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Chapter 1

Introduction

In contrast to Fourier and Laplace transformations that were introduced to solve physical
problems, Mellin’s transformation arose in a mathematical context. In fact, the first occur-
rence of the transformation is found in a memoir by Riemann in which he used it to study the
famous Zeta function. References concerning this work and its further extension by M.Cahen
are given in [1]. However it is the Finnish mathematician R.H.Mellin (1854-1933) who was the
first to give a systematic formulation of the transformation and its inverse. Working in the
theory of special functions, he developed applications to the solution of the hypergeometric
differential equations and to the derivation of asymptotic expansions. The Mellin contribu-
tion gives a large place to the theory of analytic functions and relies essentially on Cauchy’s
theorem and the method of residues. A biography of R.H.Mellin including a sketch of his
works can be found in [2]. Actually, the Mellin transformation can also be placed in another
framework which, in some respects, conforms more closely to the original ideas of Riemann.
In this approach, the transformation is seen as a Fourier transformation on the multiplicative
group of positive real numbers (i.e. group of dilations) and its development parallels the
group-theoretical presentation of the usual Fourier transform [3, 4]. One of the merits of this
alternative presentation is to emphasize the fact that the Mellin transformation corresponds
to an isometry between Hilbert spaces of functions.
Besides its use in Mathematics, Mellin’s transformation has been applied in many different
areas of Physics and Engineering. Maybe the most famous application is the computation
of the solution of a potential problem in a wedge-shaped region where the unknown function
(e.g. temperature or electrostatic potential) is supposed to satisfy Laplace’s equation with
given boundary conditions on the edges. Another domain where Mellin’s transformation has
proved useful is the resolution of linear differential equations in x(d/dx) arising in electrical
engineering by a procedure analogous to Laplace’s. More recently, traditional applications
have been enlarged and new ones have emerged. A new impulse has been given to the compu-
tation of certain types of integrals by O.I.Marichev [5] who has extended the Mellin method
and devised a systematic procedure to make it practical. The alternative approach to Mellin’s
transformation involving the group of dilations has specific applications in signal analysis and
imaging techniques. Used in place of Fourier’s transform when scale invariance is more rel-
evant than shift invariance, Mellin’s transform suggests new formal treatments. Moreover,
a discretized form can be set up and allows the fast numerical computation of general ex-
pressions in which dilated functions appear, such as wavelet coefficients and time-frequency
transforms.
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The present chapter is divided into two parts that can be read independently. The first
part (section 2) deals with the introduction of the transformation as a holomorphic function
in the complex plane, in a manner analogous to what is done with Laplace’s transform. The
definition of the transform is given in section 2.1; its properties are described in detail and
illustrated by examples. Emphasis is put in section 2.1.6 on inversion procedures that are
essential for a practical use of the transform. The applications considered in this first part
(section 2.2) are all well-known: summation of series, computation of integrals depending on
a parameter, solution of differential equations and asymptotic expansions.
The second part (section 3), which is especially oriented towards signal analysis and imaging,
deals with the introduction of the Mellin transform from a systematic study of dilations. In
section 3.1, some notions of group theory are recalled in the special case of the group of positive
numbers (dilation group) and Mellin’s transformation is derived together with properties
relevant to the present setting. The discretization of the transformation is performed in
section 3.2. A choice of practical applications is then presented in section 3.3.
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Chapter 2

The classical approach and its
developments

2.1 Generalities on the transformation

2.1.1 Definition and relation to other transformations

Definition 2.1.1 Let f(t) be a function defined on the positive real axis 0 < t < ∞ . The
Mellin transformation M is the operation mapping the function f into the function F defined
on the complex plane by the relation:

M[f ; s] ≡ F (s) =
∫ ∞
0

f(t) ts−1 dt (2.1)

The function F (s) is called the Mellin transform of f . In general, the integral does exist
only for complex values of s = a + jb such that a1 < a < a2, where a1 and a2 depend on
the function f(t) to transform. This introduces what is called the strip of definition of the
Mellin transform that will be denoted by S(a1, a2). In some cases, this strip may extend to a
half-plane (a1 = −∞ or a2 = +∞) or to the whole complex s-plane (a1 = −∞ and a2 = +∞).

Example 2.1.1 Consider:
f(t) = H(t− t0) tz (2.2)

where H is Heaviside’s step function, t0 is a positive number and z is complex. The Mellin
transform of f is given by:

M[f ; s] =
∫ ∞
t0

tz+s−1 dt = − tz+s0

z + s
(2.3)

provided s is such that Re(s) < −Re(z). In this case the function F (s) is holomorphic in a
half-plane.

Example 2.1.2 The Mellin transform of the function

f(t) = e−pt p > 0 (2.4)
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is equal, by definition, to:

M[f ; s] =
∫ ∞
0

e−pt ts−1 dt (2.5)

Using the definition (see Table 3.1) of the Gamma function, we obtain:

M[f ; s] = p−sΓ(s) (2.6)

Recalling that the Gamma function is analytic in the region Re(s) > 0, we conclude that the
strip of holomorphy is a half-plane as in the first example.

Example 2.1.3 Consider the function

f(t) = (1 + t)−1 (2.7)

Its Mellin transform can be computed directly using the calculus of residues. But another
method consists in changing variables in (2.1) from t to x defined by:

t+ 1 =
1

1− x
, x =

t

t+ 1
, dx =

dt

(t+ 1)2
(2.8)

The transform of (2.7) is then expressed by

M[f ; s] =
∫ 1

0
xs−1(1− x)−s dx (2.9)

with the condition 0 < Re(s) < 1. This integral is known (Table 3.1) to define the beta
function B(s, 1 − s) which can also be written in terms of Gamma functions. The result is
given by the expression:

M[f ; s] = B(s, 1− s)
= Γ(s)Γ(1− s) (2.10)

which is analytic in the strip of existence of (2.9). An equivalent formula is obtained using a
property (Table 3.1) of the Gamma function:

M[f ; s] =
π

sinπs
(2.11)

valid in the same strip.

Relation to Laplace and Fourier transformations
Mellin’s transformation is closely related to an extended form of Laplace’s. The change of

variables defined by
t = e−x , dt = −e−x dx (2.12)

transforms the integral (2.1) into:

F (s) =
∫ ∞
−∞

f(e−x) e−sx dx (2.13)

After the change of function:
g(x) ≡ f(e−x) (2.14)
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one recognizes in (2.13) the two-sided Laplace L transform of g usually defined by:

L[g; s] =
∫ ∞
−∞

g(x) e−sx dx (2.15)

This can be written symbolically as:

M[f(t); s] = L[f(e−x); s] (2.16)

The occurrence of a strip of holomorphy for Mellin’s transform can be deduced directly
from this relation. The usual right-sided Laplace transform is analytic in a half-plane Re(s) >
σ1. In the same way, one can define a left-sided Laplace transform analytic in the region
Re(s) < σ2. If the two half-planes overlap, the region of holomorphy of the two-sided transform
is thus the strip σ1 < Re(s) < σ2 obtained as their intersection.

To obtain Fourier’s transform, write now s = a+ 2πjβ in (2.13):

F (s) =
∫ ∞
−∞

f(e−x) e−ax e−j2πβx dx (2.17)

The result is:
M[f(t); a+ j2πβ] = F [f(e−x) e−ax;β] (2.18)

where F represents the Fourier transformation defined by

F [f ;β] =
∫ ∞
−∞

f(x)e−j2πβx dx (2.19)

Thus for a given value of Re(s) = a belonging to the definition strip, the Mellin transform of
a function can be expressed as a Fourier transform.

2.1.2 Inversion formula

A direct way to invert Mellin’s transformation (2.1) is to start from Fourier’s inversion theo-
rem. As is well known, if f̂ = F [f ;β] is the Fourier transform (2.19) of f , the original function
is recovered by:

f(x) =
∫ ∞
−∞

f̂(β) ej2πβx dβ (2.20)

Applying this formula to (2.17) with s = a+ j2πβ yields:

f(e−x) e−ax =
∫ ∞
−∞

F (s) ej2πβx dβ (2.21)

Hence, going back to variables t and s:

f(t) = t−a
∫ ∞
−∞

F (s) t−j2πβ dβ (2.22)

The inversion formula finally reads:

f(t) = (1/2πj)
∫ a+j∞

a−j∞
F (s) t−s ds (2.23)
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where the integration is along a vertical line through Re(s) = a. Here a few questions arise.
What value of a has to be put into the formula? What happens when a is changed? Is the
inverse unique? In what case is f a function defined for all t’s?

It is clear that if F is holomorphic in the strip S(a1, a2) and vanishes sufficiently fast when
Im(s) −→ ±∞, then by Cauchy’s theorem, the path of integration can be translated sideways
inside the strip without affecting the result of the integration. More precisely, the following
theorem holds [6, 7]:

Theorem 2.1.1 If, in the strip S(a1, a2), F (s) is holomorphic and satisfies the inequality:

|F (s)| ≤ K|s|−2 (2.24)

for some constant K, then the function f(t) obtained by formula (2.23) is a continuous func-
tion of the variable t ∈ (0,∞) and its Mellin transform is F (s).

Remark that this result gives only a sufficient condition for the inversion formula to yield
a continuous function.

From a practical point of view, it is important to note that the inversion formula applies
to a function F holomorphic in a given strip and that the uniqueness of the result holds only
with respect to that strip. In fact, a Mellin transform consists of a pair: a function F (s)
and a strip of holomorphy S(a1, a2) . A unique function F (s) with several disjoint strips of
holomorphy will in general have several reciprocals, one for each strip. Some examples will
illustrate this point.

