stream in a basic block. This paper presents a non-linear encoder and checker that can cope with this weakness. It is a MAC based control flow checker that has the advantage of working with basic blocks of variable length, can detect every error, and performs the computation in real-time. The architecture can easily be modified to support different signature size and error masking probabilities.

I. INTRODUCTION

Dependability is an important characteristic of modern computing systems. The hardware components of a system can be affected by faults deriving from different root causes such as environmental perturbations (e.g., radiation, electromagnetic interference) or malicious attacks (e.g., fault attacks, software modification or replacement).

Many techniques have been proposed to cope with transient, permanent and malicious fault. These techniques for reliability improvement and fault tolerance target both the hardware and the software, and rely on different forms of redundancy. Among them, Control Flow Checking (CFC) makes it possible to cover faults affecting storing elements containing the executable program, as well as all the hardware components handling the program itself and its flow [START_REF] Shrivastava | Quantitative analysis of control flow checking mechanisms for soft errors[END_REF][START_REF] Benso | A watchdog processor to detect data and control flow errors[END_REF]. It can also cope with the effects of a malicious attacker who tries either to bypass security checks or retrieves secret information by fault injection [START_REF] Chaudhari | A framework for low overhead hardware based runtime control flow error detection and recovery[END_REF][START_REF] Abraham | Control flow deviation detection for software security[END_REF].

Software based CFC solutions that modify the program rely on the assumption that the binary code stored in memory is not being maliciously tampered. Thus, these solutions cannot provide security against fault injection attacks [START_REF] De Clercq | A survey of hardware-based control flow integrity (CFI)[END_REF]. In contrast, hardware-based CFC solutions, such as [START_REF] Clercq | Sofia: Software and control flow integrity architecture[END_REF] can detect malicious code and data tampering at run-time.

There are two types of hardware-based CFC policies: fine grained and coarse grained [START_REF] De Clercq | A survey of hardware-based control flow integrity (CFI)[END_REF]. A fine grained CFC policy allows control flow along the valid edges of the Control Flow Graph (CFG), whereas a coarse grain policy relaxes this restriction. A CFG makes it possible to model the normal program behavior of a code that is not selfmodifying or generated on the fly as a walk on a static graph. The nodes in this graph are sequences of non-branching instructions (also called basic blocks) with a single entry point at the first instruction and a single exit point at the last instruction. The edges of the graph represent jumps, branches and returns. In [START_REF] Arora | Hardwareassisted run-time monitoring for secure program execution on embedded processors[END_REF] the authors distinguished between two levels of fine granularity: instruction integrity checking which aims to detect attacks which may not result in control flow This research was supported by the ISRAEL SCIENCE FOUNDATION (grant No. 1266/20) and by the IRS project CROCHET funded by the IDEX UGA * Institute of Engineering Univ. Grenoble Alpes violations, and instruction flow checking for detecting forward-edge and backward-edge flow violations between basic blocks.

In [START_REF] Werner | Protecting risc-v processors against physical attacks[END_REF] the authors suggested encrypting the instructions to detect changes in it. The instructions are decrypted by adding a stage to the pipeline, immediately before the instruction's decode stage, which required architectural modifications. The additional stage of the pipeline introduced an ≈ 9.1% total execution time overhead. At this point, it is important to note that tampering the flow of the program (i.e., its branches, jumps, calls and returns) can affect its behaviour tremendously. For that reason, the authenticity of the last instruction in a basic block must be verified as close as possible to its execution time, as the Signature Modeling approach suggests.

Signature Modeling is a fine-grained technique [START_REF] Mahmood | Concurrent error detection using watchdog processors-a survey[END_REF][START_REF] Wilken | Continuous signature monitoring: efficient concurrent-detection of processor control errors[END_REF][START_REF] Werner | Protecting the control flow of embedded processors against fault attacks[END_REF]. In Signature Modeling, basic blocks are accompanied by a signature, such as a Cyclic Redundancy Check (CRC) checksum or Hamming code, that are generated at run-time and then compared against a pre-computed signature which is stored in a tamper-resistant memory (e.g., the tamper-resistant RAM presented in [START_REF] Xie | A logic resistive memory chip for embedded key storage with physical security[END_REF]). In the case of modification of any bit belonging to that portion of the code, the detection code deviates from the expected signature and reveals the fault. The two signatures can be compared during the execution of each instruction [START_REF] Wilken | Continuous signature monitoring: efficient concurrent-detection of processor control errors[END_REF][START_REF] Werner | Protecting the control flow of embedded processors against fault attacks[END_REF] or when a basic block ends [START_REF] Arora | Hardwareassisted run-time monitoring for secure program execution on embedded processors[END_REF][START_REF] Chaudhari | A framework for low overhead hardware based runtime control flow error detection and recovery[END_REF]. In [START_REF] Werner | Protecting the control flow of embedded processors against fault attacks[END_REF] a CRC-based signature monitor was integrated into the instruction fetch state to prevent the processing of instructions whose pre-calculated and current signatures do not match. However, a CRC-based signature monitor has a major drawback, it can be bypassed by a sophisticated attacker [START_REF] Cojocar | Exploiting correcting codes: On the effectiveness of ecc memory against rowhammer attacks[END_REF]. The authors in [START_REF] Di Natale | Hacking the control flow error detection mechanism[END_REF] proposed a technique to map one malicious software into another (protected by a control flow checking mechanism), without violating the structure of the latter; i.e., without being detected by a control flow monitoring technique. The basic principle involved the fine-tuning of the instructions in each basic block so that the generated signature corresponded to the one for the original program. In this paper we close this gap, we propose a finegrained MAC-based CFC which utilizes non-linear codes to protect against malicious modifications of the executed program. We assume the attacker knows the protected architecture details and its machine language, as well as the program and its control flow graph. The attacker can execute malicious physical manipulations on the device by injecting precise faults at run-time into the machine code stored in memory. We assume that the signature is stored in a tamper-resistant memory that cannot be tampered with.

The contribution of this paper is:

• A non-linear code based on a weakened version of the Karpovsky-Wang Algebraic Manipulation Detection (AMD) code with multiple random variables [START_REF] Wang | Algebraic manipulation detection codes and their applications for design of secure cryptographic devices[END_REF]. • A signature calculation method that works in parallel to the processor pipeline and does not require processor changes, nor code changes. • We introduce an upper bound on the probability that an error will not be detected. This bound applies to every basic block and hence obviates the need for simulations/experiments. • The area overhead of the signature calculation is relatively small (compared to methods preventing malicious attacks) and there is no need to partition the program into basic blocks of equal length as required in [START_REF] Arora | Hardwareassisted run-time monitoring for secure program execution on embedded processors[END_REF]. This paper is organized as follows: Section II presents an overview 1 of existing CFC solutions, and details the architecture in which the proposed signature calculation can be used. Section III provides formal definitions and formulates the security metric we use to evaluate the effectiveness of the construction. Section IV presents the theoretical construction of the non-linear code and Section V describes its hardware implementation. Finally, we draw some conclusions in section VI.