Example 2.1.4 The Mellin transform of the function

f(t) = (H(t− t0)−H(t)) tz (2.25)

is given by

M[f ; s] = − tz+s0

(z + s)
(2.26)

provided Re(s) > −Re(z). Comparing (2.26) and (2.3), we see an example of two functions
F (s) having the same analytical expression but considered in two distinct regions of holomor-
phy: the inverse Mellin transforms, given respectively by (2.25) and (2.2) are indeed different
(see fig.2.1).

Example 2.1.5 (Gamma function continuation).From the result of example 2.1.2 considered
for p = 1, the function f(t) = e−t, t > 0 is known to be the inverse Mellin transform of
Γ(s), Re(s) > 0. Besides, it may be checked that Γ(s) satisfies the hypotheses of theorem
2.1.1; this is done by using Stirling’s formula which implies the following behavior of the
Gamma function [5]:

|Γ(a+ ib)| ∼
√

2π|b|a−1/2 e−|b|π/2, |b| → ∞ (2.27)

Thus the inversion formula (2.23) can be applied here and gives an integral representation of
e−t as:

e−t ≡ (1/2πj)
∫ a+j∞

a−j∞
Γ(s)t−s ds, a > 0 (2.28)

It is known that the Γ-function can be analytically continued in the left half-plane except for
an infinite number of poles at the negative or zero integers. The inverse Mellin transform of
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Figure 2.1: Examples of results when the regions of holomorphy are changed

the Gamma function for different strips of holomorphy will now be obtained by transforming
the identity (2.28). The contour of integration can be shifted to the left and the integral
will only pick up the values of the residues at each pole (figure 2.2). Explicitly, if a > 0 and
−N < a′ < −N + 1, N integer, we have:

(1/2πj)
∫ a+j∞

a−j∞
Γ(s)t−s ds =

N−1∑
n=0

(−1)n

n!
tn + (1/2πj)

∫ a′+j∞

a′−j∞
Γ(s)t−s ds (2.29)

Hence, the inversion formula of the Γ-function in the strip S(−N,−N+1) gives the result:

(1/2πj)
∫ a′+j∞

a′−j∞
Γ(s)t−s ds = e−t −

N−1∑
n=0

(−1)n

n!
tn, −N < a′ < −N + 1 (2.30)

The integral term represents the remainder in the Taylor expansion of e−t and can be shown
to vanish in the limit N →∞ by applying Stirling formula.

As a corollary of the inversion formula, a Parseval relation can be established for suitable
classes of functions.
Corollary Let M[f ; s] and M[g; s] be the Mellin transforms of functions f and g with strips
of holomorphy Sf and Sg respectively and suppose that some real number c exists such that
c ∈ Sf and 1− c ∈ Sg. Then Parseval’s formula can be written as:∫ ∞

0
f(t)g(t) dt =

1
2πj

∫ c+j∞

c−j∞
M[f ; s]M[g; 1− s] ds (2.31)

This formula may be established formally by computing the right-hand side of (2.31) using
definition (2.1):

1
2πj

∫ c+j∞

c−j∞
M[f ; s]M[g; 1− s] ds =

1
2πj

∫ c+j∞

c−j∞
M[g; 1− s]

∫ ∞
0

f(t) ts−1 dt ds (2.32)
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Γ−

Figure 2.2: Different contours of integration for the inverse Mellin transform of the Gamma
function. The contributions from the horizontal parts go to zero as Im(s) goes to infinity.

Exchanging the two integrals

1
2πj

∫ c+j∞

c−j∞
M[f ; s]M[g; 1− s] ds =

1
2πj

∫ ∞
0

f(t)
∫ c+j∞

c−j∞
M[g; 1− s] ts−1 dt ds (2.33)

and using the inverse formula (2.23) for g leads to (2.31).
Different set of conditions ensuring the validity of this Parseval formula may be stated (see

for example [8] p.108). The crucial point is the interchange of integrals that cannot always
be justified.

2.1.3 Transformation of distributions.

The extension of the correspondence (2.1) to distributions has to be considered to introduce
a larger framework in which Dirac delta and other singular functions can be treated straight-
forwardly. The distributional setting of Mellin’s transformation has been studied mainly by
Fung Kang [9], A.H.Zemanian [6] and O.P.Misra and J.L.Lavoine [7]. We refer the interested
reader to these works for a thorough treatment. As we will see, several approaches of the
subject are possible as it was the case for Fourier’s transformation.

It is possible to define the Mellin transform for all distributions belonging to the space D′+
of distributions on the half-line (0,∞) . The procedure [9] is to start from the space D(0,∞)
of infinitely differentiable functions of compact support on (0,∞) and to consider the set Q
of their Mellin transforms. It can be shown that it is a space of entire functions which is
isomorphic, as a linear topological space, to the space Z of Gelfand and Shilov [10]. This
space can be used as a space of test functions and the one-to-one correspondence thus defined
between elements of spaces D(0,∞) and Q can then be carried (i.e. transposed) to the dual
spaces D′+ and Q′. In this operation, a Mellin transform is associated with any distribution
in D′+ and the result belongs to a space Q′ formed of analytic functionals (see example 2.1.6
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for an illustration). The situation is quite analogous to that encountered with the Fourier
transformation where a correspondence between distributions spaces D′ and Z ′ is established.

Actually, it may be efficient to restrict the class of distributions for which the Mellin
transformation will be defined, as is usually done in Fourier analysis with the introduction of
the space S ′ of tempered distributions [10]. In the present case, a similar approach can be
based on the possibility to single out subspaces of D′+ whose elements are Mellin-transformed
into functions which are analytic in a given strip. This construction will now be sketched.

The most practical way to proceed is to give a new interpretation of formula (2.1) by
considering it as the application of a distribution f to a test function ts−1:

F (s) =< f, ts−1 > (2.34)

A suitable space of test functions T (a1, a2) containing all functions ts−1 for s in the region
a1 < Re(s) < a2 may be introduced as follows [7]. The space T (a1, a2) is composed of
functions φ(t) defined on (0,∞) and with continuous derivatives of all orders going to zero as
t approaches either zero or infinity. More precisely, there exists two positive numbers ζ1, ζ2,
such that, for all integers k, the following conditions hold:

tk+1−a1−ζ1 φ(k)(t) −→ 0, t→ 0 (2.35)

tk+1−a2−ζ2 φ(k)(t) −→ 0, t→∞ (2.36)

A topology on T is defined accordingly. It can be verified that all functions in D(0,∞) belong
to T (a1, a2). 1 The space of distributions T ′(a1, a2) is then introduced as a linear space
of continuous linear functionals on T (a1, a2). It may be noticed that if α1, α2 are two real
numbers such that a1 < α1 < α2 < a2, then T (α1, α2) is included in T (a1, a2). One may
so define a whole collection of ascending spaces T (a1, a2) with compatible topologies, thus
ensuring the existence of limit spaces when a1 → −∞ and/or a2 → ∞. 2 Hence the dual
spaces of distributions are such that T ′(a1, a2) ⊂ T ′(α1, α2) and T ′(−∞,+∞) is included in
all of them. Moreover, as a consequence of the status of D(0,∞) relatively to T (a1, a2), the
space T ′(a1, a2) is a subspace of distributions in D′+. The precise construction of these spaces
is explained in reference [7].A slightly different presentation is given in reference [6] and leads
to these same spaces denoted by M′(a1, a2).

With the above definitions, the Mellin transform of an element f ∈ T ′(a1, a2) is defined
by:

M[f ; s] ≡ F (s) =< f, ts−1 > (2.37)

The result is always a conventional function F (s) holomorphic in the strip a1 < Re(s) < a2.
In summary, every distribution in D′+ has a Mellin transform which, as a rule, is an analytic

functional. Besides, it is possible to define subspaces T ′(a1, a2) of D′+ whose elements f are
Mellin transformed by formula (2.37) into functions F (s) holomorphic in the strip S(a1, a2).
Any space T ′ contains in particular Dirac distributions and arbitrary distributions of bounded
support. They are stable under derivation and multiplication by a smooth function. Their
complete characterization is given by the following theorems.

Theorem 2.1.2 (Uniqueness theorem [6]) Let M[f ; s] = F (s) and M[h; s] = H(s) be Mellin
transforms with strips of holomorphy Sf and Sh respectively. If the strips overlap and if
F (s) ≡ H(s) for s ∈ Sf ∩ Sh, then f ≡ h as distributions in T ′(a1, a2) where the interval
(a1, a2) is given by the intersection of Sf ∩ Sh with the real axis.

1More precisely, one can show that D(0,∞) is dense in T (a1, a2).
2In fact, T (−∞, a2), T (a1, +∞) and T (−∞, +∞) are defined as inductive limits.
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Theorem 2.1.3 (Characterization of the Mellin transform of a distribution in T ′(a1, a2)
[6, 7]). A necessary and sufficient condition for a function F (s) to be the Mellin transform of
a distribution f ∈ T ′(a1, a2) is:

- F (s) is analytic in the strip a1 < Re(s) < a2,
- for any closed substrip α1 ≤ Re(s) ≤ α2 with a1 < α1 < α2 < a2 there exists a polynomial

P such that |F (s)| ≤ P (|s|) for α1 ≤ Re(s) ≤ α2.