II. CONTEXT

Historically, error-detection codes primarily targeted natural faults which are likely to cause a small number of bit-flips, randomly distributed. These codes are usually linear and hence have a small overall impact on the target system in terms of area overhead and the additional delays introduced for their calculation. However, they cannot cope with malicious attacks. For example, [START_REF] Werner | Protecting the control flow of embedded processors against fault attacks[END_REF], the so-called "derived signature" enables a checksum computation with zero latency. However, it utilizes systematic encoders of linear cyclic codes defined by generator polynomials over a finite field. Due to the linearity of the codes, the corresponding CFCs can only detect a (relatively) small number of errors, and they cannot detect attacks launched by sophisticated precise attackers.

Malicious attacks are handled better by non-linear methods; e.g., methods based on Message Authentication Codes (MAC). In MAC, the signature is calculated by resorting to secret information which also guarantees the authenticity of the data. MAC techniques that are based on a statically computed cryptographic hash of the instruction sequence in the basic block [START_REF] Fiskiran | Runtime execution monitoring (rem) to detect and prevent malicious code execution[END_REF] generally have high latency, because the monitor has to buffer the instruction stream corresponding to a basic block and only start to compute the hash when the block ends. In some hash algorithms the input is processed through several rounds and additional latency is accumulated. A few MAC based checkers ( [START_REF] Clercq | Sofia: Software and control flow integrity architecture[END_REF]) can compute the signature together with the execution of the program itself. Nevertheless, these solutions have certain limitations. In [START_REF] Clercq | Sofia: Software and control flow integrity architecture[END_REF] a Cipher Block Chaining-Message Authentication Code (CBC-MAC) algorithm with a 64-bit MAC length is used. Since CBC-MAC is only secure for messages of a fixed length, two block lengths of 5 and 6 instructions are supported only. In addition, its implementation has a critical path which is longer than the one of the processor, leading to a cycle overhead of 13.7% and a total execution time overhead of 110%. In [START_REF] Abdalsatir | Integrity checking of several program codes[END_REF] the authors use public-key cryptography to protect their code. The strength of the used cipher guarantees the security of the solution, however its cost (in hardware and timing overhead) is extremely high. In [START_REF] Danger | Ccfi-cache: A transparent and flexible hardware protection for code and control-flow integrity[END_REF] the authors implemented CCFI-cache; a dedicated tamper-resistant signature memory with the same properties as the instruction cache. Each signature consists of the hash value of the instructions and the meta-data of the basic block along with the meta-data itself (The number of instructions in the basic block and the address of the next basic blocks).Since the signature may occupied several entries in the CCFI-cache, in the case where the basic block is very short, it must be padded with nop instructions, so its size match the size of the signature. Similarly, short signatures must be padded with empty entries in the case of a long basic block. This lead to a program overhead of up to 30%.

Here, we introduce a MAC scheme that can be applied to every architecture where the CFC (or watchdog) is a standalone module that works in parallel with the main processor's pipeline (see the generic architecture in Fig. 1). The CFC is a co-processor that calculates the signatures of the basic blocks by fetching the instructions to be executed from the main bus, and then comparing the obtained signature with a predefined one. It does not modify the pipeline stages, does not add latency, and does not interfere with the program flow. The CFC communicates with the processor via the existing signals at its interface or within the pipeline. Namely, the current address and instruction on buses used by the processor during the Instruction Fetch (IF) phase, and the calculated address of the next instruction. For instance, the proposed approach can be easily integrated in recent solutions, such as [START_REF] Bresch | Trustflow-x: A practical framework for fine-grained controlflow integrity in critical systems[END_REF], where the checker is an independent module as the one shown in Fig. 2. The generic architecture we consider consists of four main blocks: a compact processing unit, a comparator, a control unit, and a tamper-resistant memory array. The tamperresistant memory is more expensive, but is only used for storing a small amount of information, not the whole program. The size of the tamper-resistant memory and its width depends on the number of basic blocks, their maximal size and the required security level.

In this paper we focus on the design of the computation module. We assume that:

• The control unit generates all the control signals for the computation module. This includes the generation of a reset signal that goes to the computation module at the beginning of a basic block and an indication that the basic block ends (due to a branch instruction or because it has reached its maximal size). • The control unit delivers the signature from the tamper-resistant memory to the computation module.

We also assume that:

• The profiling process as well as the program can be trusted.

• The content of the tamper-resistant memory is pre-computed from the control flow graph (see the process flow diagram in Fig. 1). The pre-computation of the signatures (i.e., the encoding of the basic blocks by using random vectors) can be trusted. • The process of loading the signatures into the tamper-resistant memory can be trusted. • To reduce the cost of the product, the main memory has no dedicated security protection whereas the CFC itself, including its tamper-resistant memory in which the signatures are stored, is not accessible to the attacker. • The attacker knows the original code, its profiling and its location in the main memory. • The attacker is able to tamper with the content of the main memory and is able to inject arbitrary or precise errors before the execution or at run-time; i.e., when the code is being fetched from the memory.

III. DEFINITIONS AND SECURITY METRIC

A. Basic blocks

A basic block is a piece of code made of one or several consecutive instructions without any jumps between them. A basic block starts when its address is the target of a jump instruction of another basic block, and ends with a jump to another basic block (or a return), or if the successor instruction is a target of a jump instruction. For example, Example 1. The following code consists of 3 basic blocks:

. . . DEC R1 BNZ R1, L1 //end of BB1 INC R1 //end of BB2 L1: ADD R2, 2
//beginning of BB3 . . . The first basic block ends because of jump instruction and the second due to the fact that 'ADD R2, 2' is a target of a jump instruction.

The size of the BB is defined as the number of bytes occupied by all the instructions in that basic block. Its size can range from 32 (for a 32-bit architecture) to 8N bits (N bytes). If the original basic block is larger than N bytes, it should be divided into several basic blocks by inserting a branch instruction which jumps to the successor instruction.

The content of a basic block can be referred to as a binary string, or, as is common in coding theory, as a q-ary vector over an alphabet of size q = 2 r . When algebraic codes are used for signature computation, the symbols of the vectors are treated as elements in the finite field Fq = GF (q). The size of the alphabet determines both the effectiveness of the code and the implementation complexity. In general, a small r lowers the implementation cost of the multipliers over that field, whereas a large r increases the fault detection probability.

B. Signature structure

The signature S is a q-ary vector of length t + 1 symbols (i.e., (t + 1) • r bits). It has two parts: a "key" X and a tag f ; that is, S = (X, f (X, Y )). In this paper, the "key" is a non-zero vector, X = (xt, ...x1) ∈ X ⊆ F t q chosen at random by the manufacturer. Y is the content of a basic block Y = (y k , ...y1) ∈ F k q , and f = f (X, Y ) ∈ Fq is a single q-ary symbol that represents the tag. The effectiveness of the CFC is determined by the choice of the tag function.

The triplets (Y, X, f (X, Y )) form a block code. In our case, the encoder works off-line and thus can be implemented in software, whereas the decoder works on-line and thus must to be implemented in hardware.

Typically, block codes consist of codewords of fixed length. Systematic block codes are codes whose codewords have two parts: a fixed length information portion Y ∈ F k q and a fixed length redundant portion S. Our case is different; since Y represents a basic block its length depends on the number of instructions within a basic block and is not fixed. It is possible to work around this problem by adding jumps and NOPs to the program, but this in turn adds latency and increases the tamper-resistant memory size. In order to minimize the cost, the tag function f must be able to handle (in run-time) a q-ary vector Y of arbitrary length k,

k ≤ kmax = 8 • N r ,
without knowing its length beforehand.