Example 2.1.6 (Example of analytic functional) The function tz, z complex, defines a dis-
tribution in D′+ according to:

< tz, φ >=
∫ ∞
0

tz φ(t) dt, φ ∈ D(0,∞) (2.38)

But it may be seen that this distribution does not belong to any of the spaces T ′(a1, a2). Its
Mellin transform may nevertheless be defined by the following formula:

<M[tz], ψ >M=< tz, φ > (2.39)

where < , >M denotes duality in the space of Mellin transforms, φ ≡M−1ψ is an element of
D(0,∞) and, consequently, ψ is an entire function. According to (2.39) and definition (2.1),
we obtain:

<M[tz], ψ >M = M[φ; z + 1]
= ψ(z + 1) (2.40)

Since distribution M[tz] applied to ψ gives the value of ψ in a point of the complex plane, it
can be symbolized by a delta function. To introduce the notation, we need the explicit form
of duality < , >M which comes out of Parseval formula. According to (2.31), it is given for
entire functions χ, ψ by:

< χ,ψ >M=
1

2πj

∫ c+j∞

c−j∞
χ(s)ψ(1− s) ds (2.41)

where c is any real number. A more usual form is obtained by setting:

ψ̃(s) ≡ ψ(1− s) (2.42)

and

< χ, ψ̃ > ≡ < χ,ψ >M (2.43)

=
1

2πj

∫ c+j∞

c−j∞
χ(s)ψ̃(s) ds (2.44)

With these definitions, (2.40) can be written:

<M[tz], ψ̃ >= ψ̃(−z) (2.45)

and the notation:
M[tz] = δ(s+ z) (2.46)

can be proposed. Such Dirac distributions in the complex plane are defined in [10].
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Example 2.1.7 The Mellin transform of the Dirac distribution δ(t−t0) is found by applying
the general rule:

< δ(t− t0), φ >= φ(t0) (2.47)

to the family of functions φ(t) = ts−1. One obtains:

M[δ(t− t0); s] = < δ(t− t0), ts−1 >

= ts−1
0 (2.48)

for any value of the positive number t0. Moreover the result is holomorphic in the whole
complex s-plane.

It is instructive to verify explicitly the inverse formula on this example. According to
(2.23), the inverse Mellin transform M−1[ts−1

0 ; t] can be written as:

M−1[ts−1
0 ; t] =

1
2πjt0

∫ j∞

−j∞

(
t

t0

)−s
ds (2.49)

since the choice a = 0 is allowed by the holomorphy property of the integrand in the whole
plane. Setting s = jβ in (2.49) and performing the integration leads to the equivalent expres-
sions:

M−1[ts−1
0 ; t] =

1
2πt0

∫ ∞
−∞

e−jβ ln(t/t0) dβ

= t−1
0 δ(ln t− ln t0) (2.50)

The expected result
M−1[ts−1

0 ; t] = δ(t− t0) (2.51)

comes out by using the classical formula:

δ(f(t)) = |f ′(t0)|−1 δ(t− t0) (2.52)

in which f(t) is a function having a simple zero in t = t0.

Example 2.1.8 Consider the distribution

f =
∞∑
n=1

δ(t− pn), p > 0 (2.53)

Its Mellin transform is given by:

<
∞∑
n=1

δ(t− pn), ts−1 > =
∞∑
n=1

(pn)s−1

= ps−1
∞∑
n=1

ns−1 (2.54)

The sum converges uniformly for Re(s) < 0 and can be expressed in terms of Riemann’s Zeta
function [11] (see Table 3.1). Explicitly, we have:

M[
∞∑
n=1

δ(t− pn); s] = ps−1 ζ(1− s), Re(s) < 0 (2.55)

11



2.1.4 Some properties of the transformation.

This paragraph describes the effect on the Mellin transformM[f ; s] of some special operations
performed on f . The resulting formulas are very useful for deducing new correspondences from
a given one.

Let F (s) =M[f ; s] be the Mellin transform of a distribution which is supposed to belong
to T ′(σ1, σ2) and denote by Sf = {s : σ1 < Re(s) < σ2} its strip of holomorphy (σ1 is
either finite or −∞, σ2 is finite or ∞). Then the following formulas hold with the regions of
holomorphy as indicated. The notation of functions will be used but this must not obscure the
fact that f is a distribution and that all operations performed on f , especially differentiation,
must be understood in the generalized sense of distributions.
• Scaling of the original variable by a positive number

M[f(rt); s] = r−sF (s), s ∈ Sf , r > 0 (2.56)

• Raising of the original variable to a real power

M[f(tr); s] = |r|−1F (r−1s), r−1s ∈ Sf , r real 6= 0 (2.57)

• Multiplication of the original function by ln t

M[(ln t)k f(t); s] =
dk

dsk
F (s), s ∈ Sf , k positive integer (2.58)

• Multiplication of the original function by some power of t

M[(t)z f(t); s] = F (s+ z), s+ z ∈ Sf , z complex (2.59)

• Derivation of the original function

M[
dk

dtk
f(t); s] = (−1)k (s− k)k F (s− k), s− k ∈ Sf , k positive integer (2.60)

where the symbol (s− k)k is defined for k integer by:

(s− k)k ≡ (s− k)(s− k + 1)...(s− 1) (2.61)

Formulas (2.59) and (2.60) can be used in various ways to find the effect of linear combinations
of differential operators such that tk (d/dt)m, k, m integers. The most remarkable result is:

M[(t
d

dt
)kf(t); s] = (−1)k sk F (s) (2.62)

Other combinations can be computed. We have for example:

M[
dk

dtk
tk f(t); s] = (−1)k (s− k)k F (s) (2.63)

M[tk
dk

dtk
f(t); s] = (−1)k (s)k F (s) (2.64)

where s ∈ Sf , k a positive integer and

(s)k ≡ s(s+ 1)...(s+ k − 1) (2.65)
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These relations are easily verified on infinitely differentiable functions. It is important to stress
that they are essentially true for distributions. That implies in particular that all derivatives
occurring in the formulas are to be taken according to the distribution rules. An example
dealing with a discontinuous function will make this manifest.

Example 2.1.9 Consider the function

f(t) = H(t− t0)tz, z complex (2.66)

According to results of example 2.1.1, the Mellin transform of f is given by

M[f ; s] ≡ F (s) = − tz+s0

z + s
(2.67)

Applying formula (2.60) for k = 1 yields:

M[
df

dt
; s] = −(s− 1)F (s− 1)

= (s− 1)
tz+s−1
0

z + s− 1
(2.68)

which can be rewritten as:

M[
df

dt
; s] = −z tz+s−1

0

z + s− 1
+ tz+s−1

0 (2.69)

or, recognizing the Mellin transforms obtained in examples 2.1.1 and 2.1.7:

M[
df

dt
; s] =M[zH(t− t0)tz+s−1; s] +M[tz0δ(t− t0); s] (2.70)

This result shows explicitly that, in formula (2.60), f is differentiated as a distribution. The
first term in (2.70) corresponds to the derivative of the function for t 6= t0 and the second
term is the Dirac distribution arising from the discontinuity at t = t0.

Additional results on the Mellin transforms of primitives can be established for particular
classes of functions. Namely, if x > 1, integration by parts leads to the result:

M[
∫ ∞
x

f(t) dt; s] =
∫ ∞
0

s−1xsf(x) dx

= s−1F (s+ 1) (2.71)

provided the integrated part s−1xs
∫∞
x f(t) dt is equal to zero for x = 0 and x =∞.

In the same way, but with different conditions on f , one establishes:

M[
∫ x

0
f(t) dt; s] = −s−1F (s+ 1) (2.72)
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2.1.5 Relation to multiplicative convolution

The usual convolution has the property of being changed into multiplication by either a
Laplace or a Fourier transformation. In the present case, a multiplicative convolution [9], also
called Mellin-type convolution [6, 7], is defined which has a similar property with respects
to Mellin’s transformation. In the same way as the usual convolution of two distributions in
D(IR) does not necessarily exist, the multiplicative convolution of distributions in D′+ can fail
to define a distribution. To avoid such problems, we shall restrict our considerations to spaces
T ′(a1, a2).

Definition 2.1.2 Let f, g be two distributions belonging to some space T ′(a1, a2). The mul-
tiplicative convolution of f and g is a functional (f ∨ g) whose action on test functions
θ ∈ T (a1, a2) is given by:

< f ∨ g, θ >=< f(t), < g(τ), θ(tτ) >> (2.73)

It can be shown that f ∨ g is a distribution which belongs to the space T ′(a1, a2).
If the distributions f and g are represented by locally integrable functions, definition (2.73)

can be written explicitly as:

< f ∨ g, θ >=
∫ ∞
0

∫ ∞
0

f(t)g(τ)θ(tτ) dtdτ (2.74)

A change of variables then leads to the following expression for the multiplicative convolution
of the functions f and g:

(f ∨ g)(τ) =
∫ ∞
0

f(t)g(
τ

t
)
dt

t
(2.75)

The so-called exchange formula for usual convolution has an analog for multiplicative
convolution. It is expressed by the following theorem [6, 7].

Theorem 2.1.4 (exchange formula). The Mellin transform of the convolution product f ∨ g
of two distributions belonging to T ′(a1, a2) is given by the formula:

M[f ∨ g; s] = F (s)G(s), a1 < Re(s) < a2 (2.76)

where F (s) and G(s) are the Mellin transforms of distributions f and g respectively.

The proof is a simple application of the definitions. According to (2.37), the Mellin
transform of distribution f ∨ g ∈ T ′(a1, a2) is given by:

M[f ∨ g; s] =< f ∨ g, ts−1 >, a1 < Re(s) < a2 (2.77)

or, using the definition (2.73) of convolution:

M[f ∨ g; s] =< f(t), < g(τ), (tτ)s−1 >> (2.78)

which can be rewritten as:

M[f ∨ g; s] =< f(t), ts−1 >< g(τ), τ s−1 > (2.79)

14



Formula (2.73) allows to consider the multiplicative convolution of general distributions
not belonging to space T ′(a1, a2). However, in that case, it is not ensured that the product
exists as a distribution.

General properties of the multiplicative convolution
In this paragraph, f and g are distributions which belong to T ′(a1, a2) and k is a positive

integer. The following properties are easy to verify. In fact, some of them are a direct
consequence of the exchange formula.

1. Commutativity
f ∨ g = g ∨ f (2.80)

2. Associativity
(f ∨ g) ∨ h = f ∨ (g ∨ h) (2.81)

3. Unit element
f ∨ δ(t− 1) = f (2.82)

4. Action of the operator t(d/dt)(
t
d

dt

)k
(f ∨ g) =

[(
t
d

dt

)k
f

]
∨ g

= f ∨
[(
t
d

dt

)k
g

]
(2.83)

i.e. it is sufficient to apply the operator to one of the factors.

5. Multiplication by ln t.

(ln t)(f ∨ g) = [(ln t)f ] ∨ g + f ∨ [(ln t)g] (2.84)

6. Convolution with Dirac distributions and their derivatives

δ(t− a) ∨ f = a−1f(a−1t) (2.85)

δ(t− p) ∨ δ(t− p′) = δ(t− pp′), p, p′ > 0 (2.86)

δ(k)(t− 1) ∨ f = (d/dt)k(tkf) (2.87)

Proof of relation (2.87)
According to the definition of the k-derivative of the Dirac distribution, the multiplicative

convolution of f with δ(k)(t− 1) is given by:

< f ∨ δ(k)(t− 1), θ(t) > = < f(t), < δ(k)(τ − 1), θ(tτ) >>

= < f(t), < δ(τ − 1), (−1)k
(
d

dτ

)k
θ(tτ) >> (2.88)

or, after performing an ordinary differentiation and applying the definition of δ:

< f ∨ δ(k)(t− 1), θ(t) >=< f(t), (−1)k tkθ(k)(t) > (2.89)
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The usual rules of calculus with distributions and the commutativity of convolution yield:

< δ(k)(t− 1) ∨ f, θ(t) >=<
(
d

dt

)k
(tk f(t)), θ(t) > (2.90)

Finally, identity (2.87) follows from the fact that (2.90) holds for any function θ belonging to
T (a1, a2).

2.1.6 Hints for a practical inversion of the Mellin transformation

In many applications, it is essential to be able to perform explicitly the Mellin inversion.
This is often the most difficult part of the computation and we now give some indications on
different ways to proceed.

a. Compute the inversion integral.
This direct approach is not always the simplest. In some cases, however, the integral (2.23)

can be computed by the method of residues.

b. Use rules of Sec.2.1.4 to exploit the inversion formula
Property (2.62) in particular can be used to extend the domain of practical utility of the

inversion formula (2.23). Indeed, in the case where the Mellin transform F (s), holomorphic
in the strip S(a1, a2) with (a1, a2) finite, does not satisfy condition (2.24), suppose that a
positive integer k can be found such that:

|s−k F (s)| ≤ K|s|−2 (2.91)

The inversion formula (2.23) can now be used on the function G(s) defined by:

G(s) = (−1)ks−k F (s), a1 < Re(s) < a2 (2.92)

and yields a continuous function g(t). Using rule (2.62) and the uniqueness of the Mellin
transform, we conclude that the reciprocal of F (s) is the distribution f defined by:

f =
(
t
d

dt

)k
g(t) (2.93)

In spite of the fact that the continuous function g(t) is not necessarily differentiable every-
where, formula (2.93) remains meaningful since derivatives are taken in the sense of distribu-
tions. In fact, the above procedure corresponds to generalizing theorem 2.1.1 in the following
form:

Theorem 2.1.5 [7, 6] Let F (s) be a function holomorphic in the strip S(a1, a2) with a1, a2

finite. If there exists an integer k ≥ 0 such that s2−k F (s) is bounded as |s| goes to infinity,
then the inverse Mellin transform of F (s) is the unique distribution f given by:

f =
(
t
d

dt

)k
g(t) (2.94)

where g(t) is a continuous function obtained by the formula:

g(t) =
(−1)k

2πj

∫ a+j∞

a−j∞
F (s) s−k t−s ds (2.95)

with a ∈ S(a1, a2).
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Other inversion formulas may be obtained in the same way [7], by using rules (2.64) and (2.63)
respectively. They are:

f = tk
(
d

dt

)k
g(t), where g(t) =

(−1)k

2πj

∫ a+j∞

a−j∞

F (s)
(s)k

t−s ds (2.96)

f =
(
d

dt

)k
tk g(t), where g(t) =

(−1)k

2πj

∫ a+j∞

a−j∞

F (s)
(s− k)k

t−s ds (2.97)

c. Use the tables.
In simple cases, exploitation of tables [12, 13, 14] and use of the rules of calculus exhibited

in section 2.1.4 are sufficient to obtain the result.
In more difficult cases, it may be rewarding to use the systematic approach developed by

Marichev [5] and applicable to a large number of functions. Suppose we are given a function
F (s) holomorphic in the strip S(σ1, σ2) and we want to find its inverse Mellin transform. The
first step is to try and cast F into the form of a fraction involving only products of Γ-functions,
the variable s appearing only with the coefficient ±1. This looks quite restrictive but in fact
many simple functions can be so rewritten using the properties of Γ-functions recalled in Table
3.1. Thus F (s) is brought to the form:

F (s) = C
∏
i,j,k,l

Γ(ai + s)Γ(bj − s)
Γ(ck + s)Γ(dl − s)

(2.98)

where C, ai, bj , ck, dl are constants and where Re(s) is restricted to the strip S(σ1, σ2) now
defined in terms of these.

For such functions the explicit computation of the inversion integral (2.23) can be per-
formed by the theory of residues and yields a precise formula given in [5] as Slater’s theorem.
The result has the form of a function of hypergeometric type. The important point is that
most special functions are included in this class. For a thorough description of the method,
the reader is referred to Marichev’s book [5] which contains simple explanations along with
all the proofs and exhaustive tables.

d. Special forms related to the use of polar coordinates. [15]
The analytical solution of some two-dimensional problems in polar coordinates (r, θ) is

obtained by using a Mellin transformation with respect to the radial variable r. In this
approach, one can be faced with the task of inverting expressions of the type cos(sθ)F (s) or
sin(sθ)F (s). We will show that, for a large class of problems, the reciprocals of the products
cos(sθ)F (s) and sin(sθ)F (s) can be obtained straightforwardly from the knowledge of the
reciprocal of F (s).

Let f(r), f real-valued, be the inverse Mellin transform of F (s) in strip S(a1, a2) and
suppose that f can be analytically continued into a function f(z), z ≡ rejθ, in some sector
|θ| < β of the complex plane. If the rule of scaling (2.56) can be extended to the complex
numbers, we have:

M[f(rejθ); s] = e−jθsM[f(r); s] (2.99)

where the Mellin transforms are with respect to r.
In fact, this formula can be established by contour integration in a sector | arg z| < β

where the function f is such that:

zs f(z) −→ 0 as |z| → 0 or∞ (2.100)
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Remark that since f has a Mellin transform with strip of definition S(a1, a2), this condition
already holds on the real axis when a1 < Re(s) < a2.

Recalling that f is real-valued, we can take the real and imaginary parts of (2.99) and
obtain, for real s, the formulas;

M[Re(f(rejθ)); s] = cos(sθ)F (s) (2.101)
M[Im(f(rejθ)); s] = − sin(sθ)F (s) (2.102)

These can be extended to complex s and yield the inverse Mellin transforms of cos(sθ)F (s)
and sin(sθ)F (s) for a1 < Re(s) < a2 and |θ| < β.

Example 2.1.10 [15] To illustrate the use of the above rules, we shall perform explicitly the
inversion of:

F (s) =
cos sθ
s cos sα

, α real (2.103)

in the strip 0 < Re(s) < π/(2α).

Using the result of example 2.1.3 and rule (2.57), we obtain:

M[(1 + r2)−1; s] =
π

2 sin(πs/2)
, 0 < Re(s) < 1 (2.104)

Recalling that ∫ ∞
r

dx

1 + x2
= π/2− tan−1 r (2.105)

and using rule (2.71) gives:

M[π/2− tan−1 r; s] =
π

2s cosπs/2
, 0 < Re(s) < 1 (2.106)

Using again property (2.57) but with ν = π/2α finally gives:

M[π/2− tan−1rν ; s] =
π

2s cos(πs/2ν)
, 0 < Re(s) < ν (2.107)

To find the domain in which function f(z) = π/2 − tan−1 zν , where z = rejθ, verifies the
condition (2.100), we write it under the form:

f(z) = (1/2j) ln
(
zν + j

zν − j

)
(2.108)

subject to the choice of the determination for which 0 < tan−1 r < π/2. The result is
|θ| ≡ | arg(z)| < π/2. Relation (2.101) yields the result:

M−1[
cos(sθ)
s cos(sα)

; s] = Re(π/2− tan−1 zν), 0 < Re(s) < π/(2α), |θ| < π/2 (2.109)

The real part of f(rejθ) is given explicitly by:

Re(π/2− tan−1 zν) =


1− π−1 tan−1 2rν cos νθ

1− r2ν
0 ≤ r < 1

π−1 tan−1 2rν cos νθ
r2ν−1

r > 1
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2.2 Standard applications

2.2.1 Summation of series

Even if a numerical computation is intended, Mellin’s transformation may be used with profit
to transform slowly convergent series either into integrals that can be computed exactly or
into more rapidly convergent series.

Let S represent a series of the form:

S =
∞∑
n=1

f(n) (2.110)

in which the terms are samples of a function f(t) for integer values of the variable t ∈ (0,∞).
If this function has a Mellin transform F (s) with S(a1, a2) as strip of holomorphy, it can be
written:

f(t) = (2πj)−1
∫ a+j∞

a−j∞
F (s) t−s ds a1 < a < a2 (2.111)

Substituting this identity in (2.110) yields:

S = (2πj)−1
∞∑
n=1

∫ a+j∞

a−j∞
F (s)n−s ds (2.112)

Now, if F (s) is such that sum and integral can be exchanged, an integral expression for S is
obtained:

S = (2πj)−1
∫ a+j∞

a−j∞
F (s)ζ(s) ds (2.113)

where ζ(s) is the Riemann zeta function defined by:

ζ(s) =
∞∑
n=1

n−s (2.114)

The integral (2.113) is then evaluated by the methods of Sec.2.1.5. The calculus of residues
may give the result as an infinite sum which, hopefully, will be more rapidly convergent than
the original series.