C. Security metric

Recall that Y is stored in a regular memory. Thus, the attacker can alter it at will and even change its length. By contrast, the signature is not observable to the attacker and hence cannot be altered. Formally, denote by Ŷ = (ŷ k , ...ŷ1) the (possibly erroneous) sequence as read by the control flow checker. Note that the length of this sequence is k, 1 ≤ k ≤ kmax. k may be smaller, equal to, or greater than k. Consequently, the checker "sees" the tuple ( Ŷ , X, f (X, Y )) and has to decide whether this tuple is a codeword. Specifically, it computes f (X, Ŷ ) and raises a flag if the computed value differs from the one stored in the tamper-resistant memory; that is, if f (X, Ŷ ) = f (X, Y ). Therefore, we assess the effectiveness of this type of CFC as the probability Q that a precise attack will pass unnoticed. That is, Definition 1 (Security metric.). Let X be a uniformly distributed random vector over a subset X ⊆ F t q , then the error masking probability is

Q = max Y, Ŷ P rob f (X, Y ) = f (X, Ŷ ) | Y, Ŷ .
The function f (X, Y ) must be a nonlinear function in X and Y . Otherwise, if f can be written as f (X, Y ) = f1(Y ) + f2(X), an attacker who knows Y and can choose which bits to flip in order to replace it by Ŷ will choose a Ŷ for which f1(Y ) = f1( Ŷ ); such an attack will never be detected. The following example clarifies this statement:

Example 2. Let q = 2 and let Y be the basic block to be protected and denote by Y0 the vector Y padded with kmax -k zeros, Y0 = (0 kmax-k , Y ).

Let C be a linear code of length kmax + t + r b bits and dimension k b = kmax + t defined by a (systematic) generator matrix

G = I kmax×kmax 0 kmax×t A kmax×r b 0 t×kmax It×t Bt×r b . A codeword in C is a triplet (Y0, X, f (X, Y0)) = (Y0, X)G. The signature associated with Y is then S = (X, f (X, Y )) where the tag f (X, Y ) is (Y0, X) • (A, B) T .
It is reasonable to assume that the tag length is smaller than the maximal basic block length; i.e., kmax > r b ≥ rank(A). Therefore, for every Y there exists at least one vector Ŷ for which Y0A = Ŷ0A. ( Ŷ and Y may be of different lengths). Since for every X, we have Ŝ = (X, Ŷ0A + XB) = S an attacker can replace Y by this Ŷ without being detected.

Numerical examples of attacks that can never be detected by linear codes are presented in the Appendix (Examples 12,13).

IV. CONSTRUCTION

A. Formal description of the tag function

We use a tag function f based on weakened version of the Karpovsky-Wang Algebraic Manipulation Detection (AMD) codes [START_REF] Wang | Algebraic manipulation detection codes and their applications for design of secure cryptographic devices[END_REF]. The computational complexity of f is smaller than Karpovsky-Wang's code since it makes use of the fact that the signature cannot be tampered with. This fact enable us to construct a variable length code whose checker can work in parallel to the execution of the basic block; the computed signature is ready before the last instruction of the current basic block leaves the pipeline. This makes this CFC an add-on module because it does not change the throughput or latency of the system. It also enables a simple and smooth transition between basic blocks.

One of the AMD codes presented in [START_REF] Wang | Algebraic manipulation detection codes and their applications for design of secure cryptographic devices[END_REF] relies on the Generalized Reed-Muller (GRM) codes. A GRM code is a non-systematic fixedlength code; it is defined by three parameters, r, t and b [START_REF] Delsarte | On generalized reedmuller codes and their relatives[END_REF]: r -defines the size of the finite field (q = 2 r ) t -is the number of random q-ary symbols b -is the order of the code, b ≤ t(q -1) In a GRM code, an information word Y of length kmax determines the coefficients of a polynomial of order ≤ b. The corresponding GRM codeword is then a q-ary vector of length q t whose symbols are the values that this polynomial takes.

Our code is built on the GRM code in the sense that we use a specific subset of the GRM codewords, and define f (X, Y ) as the value of the X'th symbol in the GRM codeword associated with the information word Y0 = (0 kmax-k , Y ). In what follows we define the mapping we use between Y and the polynomial. We start with several definitions.

Let Zq be the set of integers {0, 1, ..., q-1}. Let w = (wt, ...w1) ∈ Z t q be a q-ary vector of length t that represents the number N (w) = t j=1 wjq j-1 in radix q. When it is clear from the context, we refer to a vector w by its value N (w).

Define Ω b to be an ordered set of size kmax of vectors whose sum is smaller or equal to b. That is,

Ω b = {wi = (wi,t, ...wi,1) ∈ Z t q : 0 < t j=1 wi,j ≤ b} kmax i=1 .
In addition, we require that the numbers associated with the vectors in Ω b be the smallest numbers that have this property. In other words, N (w1) = 1, N (wi) < N (wi+1) and there is no other vector, say ŵ / ∈ Ω b such that N (wi) < N ( ŵ) < N (wi+1). 

                       - ( 0 
, 0, 1) (0, 0, 2) (0, 0, 3) . . . (0, 0, 7) (0, 0, 8) (0, 1, 0) (0, 1, 1) (0, 1, 2) (0, 1, 3) . . . (0, 1, 7)

- (0, 2, 0) (0, 2, 1) (0, 2, 2) (0, 2, 3) . . . - - . . . . . . . . . . . . . . . . . . . . . (6, 2, 0) - - - . . . - - (7, 0, 0) (7, 0, 1) - - . . . - - (7, 1, 0) - - - . . . - - (8, 0, 0) - - - . . . - -                       
For example, w56 = (1, 1, 3) and

N (w56) = 1 • (2 8 ) 2 + 1 • (2 8 ) 1 + 3 • (2 8 ) 0 = 65795.
Construction 1 (The tag function f ). Let Y be a q-ary vector of length k ≤ kmax. Denote by X w the product term

X w = x w t t • • • x w 2 2 • x w 1 1
, where computations are performed over Fq. A polynomial based nonlinear signature of Y is a binary vector of size (t+1)•r bits isomorphic to the vector

S = (X, f (X, Y )) ∈ F t+1 q where f (X, Y ) = k i=1 yiX w i , (1) 
and wi ∈ Ω b Note that f (X, Y ) = f (X, Y0) is the X'th symbol in a GRM codeword c = (f (0, Y0), f (1, Y0), . . . , f (q t -1, Y0))
associated with the information symbol Y0 = (0 kmax-k , Y ). A signature is a binary vector of length 32 of the form S = (X = (x1, x2, x3), f (X, Y )) where x1, x2, x3 and f are 8 bit vectors that represent elements from the finite field F 2 8 . The function f for k = 3 is f (X, Y ) = y1X (0,0,1) + y1X (0,0,2) + y1X (0,0,3) = y1x1 + y1x 2 1 + y1x 3 1 , whereas for k = kmax it is f (X, Y ) = y1X (0,0,1) + y2X (0,0,2) + ...y8X (0,0,8) + y9X (0,1,0) + y10X (0,1,1) + ...y16X (0,1,7) + . . . y159X (6,0,1) + y160X (6,1,0) + y161X (7,0,0) = y1x1 + y2x 2 1 + ...y8x 8 1 + y9x2 + y10x2x1 + ...y16x2x 7 1 + . . .

y159x 6 3 x1 + y160x 6 3 x2 + y161x 7 3 .