Some care is necessary when going from (2.112) to (2.113). Actually, if the interchange
of summation and integration is not justified, the expression (2.113) can fail to represent the
original series (see [15] p.216 for an example).

Example 2.2.1 Compute the sum

S(y) =
∞∑
n=1

cosny
n2

(2.115)

From Table 2 and properties (2.56) and (2.59), one finds:

M[
cos ty
t2

; s] = −y2−s Γ(s− 2) cos(πs/2), 2 < Re(s) < 3 (2.116)

Hence the sum can be rewritten as:

S = −(1/2πj)
∫ a+j∞

a−j∞
y2−sΓ(s− 2) cos(πs/2)ζ(s) ds (2.117)
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where the interchange of summation and integration is justified by absolute convergence. The
integral can be rearranged by using Riemann’s functional relationship [15]:

πsζ(1− s) = 21−sΓ(s) cos(πs/2)ζ(s) (2.118)

Then (2.117) becomes:

S = −(1/2πj)
∫ a+j∞

a−j∞
y2−s2s−1πs

ζ(1− s)
(s− 1)(s− 2)

ds (2.119)

The integral is easily computed by the method of residues, closing the contour to the left
where the integrand goes to zero. The function ζ(s) is analytic everywhere except at s = 1
where it has a simple pole with residue equal to 1. The result is:

S =
y2

4
− πy

2
+
π2

6
(2.120)

2.2.2 Computation of integrals depending on a parameter

Essentially, the technique concerns integrals which can be brought to the form

K(x) =
∫ ∞
0

K0(t)K1(x/t)
dt

t
, x > 0 (2.121)

One recognizes the expression of a multiplicative convolution. Such an integral can be com-
puted by performing the following steps:
• Mellin transform functions K0 and K1 to obtain M[K0; s] and M[K1; s]
• Multiply the transforms to obtain M[K; s] ≡M[K0; s]M[K1; s]
• Find the inverse Mellin transform ofM[K; s] using the tables. The result will in general

be expressed as a combination of generalized hypergeometric series.
For the last operation, the book by O.I.Marichev [5] can be of great help as previously

mentioned in section 2.1.6.c. The method can be extended to allow the computation of
integrals of the form:

K(x1, ..., xN ) =
∫ ∞
0

K0(t)

[
n∏
i=1

Ki

(
xi
t

)]
dt

t
(2.122)

where x1, ..., xN are positive variables.
It can be verified that the multiple Mellin transform defined by:

M[K; s1, ..., sN ] =
∫ ∞
0

...

∫ ∞
0

K(x1, ..., sN )xs1−1
1 ... xsN−1

N dx1...dxN (2.123)

allows to factorize the expression (2.122) as:

M[K; s1, ..., sN ] =M[K0; s1 + s2 + ...+ sN ]
N∏
i=1

M[Ki; si] (2.124)

Techniques of inversion for this expression are developed in a book by R.J.Sasiela [16] devoted
to the propagation of electromagnetic waves in turbulent media.
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2.2.3 Mellin’s convolution equations

These are not always expressed with integrals of type (2.75) but also with differential operators
which are polynomials in (t(d/dt)). Such equations are of the general form:

Lu(t) ≡ (an
(
t
d

dt

)n
+ an−1

(
t
d

dt

)n−1

+ ...+ a0)u(t) = g(t) (2.125)

By using the identity:

(t(d/dt))ku(t) ≡ [(t(d/dt))kδ(t− 1)] ∨ u(t) (2.126)

they can be written as a convolution:
n∑
k=0

ak(t(d/dt))kδ(t− 1) ∨ u(t) = g(t) (2.127)

The more usual Euler-Cauchy differential equation, which is written as:

(bntn(d/dt)n + bn−1t
n−1(d/dt)n−1 + ...+ b0)u(t) = g(t) (2.128)

can be brought to the form (2.125) by using relations such that:(
t
d

dt

)2

= t
d

dt
+ t2

d2

dt2
(2.129)

It can also be tranformed directly into a convolution which reads:
n∑
k=0

bkt
kδ(k)(t− 1) ∨ u(t) = g(t) (2.130)

The Mellin treatment of convolution equations will be explained in the case of equation (2.127)
since it is the most characteristic.

Suppose that the known function g has a Mellin transform M[g; s] = G(s) that is holo-
morphic in the strip S(σl, σr). We shall seek solution u which admit a Mellin transform U(s)
holomorphic in the same strip or in some substrip. The Mellin transform of equation (2.127)
is obtained by using the convolution property and relation (2.62):

A(s)U(s) = G(s) (2.131)

where

A(s) ≡
∞∑
k=0

ak(−1)k sk (2.132)

Two different situations may arise.
- Either A(s) has no zeros in the strip S(σl, σr). In that case, U(s) given by G(s)/A(s)

can be inverted in the strip. According to theorems 2.1.2 and 2.1.3, the unique solution is a
distribution belonging to T ′(σ1, σ2).

- Or A(s) has m zeros in the strip. The main strip S(σ1, σ2) can be decomposed into
adjacent substrips

σl < Re(s) < σ1, σ1 < Re(s) < σ2, ... σm < Re(s) < σr (2.133)

The solution in the k-substrip is given by the Mellin inverse formula:

u(t) =
1

2πj

∫ c+j∞

c−j∞

G(s)t−s

A(s)
ds (2.134)

where σk < c < σk+1. There is a different solution in each strip, two solutions differing by a
solution of the homogeneous equation.
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2.2.4 Solution of a potential problem in a wedge

[6, 7, 15]
The problem is to solve Laplace’s equation in an infinite 2-dimensional wedge with Dirichlet

boundary conditions. Polar coordinates with origin at the apex of the wedge are used and
the sides are located at θ = ±α. The unknown function u(r, θ) is supposed to verify:

∆u = 0, 0 < r <∞, −α < θ < α (2.135)

with the following boundary conditions:

1. on the sides of the wedge, if R is a given positive number:

u(r,±α) =

{
1 if 0 < r < R
0 if r > R

(2.136)

or, equivalently:
u(r,±α) = H(R− r) (2.137)

2. When r is finite, u(r, θ) is bounded.

3. When r tends to infinity, u(r, θ) ∼ r−β, β > 0.

In polar coordinates, equation (2.135) multiplied by r2 yields:

r2
∂2u

∂r2
+ r

∂u

∂r
+
∂2u

∂θ2
= 0 (2.138)

The above conditions on u(r, θ) ensure that its Mellin transform U(s, θ) with respect to r
exists as a holomorphic function in some region 0 < Re(s) < β. The equation satisfied by U
is obtained from (2.138) by using property (2.59) of the Mellin transformation and reads:

d2U

dθ2
(s, θ) + s2U(s, θ) = 0 (2.139)

The general solution of this equation can be written as:

U(s, θ) = A(s)ejsθ +B(s)e−jsθ (2.140)

Functions A,B are to be determined by the boundary condition (2.137) which leads to the
following requirement on U :

U(s,±α) = Rs s−1 for Re(s) > 0 (2.141)

Explicitly, this is written as:

A(s)ejsα +B(s)e−jsα = ass−1 (2.142)
A(s)e−jsα +B(s)ejsα = ass−1 (2.143)

and leads to the solution:
A(s) = B(s) =

Rs

2s cos(sα)
(2.144)

The solution of the form (2.140) which verifies (2.141) is given by:

U(s, θ) =
Rs cos(sθ)
s cos(sα)

(2.145)

This function U is holomorphic in the strip 0 < Re(s) < π/(2α). Its inverse Mellin transform
is a a function u(r, θ) that is obtained from the result of example 2.1.10.
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2.2.5 Asymptotic expansion of integrals

The Laplace transform I[f ;λ] defined by:

I[f ;λ] =
∫ ∞
0

e−λt f(t) dt (2.146)

has an asymptotic expansion as λ goes to infinity which is characterized by the behavior of
the function f when t → 0+ [8, 12, 17]. With the help of Mellin’s transformation, one can
extend this type of study to other transforms of the form:

I[f ;λ] =
∫ ∞
0

h(λt) f(t) dt (2.147)

where h is a general kernel.
Examples of such h-transforms [8] are:

• Fourier transform: h(λt) = ejλt

• Cosine and Sine transforms: h(λt) = cos(λt) or sin(λt)

• Laplace transform: h(λt) = e−λt

• Hankel transform: h(λt) = Jν(λt)(λt)1/2 where Jν is the Bessel function of the first
kind.

• Generalized Stieltjes transform: h(λt) = λν
∫∞
O f(t)/(1 + λt)ν dt

A short formal overview of the procedure will be given below. The theory is exposed in
full generality in [8]. It includes the study of asymptotic expansions when λ→ 0+ in relation
with the behaviour of f at infinity and the extension to complex values of λ. The case of
oscillatory h-kernels is given special attention.