B. The effectiveness of the CFC

It is important to note that the triplet (Y, X, f (X, Y )) is a codeword in an error detecting code; it has no error correction capabilities. Thus, the decoder has no error-recovery mechanism. This serves to avoid scenarios in which an attacker can manipulate the system and make the decoder conceal the attack by "correcting" an erroneous basic block into a legal but different basic block. Example 13 in the Appendix shows how simple it is to manipulate a system when the error correction mechanism is activated.

The following theorem provides an upper bound on the probability that the CFC will not detect a tampered-with basic block. The bound applies to all basic blocks regardless of their length and content and therefore obviates the need for experiments/simulations. Theorem 1. Let X be a random vector that is uniformly distributed over X ⊆ F t q . The probability that a GRM based signature will not detect a tampered sequence is

Q ≤ bq t-1 |X | .
Proof. Let Y be a q-ary vector of length k that represents the correct sequence, and denote by Ŷ the q-ary vector of length k that represents the tampered sequence. The two sequences may be of different lengths, i.e., k = k. Notice that the expansion of Y and Ŷ into q-ary vectors of length kmax does not change the signature since f (X, Y ) = f (X, (0 kmax-k , Y )) and f (X, Ŷ ) = f (X, (0 kmax-k , Ŷ )). Thus, without loss of generality, we assume that both vectors are of size kmax. This enables us to represent Ŷ as

Ŷ = Y + E 4
where Y, Ŷ and E are vectors in F kmax q . E is defined as the difference between the two sequences and hence can be treated as an additive error vector. The error masking probability is then

Q = max E∈F kmax q \{0} Q(E).
The error E is detected if the computed signature of Ŷ differs from the signature of Y . In other words, the attack is undetected if

f (Y, X) = f (Y + E, X). Define, gE(X) = f (Y, X) -f (Y + E, X) = = k i=1 yiX w i - k i=1 (yi + ei)X w i = k i=1 eiX w i . (2) 
Then, a nonzero E is undetected if X is a root of the polynomial gE. This polynomial is associated with a q-ary codeword c of length q t in the generalized Reed-Muller (GRM) code. That is, c = (gE(0), gE(1), ..., gE(q t -1)) = 0 q t . Since the GRM is a linear code of minimum distance d = (q -b)q t-1 , every nonzero codeword c has a minimal weight d. That is, gE has at most q t -d roots. Hence, for a uniformly chosen non-zero vector X ∈ X , the probability that tampering will go undetected is ) t = 2 24 , the probability that an attack will be masked is approximately 2 -5 . Note that another way to construct a control flow checker for N = 161 bytes is by taking a larger r; i.e., r = 16, t = 1 and b = N/2 = 81. In this case, the signature is a binary vector of length (1+1)•16 bits, and f is a polynomial of a single variable, f (X, Y ) = y1x + y2x 2 + • • • + y81x 81 . Here, the computation is performed in the (larger) field F 2 16 ; hence, the implementation cost is larger, but the probability that an attack will be masked becomes significantly smaller ( ≈ 2 -9 ).

Q(E) ≤ q t -d |X | = bq t-1 |X | .
Table II shows several constructions for different block and signature sizes. The first column lists the length of the maximal sequence (in bytes), the probability Q that an attack will be masked with

X1 = {X = (xt, . . . , x1) : xi = 0 ∀i} ⊂ F t q
and with X2 = F t q , in the second and third columns, respectively. The signature size (in bits) is appears in the fourth column, and the GRM parameters, r, t and b are given in columns 5-7.

The analysis of the error masking probability Q is a worst case analysis. The error masking probability can be smaller when the gE is of low degree. The following example illustrates this statement: Example 6. Assume X = (x3, x2, x1) ∈ X , and let

gE = e1x1 + e2x 2 1 + e3x 3 1 x2
. For a given (x3, x2 = 0) pair, gE is a polynomial of degree 3, and for pairs (x3, x2 = 0) it is of degree 2. Hence, gE has at most (3q(q -1) + 2q) roots. The probability that this error is masked is:

Q(E) ≤ q(3q -1) |X | < 8q 2 |X | .

V. CFC DESIGN FOR A 32-BIT SINGLE-PIPELINE PROCESSOR WITH A 32-BIT SIGNATURE

In this section we detail the design of a CFC protecting a singlepipeline processor with a 32 bit ISA from malicious attacks. We assume that the pre-computed signatures are stored in a tamperresistant memory. We start by describing the considerations that underlie the choice of design parameters, then describe the architecture of the computational module and elaborate on the structure of each of its blocks, with a focus on the correctness of the implementation rather than its efficiency. Finally, we describe the architectural changes needed to make it an effective real-time CFC.

A. Design parameters

All the code parameters are linked: as we saw in the previous section, the triplet t, b and r affects N , the code's error masking probability Q, and the signature size. In what follows, we describe the design considerations that led to the choice of N and r, which in turn determine parameters b and t for the selected processor and the 32-bit signature.

1) The maximal basic block length N : The parameter N represents the maximal basic block length (in bytes) that can be protected by the code. Since any basic block can be split into several basic blocks of smaller length, it is assumed that the encoder and the checker "see" basic blocks of length smaller or equal to N .

Note that splitting a basic block larger than N -bytes into smaller basic blocks requires additional rows in the signature memory; hence, the maximal basic block size cannot be too small. On the other hand, a large N may increase the time between the execution of a tampered instruction and its detection. Therefore, N cannot be too large either.

The basic block size, along with the execution of a jump instruction, indicates the end of a basic block. To cope with a case where a basic block ends with a label (see Example 1), we can keep the size of the basic block in the tamper-resistant memory, as part of the signature, or insert an unconditional jump to the next (labeled) instruction at the end of this basic block. Figure 3, taken from [START_REF] Natale | Nonlinear codes for control flow checking[END_REF], shows the distribution of BB sizes for some real Linux-based applications (ghostscript, head, hexdump, sort, tail) running on a x86 architecture. As can be seen, the vast majority of BBs have a number of bytes that is smaller than N = 164, thus confirming that the choice of these parameters is reasonable.

2) The tag size r: For simplicity, we work with bytes (r = 8).

That is, both the y's and the x's are elements of F2r (that is, isomorphic to F r 2 ). Table III shows several constructions for r = 8 (q = 2 8 ). The columns from left to right are the maximal basic block length (N ), the probability Q that an attack will be masked, the signature size in bits, and the GRM parameters, t and b.

In fact, r can take larger values (i.e., r > 8). In this case the x's should take a nonzero value from F2r and the eight bits of the y's should be padded with r -8 zeros. This may lead to constructions with a smaller error masking probability with a similar implementation cost. Table IV shows the error masking probability for several r values and for different (maximal) lengths of basic blocks. Note that the size of the signature, which is a function of r and t, takes values from 27 to 40. It is clear from the table that by adding a single bit to the signature, one can implement a checker with r = 11 and obtain a smaller error masking probability of 0.0064 instead of 0.0316.

Guided by these design considerations, we implemented a CFC with the following parameters (marked in bold in Table IV):

• Serial implementation (Section V-B) r = 8, t = 3, b = 8, N = 164, bytes q = 256, and error masking probability Q = 8 • q 2 /(q 3 -1) = 3.13%.

• Parallel implementation (Section V-F) r = 8, t = 3, b = 9, N = 144, bytes q = 256, and error masking probability Q = 9 • q 2 /(q 3 -1) = 3.5%.

B. Generic architecture of the Computation Module (CM)

A simplified block diagram of the Computation Module (CM) is shown in Fig. 4. It receives the random portion X of the current basic blockfrom the tamper-resistant memory and the content of the basic block as fetched from the instruction cache. The CM has its own clock, whose frequency depends on the number of y symbols processed each clock period. For simplicity, we first describe the operation of the CM when it receives one byte per clock and in Section V-F we show how to use this simplified design to process four bytes per clock. In the latter case, the system's clock is used as the CM's clock.

The CM consists of three modules: In what follows we elaborate on each module. A schematic block diagram of the (t, b) counters is depicted in Fig. 5 and its formal description is given in Alg. 1.

• A (t,
The counter can be viewed as a radix q = 2 r ripple counter. For example, for t = 3, r = 8, b = 8, if the current vector w is (w3 = 5, w2 = 0, w1 = 1), the next vector will be (5, 0, 2). However, it differs from a conventional t-digit counter in that a conventional counter has a global reset/preset signal that initializes (simultaneously) all the digits to a predefined value, whereas in our case the counter has t local reset and increment signals, resetj and incj ( Alg.1, Line 11). Thus it can increment its upper part, e.g., (wt, . . . , wj+1), and reset its lower part (wj, . . . , w1), see Alg.1, Lines 7-10. For example, (4, 2, 2) will be followed by wi+1 = (4, 3, 0), wi+2 = (4, 3, 1) wi+3 = (4, 4, 0). 1: (Initialization step) Set i = 1.

2: (Initialization step) Set w i = (0, 0, . . . , 0, 1).

3: while the basic block has not ended, do 4:

inc 1 := ( t j=1 w i,j < b) 5: 
reset 1 := ¬inc 1 6:

for j = 1 : t do 7:

Update the value of the j'th digit w i+1,j :

if (reset j == 1) then w i+1,j := 0,

9:
if (reset j == 0) ∧ (inc j == 0) then w i+1,j := w i,j , 10:

if (reset j == 0) ∧ (inc j == 1) then w i+1,j := w i,j + 1,

11:

Generate the reset and increment signals for the (j + 1)'th digit: 12: reset j+1 := (reset j == 1) ∧ (w i,j == 0), 13: inc j+1 := (reset j == 1) ∧ (w i,j > 0).

14:

end for 15:

i = i + 1
// Virtual counter to simplify the analysis 16: end while Note that N (4, 2, 2) < N (4, 3, 0) < N (4, 3, 1).

Fig. 5-top shows a (t, b) composed of t sub-counters that work in parallel. Each sub-counter produces r bit vectors, dubbed 'digit'. Each sub-counter has its own reset and increment signals that are generated by the preceding sub-counter (Alg.1, Lines 11-13). The first sub-counter is controlled by the b comparator (Alg.1, Lines 4-5). The bottom figure shows a detailed scheme of a sub-counter. At each cycle, if the increment signal is raised, the sub-counter increments its value by 1 (Alg.1, Line 10). The first sub-counter, cnt1, is set to 1 on a global reset (Alg.1, Line 2). All the other sub-counters can be set to zero by either external reset (Line 2) or by a reset from the preceding sub-counter (Line 12). Theorem 2. For b < q, Alg. 1 generates all the vectors in Ω b in increasing order.

The proof of this theorem is given in the Appendix.

D. Product term computation module

This block computes the product term Pi = X w i . The schematics of this module are shown in Fig 6 . Alg. 2 explains how it operates and the associated theorem proves its correctness.

The block consists of one finite field multiplier and t "shadow" registers, where each register Rj holds a different product. Recall that the product term computation module does not "see" the value of wi, and thus has to figure out how to compute the current product Pi by analyzing the t bits of the inc vector. Denote by j + the largest index for which incj = 1 (Alg.2, Line 3); the i'th product term is computed by multiplying the value stored in the (j + )'th shadow register by x j + (Alg.2, Line 4). Then, the value of the first shadow registers, R1, . . . R j + is updated with the new product Pi (Line 5). Find the largest index j + for which inc j + == 1.

4:

Compute P i := R j + • x j + .

5:

for j = 1 : j + do 6:

Update the register with the current product term: R j := P i , load j := 1.

7:

end for 8:

i = i + 1
// Virtual counter to simplify the analysis 9: end while V shows the content of the shadow registers over time.

E. Polynomial Evaluation module

The polynomial f (Y, X) can evaluated at the same time as the generation of the vectors in Ω b . As described at Fig. 7, it consists of a multiplier and an adder. The computed Pi is multiplied by the corresponding yi and the result is added to the content of the register that holds the sum of the products computed so far.

F. Concurrent CFC implementation

A schematic block diagram of the checker is depicted in Fig 8 .  Every clock cycle, 32 bits are read from the memory; therefore, at every clock cycle, 4 = 32/r q-ary symbols, yi, yi+1, . . . yi+3, enter the checker. As shown in the figure, there are four different (t, b) counters: the j'th counter has tj digits with design parameter bj. Each counter can have its own initialization value (or values).

The output of the j'th counter at time i, wi,j, enters a product term computation module that generates the product Pi,j where Pi,j = X w i,j j (X \ Xj) v j . Here, Xj ⊆ X is the predefined tj q-ary random variables allocated to the j'th counter, (X \ Xj) are the remaining variables, and vj ∈ Z t-t j is a predefined integer vector whose L 1 norm is equal to or smaller than b -bj.

The polynomial evaluation module in Fig. 8 computes the sum 4 j=1 yi+j-1Pi,j and adds it to the sum accumulated so far.

( . . . inc (0,0,1) (0,0,1) (0,0,1) . . . (0,1,0) (0,0,1) (0,0,1) . . . (0,1,0) (1,0,0) (0,0,1) (0,0,1) . . . (0,0,1) (0,0,1) . . . 

R1

G. Operation

Consistent with Theorem 1, every error will be detected with a probability of at least (1 -Q) = 96.87%. In fact, for a given pair consisting of a basic block and a tampered-with block the exact probability that the CFC will not detect the error can be calculated, following the proof of the theorem.

In the Appendix we provide four examples that illustrating how the CFC works and how it detects an error:

• Example 8 shows how the CFC works when the tag is calculated in an error-free scenario. • Example 9 shows a case where two instructions are erroneous.

• Examples 10 and 11 show the tag calculation when the attacker changes the size of a basic block.