Suppose from now on that f and h are locally integrable functions such that the transform
I[f ;λ] exists for large λ. The different steps leading to an asymptotic expansion of I[f ;λ] in
the limit λ→ +∞ are the following:

1. Mellin transform the functions h and f and apply Parseval’s formula.

The Mellin transformsM[f ; s] andM[h; s] are supposed to be holomorphic in the strips
η1 < Re(s) < η2 and α1 < Re(s) < α2 respectively. Assuming that Parseval’s formula
may be applied and using property (2.56), one can write (2.146) as:

I[f ;λ] =
1

2πj

∫ r+j∞

r−j∞
λ−sM[h; s]M[f ; 1− s] ds (2.148)

where r is any real number in the strip of analyticity of the function G defined by

G(s) =M[h; s]M[f ; 1− s], max(α1, 1− η2) < Re(s) < min(α2, 1− η1) (2.149)

2. Shift of the contour of integration to the right and use of Cauchy’s formula.

Suppose G(s) can be analytically continued in the right half-plane Re(s) ≥ min(α2, 1−
η1) as a meromorphic function. Remark that this assumption implies thatM[f ; s] may
be continued to the right half-plane Re(s) > α2 and M[h; s] to the left Re(s) < η1.

23



Suppose moreover that the contour of integration in (2.148) can be displaced to the
right as far as the line Re(s) = R > r. A sufficient condition ensuring this property is
that

lim
|b|→∞

G(a+ jb) = 0 (2.150)

for all a in the interval [r,R].

Under these conditions, Cauchy’s formula may be applied and yields:

I[f ;λ] = −
∑

r<Re(s)<R

Res(λ−sG(s)) +
1

2πj

∫ R+j∞

R−j∞
λ−sG(s) ds (2.151)

where the discrete summation involves the residues (denoted Res) of function λ−sG(s)
at the poles lying inside the region r < Re(s) < R.

3. The asymptotic expansion. The relation (2.151) is an asymptotic expansion provided the
error bounds hold. A sufficient condition to ensure that the integral term is of order
O(λ−R) is that G satisfy: ∫ ∞

−∞
|G(R+ jb)|db <∞ (2.152)

The above operations can be justified step by step when treating a particular case. The
general theory gives a precise description of the final form of the asymptotic expansion, when
it exists, in terms of the asymptotic properties of h when t→ +∞ and of f when t→ 0+.

The above procedure is easily adapted to give the asymptotic expansion of I[f ;λ] when
λ→ 0+.

Example 2.2.2 Consider the case where the kernel h is given by

h(t) =
1

1 + t
(2.153)

The integral under consideration is thus:

I[f ;λ] =
∫ ∞
0

f(t)
1 + λt

dt (2.154)

The function f must be such that the integral exists. In addition, it is supposed to have
a Mellin transform holomorphic in the strip σ1 < Re(s) < σ2 and to have an asymptotic
development as t→ 0 of the form:

f ∼
∞∑
m=0

tampm (2.155)

where the numbers Re(am) increase monotonically to +∞ as m→ +∞ and the numbers pm
may be arbitrary.

To apply the method, we first compute the Mellin transform of h which is given by:

M[(1 + t)−1; s] =
π

sinπs
, 0 < Re(s) < 1 (2.156)

It can be continued in the half-plane Re(s) > 0 where it has simple poles at s = 1, 2, ... and
decays along imaginary lines as follows:

π

sinπ(a+ jb)
= O(e−π|b|) for all a (2.157)
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As for function f , its behavior given by (2.155) ensures (see [8]) that the Mellin transform
M[f ; s] has an analytic continuation in the half-plane Re(s) ≤ σ1 = −Re(a0) which is a
meromorphic function with poles at the points s = −am. Moreover, one finds the following
behavior at infinity for the continued Mellin transform;

lim
|b|→∞

M[f ; a+ jb] = 0, for all a < σ2 (2.158)

In this situation, the method will lead to an asymptotic expansion which can be written
explicitly. For example, in the case where am 6= 0, 1, 2, ..., the poles of M[f ; 1 − s], which
occur at 1− s = −am are distinct from those of M[h; s] at s = m+ 1 and the expansion of I
is given by :

I[f ;λ] ∼
∞∑
m=0

λ−1−am
π

sin(πam)
Ress=1+am{M[f ; 1− s]}

+
∞∑
m=0

λ−1−mM[f ;−m] Ress=m+1

{
π

sin(πs)

}

Hence:

I[f ;λ] ∼
∞∑
m=0

λ−1−ampm
π

sin(πam)
+
∞∑
m=0

(−1)mλ−1−mM[f ;−m] (2.159)

In particular, if f(t) = (1/t)e−(1/t), all the pm are equal to zero and the expansion is just:

I[f ;λ] ∼
∞∑
n=0

(−1)n(λ)−n−1 Γ(n+ 1) (2.160)
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Chapter 3

Alternative approach related to the
dilation group and its
representations

3.1 Theoretical aspects

3.1.1 Construction of the transformation

Rather than start directly by giving the explicit formula of the Mellin transformation, we will
construct it explicitly as a tool especially devoted to the computation of functionals involving
scalings of a variable. Such an introduction of the transform may be found, for example, in
the book by N.Ya. Vilenkin [3] or, in a more applied context, in articles [18, 19, 20].

If Z(v) is a function defined on the positive half-axis (0,∞), a scaling of the variable v by
a positive number a leads to a new function Z ′(v) which is related to Z(v) by the change of
variable:

v −→ av (3.1)

The set of such transformations forms a group which is isomorphic to the multiplicative group
of positive real numbers. In practice, the scaled function is often defined by the transformation:

Z(v) −→ a1/2Z(av) (3.2)

which does not change the value of the usual scalar product:

(Z1, Z2) ≡
∫ ∞
0

Z1(v)Z∗2 (v) dv (3.3)

in which the symbol ∗ denotes complex conjugation. However, there are serious physical
reasons to consider more general transformations of the form:

Da : Z(v) −→ (DaZ)(v) ≡ ar+1Z(av) (3.4)

where r is a given real number. The general correspondence a↔ Da is such that:

DaDa′ = Daa′
D1Da = DaD1 = Da (3.5)

(Da)−1 = Da−1
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Thus, for any value of r, the set of Da operations constitutes a representation of a group.
These transformations preserve the following scalar product:

(Z1, Z2) ≡
∫ ∞
0

Z1(v)Z∗2 (v)v2r+1 dv (3.6)

that is to say we have:
(DaZ1,DaZ2) = (Z1, Z2) (3.7)

The scalar product (3.6) defines a norm for the functions Z(v) on the positive axis IR+.
We have:

||Z||2 ≡
∫ ∞
0
|Z(v)|2 v2r+1 dv (3.8)

The corresponding Hilbert space will be denoted by L2(IR+, v2r+1 dv). It is handled in
the same manner as an ordinary L2 space with the measure dv replaced by v2r+1 dv in all
formulas. In this space, the meaning of (3.7) is that the set of operations Da constitutes a
unitary representation of the multiplicative group of positive numbers.

The value of r will be determined by the specific applications to be dealt with. Examples
of adjustments of this parameter are given in [21] where the occurrence of dilations in radar
imaging is analyzed.

When confronted to expressions involving functions modified by dilations of the form
(3.4), it may be advantageous to use a Hilbert space basis in which the operators Da have a
diagonal expression. This leads to a decomposition of functions Z into simpler elements on
which the scaling operation breaks down to a mere multiplication by a complex number. Such
a procedure is familiar when considering the operation which translates a function f(t), t ∈ IR
according to:

f(t) −→ f(t− t0) (3.9)

In that case, the exponentials eλt, λ complex, are functions which are multiplied by a number
eλt0 in a translation. If λ = jα, α real, these functions are unitary representations of the
translation group in L2(IR) and provide a generalized 1 orthonormal basis for functions in
this space. The coefficients of the development of function f(t) on this basis are obtained by
scalar product with the basis elements and make up the Fourier transform. In the present case,
analogous developments will connect the Mellin transformation to the unitary representations
of the dilation group in L2(IR+, v2r+1 dv).

For simplicity and for future reference, the diagonalization of Da will be performed on its
infinitesimal form defined by the operator B whose action on function Z(v) is given by:

(BZ)(v) ≡ − 1
2πj

d

da
[(DaZ)(v)](a=1) (3.10)

The computation yields:

B = − 1
2πj

(v
d

dv
+ r + 1) (3.11)

The operator B is self-adjoint operator and the unitary representation Da is recovered from
B by exponentiation: 2

Da = e−2πjaB (3.12)
1Such families of functions which do not belong to the Hilbert space under consideration but are treated

like bases by physicists are called improper bases. Their use can be rigorously justified.
2This is known as Stone’s theorem
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where the exponential of the operator is defined formally by the infinite series:

e−2πjaB =
∞∑
n=O

(−1)n
(2πjaB)n

n!
(3.13)

Here, we only need to find the eigenfunctions of B, i.e. the solutions of the differential equation:

BZ(v) = βZ(v) (3.14)

with β real.
The solution is, up to an arbitrary factor:

Eβ(v) = v−2πjβ−r−1 (3.15)

As ensured by the construction, any member of this family of functions Eβ is just multiplied
by a phase when a scaling is performed:

Da : Eβ(v) −→ a−2πjβEβ(v) (3.16)

Moreover, the family {Eβ} is orthonormal and complete as will now be shown. The
orthonormality is obtained by setting v = e−x in the expression:

(Eβ, Eβ′) =
∫ ∞
0

v−2πj(β−β′)−1 dv (3.17)

which becomes:
(Eβ, Eβ′) =

∫ ∞
−∞

e2πj(β−β
′)x dx (3.18)

The result is:
(Eβ, Eβ′) = δ(β − β′) (3.19)

To show completeness, we compute:∫ ∞
−∞

Eβ(v)E∗β(v′) dβ ≡
∫ ∞
−∞

e2πjβ ln(v/v′)(vv′)−r−1 dβ (3.20)

= (vv′)−r−1 δ(ln(v)− ln(v′)) (3.21)

and, using the rule of calculus with delta functions recalled in (2.52), we obtain:∫ ∞
−∞

Eβ(v)E∗β(v′) dβ = v−2r−1δ(v − v′) (3.22)

Any function Z in L2(IR+, v2r+1 dv) can thus be decomposed on the basis Eβ with coefficients
M[Z](β) given by:

M[Z](β) = (Z,Eβ) (3.23)

or explicitly:

M[Z](β) =
∫ ∞
0

Z(v)v2πjβ+r dv (3.24)

The set of coefficients, considered as a function of β, constitutes what is called the Mellin
transform of function Z. This definition coincides with the usual one (2.1.1) provided we set
s = r + 1 + 2πjβ. Thus:

M[Z](β) ≡M[Z; r + 1 + 2πjβ] (3.25)
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But the viewpoint here is different. The value of Re(s) = r + 1 is fixed once and for all as it
is forced upon us by the representation of dilations occurring in the physical problem under
study. Thus the situation is closer to the Fourier than to the Laplace case and an L2 theory
is developed naturally.