H. Implementation cost

The coding scheme presented in this section was implemented for the chosen parameters. We synthesized the circuit by using a 28nm CMOS technology. The results of the synthesis led to an area occupancy of about 1700 Gate Equivalents (GEs). In order to compare our solution to existing ones, we calculated (when possible) the area of the other solutions in GEs. The values we obtained are sensitive to errors since not all the technological details are provided (nor units in some cases). For instance, in [START_REF] Clercq | Sofia: Software and control flow integrity architecture[END_REF], the sizes are not explicitly calculated. However, they declare a 30% area overhead w.r.t. Leon3. Leon3 implementations range from 300K to 450K GE, thus leading to a rough approximation of at least 90K GEs for their implementation. Table VIII presents the comparison to the other works discussed in this paper. As can been seen, our solution has the smallest overhead while guaranteeing a high level of security. Concerning the impact in terms of speed, the circuit can work at more than 1 GHz when working at 1.3V, thus confirming the possibility to run in parallel with modern processors without incurring in additional delay. It is important to note that we did not considered the impact of the tamper-resistant memory in this analysis. We have assumed that such a memory is available and can be easily integrated into the system. Example of existing tamper-resistant non-volatile memories are proposed in [START_REF] Rangarajan | Smart: A secure magnetoelectric antiferromagnetbased tamper-proof non-volatile memory[END_REF] and [23].

VI. CONCLUSION

This paper presents a non-linear encoder and checker that can be used in every Control Flow Checking mechanism. It suggests a way to design an add-on, low overhead, fine-grained checker with no need for architectural changes. Similar to other code-based solutions, it has the advantages of not introducing additional latency, has low overhead and is able to protect basic blocks of variable length. However, in contrast to existing code-based solutions, it employs non-linear codes. In this sense, it guarantees the high level of security of the MAC-based system, without introducing high area penalties. As in every MAC-based solution, the code integrates a secret part that must be stored (together with the pre-calculated signatures) in a tamperresistant memory. 

VII. APPENDIX

A. Proof of Theorem 2

First we show that each generated vector is a member of Ω b . The proof is by induction. Clearly, w1 ∈ Ω b . Assume that wi ∈ Ω b . If the sum of the digits of wi is smaller than b (Alg. 1 line 4), the value of the least significant digit wi+1,1 will be incremented by one (line 10). Consequently, the reset2 and inc2 signals of the second digit will be set to zero (line 12-13) and hence the second digit will keep its value (line 9). The same applies to all the other digits, and hence wi+1,j = wi,j for all j > 1, and therefore, t j=1 wi+1,j = t j=1 wi,j + 1 ≤ b. On the other hand, if the sum of the digits of wi equals b then inc1 = 0 and reset1 = 1. Denote by j * the index of the first digit that carries a nonzero value. That is, wi,j = 0 for all 1 ≤ j < j * and wi,j * ≥ 1. From line 12, all the first j * -1 digits that carry a zero have resetj = 1 and hence will remain zero (line 8). In addition, wi+1,j * will be set to zero since resetj * = 1, and the following digit that will have resetj * +1 = 0 and incj * +1 = 1 will be incremented by one (line 10). Therefore we have wi+1,j * + wi+1,j * +1 = 0 + (1 + wi,j * +1) ≤ wi,j * + wi,j * +1.

Since resetj * +1 = 0 all the following digits, j > j * +1, will have resetj = incj = Hence, they will keep their value (line 9). Therefore, Next, we show that all the elements of Ω b are generated. For this, it is sufficient to show that N (wi) < N (wi+1) [START_REF] Clercq | Sofia: Software and control flow integrity architecture[END_REF] and that there is no legal vector, say ŵ, in Ω b such that N (wi) < N ( ŵ) < N (wi+1).

Note that if the sum of the digits of wi is smaller than b, then N (wi+1) = N (wi) + 1 and Eq. 6 is fulfilled. Otherwise, N (wi+1) -N (wi) = q j * ((wi+1,j * + qwi+1,j * +1))

-q j * ((wi,j * + qwi,j * +1)) = q j * (q -wi,j * ) > 0.

Assume now that there exists a legal vector ŵ in between wi+1 and wi. Then, ŵj * +1 ∈ {wi,j * +1, wi+1,j * +1}. If ŵj * +1 = wi,j * +1 then t j=1 ŵj > t j=1 wi,j = b is hence a contradiction (since ŵ cannot be a member of Ω b ). If ŵj * +1 = wi+1,j * +1 then j * j=1 ŵj < j * j=1 wi+1,j = 0 and this again is a contradiction since the sum of the first j * digits of ŵ cannot be negative.

B. Proof of Theorem 3

At the first time slot the registers R j + are initialized to carry the value 1. (In Section V-F, there are four sets of registers, where each set is initialized with a different predefined value.) Consider the i'th time slot, i > 1. Assume that the last time slot R j + was updated was at time p, p < i. At that time slot, the increment occurred at position j + p ≥ j + i and wp carried the value

wp =     
(wp,t, . . . , w p,j + p , 0, . . . 0, 0, j + i 0, . . . 0) f or j + p > j + i , (wp,t, . . . , w p,j + p , 0, 0, . . . 0) f or j + p = ji+ .

That is, at time slot i the register R j + i holds X wp . In the time slots between p and i, the value of the w vectors were in the range N (wp) < N (Ω) < N (wp) + q j + i because the counter generates an increasing series of numbers; namely, all the registers with indices smaller than j + i were changed, and the registers with indices greater or equal than j + i remained untouched. In other words, at time slot i, the wi vector is of the form wi = (wi-1,t, . . . , w i-1,j + i +1 , w i-1,j + i + 1, 0, . . . 0)

= wp + (0, . . . , 0, 1, 0 . . . 0).

Hence, Pi = x w j + i X wp = X w i and the block outputs the correct value.

C. Examples

In the following examples the computations were run over the finite field F 8 2 . We used the primitive polynomial π(x) = x 8 + x 4 + x 3 + x 2 + 1 to construct the field.

Example 8 (The error-free case). Consider the following consecutive basic block complied for an ARM architecture. add.w r2, r7, #16 subs r2, #8 bl 558 //end of BB1 movs r1, #1 bl 0 //end of BB2

The binary of BB1 is the following (3 × 32)-bit vector Y = (y12, . . . , y1) = ( 0xEB, 0x00, 0x00, 0x87, 0xE2, 0x52, 0x20, 0x08, 0xE2, 0x87, 0x20, 0x10 ).

  b) 4 10 20 35 56 84 120 165 b is the smallest integer for which the coding scheme can protect a sequence of maximal length kmax; i.e., b is the smallest integer for which kmax ≤ λ(t, b) -1 where λ(t, b) = t j=0 (-1) j t j t + b -jq b -jq .

Example 3 .

 3 Let t = 3, r = 8. The values λ(3, b) are given in Table I. For b = 8 the set Ω b consists of 164 vectors,

Example 4 . 8 =

 48 Let the maximal length of a sequence be N = 161 bytes. Assume we want to design a control flow checker whose signature is a binary vector of length 32 = (3 + 1) • 8; that is, r = 8 and t = 3. Then we have kmax = 8•161 161, and b = 8 is the smallest integer for which 3 + b b -1 = 164 ≥ kmax.

Example 5 .

 5 Consider the code in Example 4. The code has t = 3, b = 8 and r = 8, hence for |X | = (2 r

Figure 3 :

 3 Figure 3: Sizes of Basic Blocks taken from some real Linuxbased applications [21].

Figure 4 :

 4 Figure 4: Generic architecture of the computation module

Figure 5 :

 5 Figure 5: The (t, b) counter module: The top figure shows how the t sub-counters are connected to each other and the bottom figure shows a schematic design of a sub-counter.

Theorem 3 .Algorithm 2

 32 Algorithm 2 correctly computes Pi = X w i from the signals inc1, . . . inct.The proof of this theorem is given in the Appendix. Compute Product Term 1: (Initialization step) Set R j = 1 for all 1 ≤ j ≤ t. 2: while the basic block has not ended, do 3:

Figure 6 :Figure 7 :Example 7 .

 677 Figure6: Product term computation module. As described in Alg. 2, at each cycle the value of R j + is multiplied by x j + . The value of each register R 1 , ..., R j + is updated with the value of the product P .

Figure 8 :

 8 Figure 8: Control flow checker architecture for a 32-bit processor and r = 8.
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  = 0 + wi+1,j * + wi+1,j * +1 + wi+1 ∈ Ω b .

Table II :

 II Code parameters for signature size ≤ 32 bits

	max N Q with Q with Signature r t b
	(bytes)	X 1	X 2	size (bits)	
	156	0.0998 0.0938	30		6 4 6
	143	0.0640 0.0625	28		7 3 8
	164	0.0316 0.0313	32		8 3 8
	160	0.0127 0.0127	30	10 2 13
	370	0.1331 0.1250	30		6 4 8
	315	0.0880 0.0859	28		7 3 11
	261	0.0186 0.0186	30	10 2 19
	220	0.0352 0.0351	32		8 3 9
	535	0.1498 0.1406	30		6 4 9
	594	0.1120 0.1094	28		7 3 14
	527	0.1220 0.1211	24		8 2 31
	559	0.0514 0.0508	32		8 3 13
	522	0.0569 0.0566	27		9 2 29
	542	0.0274 0.0273	30	10 2 28
	1364	0.1997 0.1875	30		6 4 12
	1139	0.0672 0.0664	32		8 3 17
	1075	0.0391 0.0391	30	10 2 40
	Table III: Code parameters for r = 8
	max N	Q with	signature	t	b
	(bytes)	X 1	(bits)	
		62	0.0394	24	2	10
		69	0.0159	40	4	4
		83	0.0237	32	3	6
		135	0.0591	24	2	15
		220	0.0352	32	3	9
		164	0.0316	32	3	8
		209	0.0238	40	4	6
		275	0.0866	24	2	22
		285	0.0395	32	3	10
		329	0.0278	40	4	7

Table IV :

 IV Code parameters for r ≥ 8

	r	max N Q with signature t	b
		(bytes)	X 1	(bits)	
	8	220	0.0352	32	3 9
	8	164	0.0316	32	3 8
	8	209	0.0238	40	4 6
	9	133	0.0275	27	2 14
	9	133	0.0138	36	3 7
	10	130	0.0127	30	2 13
	10	148	0.0069	40	3 7
	11	143	0.0064	33	2 13
	12	135	0.0029	36	2 12

  b) counter. These counters are used for generating the tdigit vectors in Ω b . The inputs to this block are the CM clock and the global reset signals from the control unit. The current state of the counters w ∈ Ω b is used to compute internal control signals (incj and resetj, j = 1, . . . t) that determine its next state. The t-bit control signal inc = (inct, ..., inc1) is also used as input to the product term computation block (described next).• A product term generator. This block computes X w . The inputs to this block are the CM clock, the global reset signals from the control unit, the secret key -X, and the control signals from the counter block. The block consists of t r-bit registers dubbed R1, . . . Rt and a single finite field multiplier. Given these registers and the fact that the Ω b is an ordered set, X w can be computed without using w. That is, w is an internal variable of the counter/s. Thus, only t wires connect the counter and this block (instead of t • log2(b)).

• A polynomial evaluator. This block computes f (Y, X).

Table V :

 V The content of the shadow registers in Example 4

	i	1	2	3	. . .	9	10	11	. . .	44	45	46	47	. . .	54	55	. . .
	wi	(0,0,1)	(0,0,2)	(0,0,3)	. . .	(0,1,0)	(0,1,1)	(0,1,2)	. . .	(0,8,0)	(1,0,0)	(1,0,1)	(1,0,2)	. . .	(1,1,1)	(1,1,2)	

Four disjoint sets of w's are generated by the counters. Denote the sets as Ω (0) [START_REF] Mahmood | Concurrent error detection using watchdog processors-a survey[END_REF] , Ω (1) [START_REF] Mahmood | Concurrent error detection using watchdog processors-a survey[END_REF] , Ω (2) [START_REF] Mahmood | Concurrent error detection using watchdog processors-a survey[END_REF] and Ω (3) 9 . These sets satisfy Ω (j) [START_REF] Mahmood | Concurrent error detection using watchdog processors-a survey[END_REF] ∩ Ω (l) 9 = Φ for j = l, and | ∪j Ω (j) 9 | ≥ N . The signature value is then

where y4i+j,j is the j'th byte of the i'th instruction in a basic block that has k bytes, and wi,j is the i'th vector in the ordered set Ω (j) [START_REF] Mahmood | Concurrent error detection using watchdog processors-a survey[END_REF] . There are several ways to split Ω9 into four disjoint sets. One example is the following: 

9 | > 40. This implies that the maximal Basic Block must be smaller or equal to 4 • 36 = 144 bytes. This number is smaller than 164 which is the maximal basic block size that can be supported by an 8-bit architecture.

Recall that the four sets are generated by four counters that work in parallel. Table VI presents the parameters of these counters. For each counter, the table specifies the parameter vector (ti, bi), the maximal number of w's that it can generate and the form of the corresponding product. Table VII shows the operation of the four counters and the control signal they generate at different time slots. Note that the first counter starts from 1 whereas the other three start from zero.

Since N is determined by the size of the smallest counter (in our case Ω

(2) 9 ), we can use its saturation signal; i.e., its inc2 signal, to notify the control unit that the current basic block has ended.

It is important to note that the product terms that correspond to elements in Ω (0) 9 are of the form x 0 3 X ŵ where X = x2x1 and ŵ are the vectors associated with a smaller code with parameters r = 8, t = 2 and b = 9. Similarly, the product terms corresponding to elements in Ω (2) 9 are of the form x 2 3 X ŵ where the ŵ's are associated with code with parameters r = 8, t = 2, b = 7. Overall, a checker for this code will consist of four different encoders of smaller codes and will have to multiply each partial product X ŵ by a different power of x3 (see Fig. 8). Specifically, additional finite field multipliers are required to compute, for example, x 3 3 . N/A (requires multipliers of 36, 60, 90 bits) [START_REF] Fiskiran | Runtime execution monitoring (rem) to detect and prevent malicious code execution[END_REF] N/A (requires an AES cipher) [START_REF] Danger | Ccfi-cache: A transparent and flexible hardware protection for code and control-flow integrity[END_REF] N/A (requires an RSA cipher) [START_REF] Yumbul | On protecting cryptographic applications against fault attacks using residue codes[END_REF] 3500

Assume that the randomly chosen part attached to Y is

then the pre-computed tag is f (X, Y ) = 0x3C. In an error-free scenario, the checker recomputes the tag and sees that it equals the tag stored in the tamper-resistant memory. In this case, the checker works as follows:

When the previous basic block ends and BB1 begins the counters and registers are initialized to:

2 = x 3 3 . The first fetched instruction (0xE2, 0x87, 0x20, 0x10) is bought to the checker, and the four bytes are split between the four parallel units. The values at the output of the Polynomial Evaluation module are

The tag value at the end of the first cycle is 0x68.