The property (3.22) of completeness for the basis implies that the Mellin transformation
(3.23) from Z(v) to M[Z](β) is norm-preserving:∫ ∞

−∞
|M[Z](β)|2 dβ = (Z,Z) (3.26)

A Parseval formula (also called unitarity property) follows immediately:∫ ∞
−∞
M[Z1](β)M∗[Z2](β) dβ = (Z1, Z2) (3.27)

where
M∗[Z](β) ≡ [M[Z](β)]∗ (3.28)

The decomposition formula of function Z(v) on basis {Eβ(v)} ≡ v−2πjβ−r−1 which can be ob-
tained from (3.24) and (3.19) constitutes the inversion formula for the Mellin transformation:

Z(v) =
∫ ∞
−∞
M[Z](β)v−2πjβ−r−1 dβ (3.29)

By construction, the Mellin transformation performs the diagonalization of the operators B
and Da. Indeed, by definition (3.23), the Mellin transform of the function (BZ)(v) is given
by:

M[BZ](β) = (BZ,Eβ) (3.30)

or, using the fact that B is self-adjoint and that Eβ is an eigenfunction of B:

M[BZ](β) = β(Z,Eβ) (3.31)

Thus:
M[BZ](β) = βM[Z](β) (3.32)

In the same way, the Mellin transform of DaZ is computed using the unitarity of Da:

M[DaZ](β) = (DaZ,Eβ)
= (Z,Da−1Eβ) (3.33)

Thus:
M[DaZ](β) = a−2πjβM[Z](β) (3.34)

All these results can be summed up in the following proposition.

Theorem 3.1.1 Let Z(v) be a function in L2(IR+, v2r+1 dv). Its Mellin transform defined
by:

M[Z](β) =
∫ ∞
0

Z(v)v2πjβ+r dv (3.35)

belongs to L2(IR).
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The inversion formula is given by:

Z(v) =
∫ ∞
−∞
M[Z](β)v−2πjβ−r−1 dβ (3.36)

An analog of Parseval’s formula (unitarity) holds as:∫ ∞
−∞
M[Z1](β)M∗[Z2](β) dβ =

∫ ∞
0

Z1(v)Z∗2 (v) v2r+1 dv (3.37)

For any function Z, the Mellin transform of the dilated function

(DaZ)(v) ≡ ar+1Z(av) (3.38)

is given by:
M[DaZ](β) = a−2πjβM[Z](β) (3.39)

3.1.2 Uncertainty relations

As in the case of the Fourier transformation , there is a relation between the spread of a
function and the spread of its Mellin transform. To find this relation, we will consider the
first two moments of the density functions |Z(v)|2 and |M[Z](β)|2 connected by (3.37). The
mean value of v with density |Z(v)|2 is defined by the formula:

v ≡ (Z, vZ)
(Z,Z)

(3.40)

The mean value of v2 is defined by an analogous formula. The mean square deviation σ2
v of

variable v can then be computed according to:

σ2
v ≡ (v − v)2 (3.41)

In the same way, in the space of Mellin transforms, the mean value of β is defined by:

β ≡ (Z̃, βZ̃)
(Z̃, Z̃)

(3.42)

where Z̃ denotes the Mellin transform of Z. Using Parseval formula (3.37) and property
(3.32), one can also rewrite this mean value in terms of the original function Z(v) as:

β =
(Z,BZ)
(Z,Z)

(3.43)

where the operator B has been defined by formula (3.11). At this point, it is convenient to
introduce the following notation for any operator O acting on Z:

< O >≡ (Z,OZ)
(Z,Z)

(3.44)

and to rewrite (3.43) as:
β =< B > (3.45)
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The mean square deviation σ2
β of variable β can also be expressed in terms of the operator B

according to:

σ2
β =< (B − β)2 > (3.46)

A simple way to obtain a lower bound on the product σβσv is to introduce the operator X
defined by:

X ≡ B − β + jλ(v − v) (3.47)

where λ is a real parameter. The obvious requirement that the norm of XZ(v) must be
positive or zero whatever the value of λ is expressed by the inequality:

||XZ||2 = (Z,X ∗XZ) ≥ 0 (3.48)

where X ∗ denotes the adjoint of X . This constraint implies the positivity of the expression:

< (B − β + jλ(v − v))(B − β − jλ(v − v)) > (3.49)

Developing and using relations (3.41) and (3.46), we obtain:

λ2σ2
v + jλ < vB − Bv > +σ2

β ≥ 0 (3.50)

The computation of vB − Bv yields:

(vB − Bv)Z(v) =
−1
2πj

(
v2 d

dv
− v d

dv
v

)
Z(v) (3.51)

=
1

2πj
vZ(v) (3.52)

With this result, condition (3.50) becomes:

λ2σ2
v + (λ/2π)v + σ2

β ≥ 0 (3.53)

The left member is a quadratic expression of the parameter λ. Its positivity whatever the
value of λ means that the coefficients of the expression verify:

σvσβ ≥ v/4π (3.54)

The functions for which this product is minimal are such that there is equality in (3.48).
Hence, they are solutions of the equation:

[B − β − jλ(v − v)]Z(v) = 0 (3.55)

and are found to be:

K(v) ≡ e−2πλv v2πλv−r−1−2πjβ (3.56)

These functions, first introduced by Klauder [22], are the analogs of Gaussians in Fourier
theory.
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3.1.3 Extension of the Mellin transformation to distributions

The definition of the transformation has to be extended to distributions to be able to treat
generalized functions such as Dirac’s which are currently used in electrical engineering. Section
2.1.3 can be read at this point for a general view of the possible approaches. Here we only
give a succinct definition that will generally be sufficient and we show on explicit examples
how computations can be performed.

First, a test function space T is constructed so as to contain the functions v2πjβ+r, v >
0, β ∈ IR for a fixed value of r. Examples of such spaces are the spaces T (a1, a2) of section
2.1.3 provided a1, a2 are chosen verifying the inequality a1 < r+1 < a2 [6, 7]. Then the space
of distributions T ′ is defined as usual as a linear space T ′ of continuous functionals on T . It
can be shown that the space T ′ contains the distributions of bounded support on the positive
axis and, in particular, the Dirac distributions.

The Mellin transform of a distribution Z in a space T ′ can always be obtained as the
result of the application of Z to the set of test functions v2πjβ+r, β ∈ IR, i.e. as:

M[Z](β) ≡< Z, v2πjβ+r > (3.57)

With this extended definition, it is easily verified that relations (3.32) and (3.39) still hold.
One more property that will be useful, especially for discretization, is relative to the effect of
translations on the Mellin variable. Computing M[Z] for the value β + c, c real, yields:

M[Z](β + c) = < Z, v2πj(β+c)+r >

= < Zv2πjc, v2πjβ+r > (3.58)

and the result:
M[Z](β + c) =M[Zv2πjc](β) (3.59)

Example 3.1.1 The above formula (3.57) allows to compute the Mellin transform of δ(v−v0)
by applying the usual definition of the Dirac distribution:

< δ(v − v0), φ >= φ(v0) (3.60)

to the function φ(v) = v2πjβ+r, thus giving:

M[δ(v − v0)](β) ≡< δ(v − v0), v2πjβ+r >= v2πjβ+r
0 (3.61)

Example 3.1.2 The geometric Dirac comb In problems involving dilations, it is natural
to introduce a special form of the Dirac comb defined by:

∆r
A(v) ≡

+∞∑
n=−∞

A−nr δ(v −An)

≡
+∞∑

n=−∞
Anr δ(v −A−n) (3.62)
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where A is a positive number. The values of v which are picked out by this distribution form
a geometric progression of ratio A. Moreover, the comb ∆r

a is invariant in a dilation by an
integer power of A. Indeed:

DA∆r
A(v) ≡ Ar+1δrA(Av) (3.63)

=
∞∑

n=−∞
A−(n−1)r δ(v −An−1) (3.64)

= ∆r
A(v) (3.65)

The distribution ∆r
A will be referred to as the geometric Dirac comb and is represented in

figure 3.1.
Distribution ∆r

A does not belong to T ′ and, hence, its Mellin transform cannot be obtained
by formula (3.57). However, the property of linearity of the Mellin transformation and result
(3.61) allow to write:

M[∆r
A](β) =

+∞∑
n=−∞

A2jπβn (3.66)

The right-hand side of (3.66) is a Fourier series which can be summed by Poisson’s formula:

lnA
∞∑

n=−∞
e2jπnβ lnA =

∞∑
n=−∞

δ

(
β − n

lnA

)
(3.67)

This leads to:

M[∆r
A](β) =

1
lnA

+∞∑
n=−∞

δ

(
β − n

lnA

)
(3.68)

Thus the Mellin transform of a geometric Dirac comb ∆r
A on IR+ is an arithmetic Dirac comb

on IR (cf figure 3.1).