At the beginning of the second cycle the values of the counters and registers are

2 = x3, (2, 7)-cnt (2) = (0, 1), R

(2)

2 = x 3 3 . In this cycle, the second instruction, (0xE2, 0x52, 0x20, 0x08), is fetched and the checker computes

That is, the value of the tag at the end of the second cycle; i.e., the tag accumulated so far, is 0x72.

Finally, in the third cycle, the last instruction of the basic block, (0xEB, 0x00, 0x00, 0x87) is bought to the checker; the values of the counters and registers are

2 = 1, (2, 8)-cnt (1) = (0, 2), R

After the third cycle the block ends; as expected, the computed tag 0x3C equals the pre-computed one.

Example 9 (An adversary tampering with the content of a basic block). Assume that the BB1 from Example 8 has been altered by an adversary that has injected bit-flips to obtain the following code (the tamperedwith parts are written in bold): add.w r2, r1, #16 add.w r3, r4, #1 bl 558 //end of BB1 movs r1, #1 bl 0 //end of BB2

The corresponding binary vector is Ŷ = ( Ŷ12, . . . , Ŷ1) = ( 0xEB, 0x00, 0x00, 0x87, 0xE2, 0x84, 0x30, 0x01, 0xE2, 0x81, 0x20, 0x10 ) (the differences between Y and Ŷ are marked in bold). The tag computation process is similar to the computation in Example 8. After the third instruction the computed tag which equals f (X, Ŷ ) = 0xB2 is compared with the tag stored in memory (0x3C). Since the tags differ, the checker signals that an error has been detected.

It is important to note that in this case the actual error masking probability Q(E) is smaller than the error masking probability of the code Q = 8 • 256 2 /(256 3 -1); since max{deg(f (X, Y ), deg(f (X, Ŷ )} = 3, at least 256 2 (256 -3) X's out of 256 3 are able to detect this code manipulation. In other words, the error masking probability for this specific error vector, E = ( 0x00, 0x00, 0x00, 0x00, 0x00, 0xD6, 0x10, 0x09, 0x00, 0x06, 0x00, 0x00 ) Now the checker will "see" a shorter vector Ŷ = (ŷ8, . . . , ŷ1) = ( 0xEB, 0x00, 0x00, 0x16, 0xE2, 0x87, 0x20, 0x10 )

and will check the signature at the end of the second cycle. The computed signature is

Hence, f (X, Ŷ ) = 0x7D = f (X, Y ), and the error is detected.

Similar to Example 9, max{deg(f (X, Y ), deg(f (X, Ŷ )} = 3. Consequently, at least 256 2 (256-3) X's out of 256 3 are able to detect this code manipulation. In other words, the error masking probability for this specific error vector, E = ( 0xEB, 0x00, 0x00, 0x87, 0x00, 0x52, 0x20, 0x1E, 0x00, 0x00, 0x00, 0x00 )

Example 11 (An adversary lengthening a basic block). Consider BB1 from Example 8. Assume that an adversary has lengthened this basic block by changing the branch instruction into a non-branch instruction. For example, assume that the tampered-with code becomes add.w r2, r7, #16 subs r2, #8 add.w r1, r1, #2 //end of the original BB1 bl 100 //end of the modified BB1 bl 0 //end of BB2

The checker will "see" the vector Ŷ = (ŷ16, . . . , ŷ1) = ( 0xEB, 0x00, 0x00, 0x14, 0xE2, 0x81, 0x10, 0x02, 0xE2, 0x52, 0x20, 0x08, 0xE2, 0x87, 0x20, 0x10 ).

The checker will compare the computed tag value after the fourth cycle. Since the first two instructions were not changed, the computed tag value in the first and second cycles are identical to the first two tags in Example 8. In other words, we have,

Since the computed tag f (X, Ŷ ) = f4(X, Ŷ ) = 0x3B differs from the tag read from the tamper-resistant memory, the error will be detected. Note that in this case 256 3 -4 • 256 2 X's out of 256 3 are able to detect this code manipulation. In other words, the error masking probability for this error E = ( 0xEB, 0x00, 0x00, 0x14, 0x09, 0x81, 0x10, 0x85, 0x00, 0x00, 0x00, 0x00 0x00, 0x00, 0x00, 0x00 ).

Example 12 (The weakness of linear codes). This example shows that a linear code; e.g., the code in [START_REF] Werner | Protecting the control flow of embedded processors against fault attacks[END_REF], will always have an error masking probability Q = 1. Furthermore, even the use of a random vector X masking the signature cannot solve the problem. Assume that a basic block is protected by a CRC32 code with the generator polynomial g(z) whose coefficients are G = 0x82F63B78 and a random mask X. Formally, let RY be the coefficients of the reminder polynomial rY (z) = Y (z)z 32 mod g(z), then the tag function is f (Y ) = RY ⊕ X.

Consider the basic block from Example 8, and let the (secret) random mask be X = 0xFFFFFFFF. The corresponding tag, f (Y ) = 0x47718DEF ⊕ X = 0xB88E7210 , is stored in a tamper-resistant memory. Assume that an adversary with the ability to inject precise errors injects the error vector E = ( 0x00, 0x00, 0x00, 0x07, 0xB7, 0x1B, 0xD0, 0x50, 0x00, 0x00, 0x00, 0x00 ).

. Then, the corresponding tampered code will be add.w r2, r1, #16 strbpl pc, [sb, #-0x58] bl 528 //end of BB1 movs r1, #1 bl 0 //end of BB2

For this error vector we have rY (z) = r Ŷ (z) for every random mask E. Since the calculated tag of the modified basic block, f ( Ŷ ), is identical to one stored in the memory, the error will never be detected ( Q(E) = 1). In fact, any error vector E which is a multiple of the generator polynomial, will be masked.

Example 13 (Error-recovery mechanism can help the adversary).

Throughout this paper, we assumed that the adversary has the ability to choose the error. In practice, it is hard to inject precise errors, and thus, a fault can yield a non-valid opcode . As we show next, a decoder with error correction capabilities that attempts to recover from this error and correct the opcode may cause security issues. Consider the basic block, Y , and the corresponding CRC32 tag, f (Y ), from Example 12. Assume that the adversary failed to inject the intended error E, and instead flipped the bits such that the actual error is E = ( 0x00, 0x00, 0x00, 0x07, 0xB1, 0x1B, 0xD0, 0x50, 0x00, 0x00, 0x00, 0x00 ).

. (the differences between E and E are marked in bold). In this case, the decoder finds out that the second instruction in the erroneous basic block, Ŷ , yields an invalid opcode. Consequently, the tuple ĉ = (Y + E , f (Y )) is not a valid codeword and the decoder activates the error correction mechanism. It decodes the erroneous word ĉ into a codeword c ∈ C for which the Hamming distance d(c , ĉ) is minimal. From the properties of the CRC32 code it follows that c is the codeword (Y + E, f (Y )) from Example 12. In other words, rather than correcting the basic block, the decoder helped the attacker to conduct a successful attack.