Figure 3.1: Geometrical Dirac comb in IR+-space and arithmetical Dirac comb in the Mellin
space

3.1.4 Transformations of products and convolutions

The relations between product and convolution that are established by a Fourier transfor-
mation have analogs here. Classical convolution and usual product in the space of Mellin
transforms correspond respectively to a special invariant product and a multiplicative con-
volution in the original space. The latter operations can also be defined directly by their
transformation properties under a dilation as will now be explained.
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Invariant product The dilation-invariant product of the functions Z1 and Z2 which will
be denoted by the symbol ◦ is defined as:

(Z1 ◦ Z2)(v) = vr+1 Z1(v)Z2(v) (3.69)

The invariance means that a dilation Da on each factor is equivalent to a dilation on the
product, as shown in the following relation:

Da[Z1] ◦ Da[Z2] = Da[Z1 ◦ Z2] (3.70)

Now, we shall compute the Mellin transform of the product Z1 ◦ Z2. According to definition
(3.35), this is given by:

M[Z1 ◦ Z2](β) =
∫ +∞

0
vr+1 Z1(v)Z2(v) v2jπβ+r dv (3.71)

Replacing Z1 and Z2 by their inverse Mellin transforms given by (3.36) and using the orthog-
onality relation (3.19) to perform the v-integration, we obtain:

M[Z1 ◦ Z2](β) =
∫ +∞

−∞
dβ1

∫ +∞

−∞
M[Z1](β1)M[Z2](β2) dβ2 δ(β − β1 − β2) (3.72)

=
∫ +∞

−∞
M[Z1](β1)M[Z2](β − β1) dβ1 (3.73)

where we recognize the classical convolution of the Mellin transforms.

Theorem 3.1.2 . The Mellin transform of the invariant product (3.69) of the two functions
Z1 and Z2 is equal to the convolution of their Mellin transforms:

M[Z1 ◦ Z2](β) = (M[Z1] ∗ M[Z2]) (β) (3.74)

Multiplicative convolution For a given function Z1 (resp Z2), the usual convolution Z1 ∗
Z2 can be seen as the most general linear operation commuting with translations that can be
performed on Z1 (resp Z2). By analogy, the multiplicative convolution of Z1 and Z2 is defined
as the most general linear operation on Z1 (resp Z2) that commutes with dilations. More
precisely suppose that a linear operator A is defined in terms of a kernel function A(v, v′)
according to:

A[Z1](v) =
∫ +∞

0
A(v, v′)Z1(v′) dv′ (3.75)

Then the requirement that transformation Da applied either on Z1 or A[Z1] yield the same
results implies that:

ar+1A[Z1](av) = ar+1
∫ +∞

0
A(v, v′)Z1(av′) dv′ (3.76)

must be true for any function Z1. Comparing (3.76) to (3.75), we thus obtain the following
constraint on the kernel A(v, v′):

A(v, v′) ≡ aA(av, av′) (3.77)

valid for any a. For a = v′−1, we obtain the identity:
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A(v, v′) ≡ 1
v′
A(

v

v′
, 1) (3.78)

which shows that the operator A can be expressed by using a function of a single variable.
Thus any linear transformation acting on function Z1 and commuting with dilations can be
written in the form: ∫ +∞

0
Z1(v′)Z2

(
v

v′

)
dv′

v′
(3.79)

where Z2(v) is an arbitrary function.
It can be verified, by changing variables, that the above expression is symmetrical with

respect to the two functions Z1 and Z2. It defines the multiplicative convolution of these
functions which is usually denoted by Z1 ∨ Z2:

Z1 ∨ Z2 ≡
∫ +∞

0
Z1(v′)Z2

(
v

v′

)
dv′

v′
(3.80)

On this definition, it can be observed that dilating one of the factors Z1 or Z2 of the
multiplicative convolution is equivalent to dilating the result, i.e.:

Da[(Z1 ∨ Z2)(v)] ≡ [Z1 ∨ (DaZ2)](v) (3.81)
≡ [(DaZ1) ∨ Z2](v) (3.82)

For applications, an essential property of the multiplicative convolution is that it is con-
verted into a product when a Mellin transformation is performed.

M[Z1 ∨ Z2](β) =M[Z1](β)M[Z2](β) (3.83)

To prove this result, we write the definition of M[Z1 ∨ Z2](β) which is, according to (3.35)
and (3.83):

M[Z1 ∨ Z2](β) =
∫ ∞
0

v2πjβ+r Z1(v′)Z2(
v

v′
)
dv′

v′
dv (3.84)

The change of variables from v to x = v/v′ yields the result.

Theorem 3.1.3 . The Mellin transform of the multiplicative convolution (3.80) of functions
Z1 and Z2 is equal to the product of their Mellin transforms:

M[Z1 ∨ Z2](β) =M[Z1](β)M[Z2](β) (3.85)

Remark It can be easily verified that the above theorems remain true if Z1, Z2 are distribu-
tions provided the composition laws involved in the formulas may be applied.

3.2 Discretization and fast computation of the transform

Discretization of the Mellin transform (3.35) is performed along the same lines as discretization
of the Fourier transform. It concerns signals with support practically limited, both in v-
space and in β-space. The result is a discrete formula giving a linear relation between N
geometrically spaced samples of Z(v) and N arithmetically spaced samples of M[Z](β) [19,
20, 23]. The fast computation of this discretized transform involves the same algorithms as
used in the Fast Fourier Transformation (FFT).

Before proceeding to the discretization itself, we introduce the special notions of sampling
and periodizing that will be applied to the function Z(v).
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3.2.1 Sampling in original and Mellin variables

Sampling and periodizing are operations which are well defined in the Mellin space of functions
Z̃(β) and can be expressed in terms of Dirac combs. We shall show that the corresponding op-
erations in the space of original functions Z(v) involve the geometrical Dirac combs introduced
in section 3.1.3.

Arithmetic sampling in Mellin space Given a function M(β) ≡ M[Z](β), the arith-
metically sampled function MS(β) with sample interval 1/ lnQ,Q real, is usually defined by:

MS(β) ≡ 1
lnQ

+∞∑
n=−∞

M[Z](β) δ
(
β − n

lnQ

)
(3.86)

Remark that besides sampling, this definition contains a factor 1/ lnQ that is a matter of
convenience.

To compute the inverse Mellin transform of this function MS(β), we remark that, due to
relation (3.68), it can also be written as a product of Mellin transforms in the form:

MS(β) =M[Z](β)M[∆r
Q](β) (3.87)

where ∆r
Q id defined in (3.62). Applying now property (3.83) on the Mellin transform of

multiplicative convolution, we write MS as:

MS(β) =M[Z ∨ ∆r
Q](β) (3.88)

This relation implies that the inverse Mellin transform of the impulse function MS(β) is
the function ZD(v) given by:

ZD(v) ≡ (Z ∨∆r
Q)(v) (3.89)

The definition of ZD can be cast into a more explicit form by using the definition of the
multiplicative convolution and the expression (3.62) of ∆r

Q:

(Z ∨∆r
Q)(v) =

∫ +∞

0
Z

(
v

v′

)[ +∞∑
n=−∞

Q−nr δ(v′ −Qn)

]
dv′

v′
(3.90)

The expression (3.89) finally becomes:

ZD(v) =
+∞∑

n=−∞
Qn(r+1) Z(Qnv) (3.91)

As seen on figure 3.2, function ZD is constructed by juxtaposing dilated replicas of Z. This
operation will be referred to as dilatocycling and the function ZD itself as the dilatocycled
form of Z with ratio Q. In the special case where the support of function Z is the interval
[v1, v2] and the ratio Q verifies Q ≥ v2/v1, the restriction of ZD to the support [v1, v2] is equal
to the original function Z.

Result
The dilatocycled form ZD of Z defined by multiplicative convolution with the geometric

Dirac comb ∆r
Q :

ZD(v) = (Z ∨∆r
Q)(v) (3.92)
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where

∆r
Q(v) ≡

+∞∑
n=−∞

Qnr δ(v −Q−n) (3.93)

is connected by Mellin’s correspondence to the sampled form of M[Z](β) given by:

MS(β) ≡ 1
lnQ

+∞∑
n=−∞

M[Z](β) δ
(
β − n

lnQ

)
(3.94)

Figure 3.2: Correspondence between a dilatocycled form of a function and its Mellin transform

Geometric sampling in the original space Given a function Z(v), its geometrically
sampled version is defined as the the function ZS equal to the invariant product of Z with
the geometric Dirac comb ∆r

q, q real, i.e. as:

ZS ≡ Z ◦∆r
q (3.95)

or, using the definition (3.69) of the invariant product:

ZS(v) = Z(v)
+∞∑

n=−∞
q−nr δ(v − qn) vr+1 (3.96)

=
+∞∑

n=−∞
qn Z(qn) δ(v − qn) (3.97)

This is a function made of impulses located at points forming a geometric progression (figure
3.3).

Let us compute its Mellin transform denoted by MP (β). Using definition (3.95) and
property (3.74), we can write:

MP (β) ≡ M[ZS ](β) (3.98)
= M[Z ◦ ∆r

q](β) (3.99)
= (M[Z] ∗ M[∆r

q])(β) (3.100)

Thus function MP (β) is equal to the convolution betweenM[Z] and the transformM[∆r
q]

which has been shown in (3.68) to be a classical Dirac comb. As a consequence, it is equal to
the classical periodized form of M[Z](β) which is given explicitly by:
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MP (β) ≡ 1
ln q

+∞∑
n=−∞

M[Z]
(
β − n

ln q

)
(3.101)

If the function M(β) ≡M[Z](β) is equal to zero outside the interval [β1, β2], then to avoid
aliasing, the period 1/ ln q must be chosen such that:

1
ln q
≥ β2 − β1 (3.102)

In that case, the functions MP (β) and (1/ ln q)M(β) coincide on the interval [β1, β2].
Result
The geometrically sampled form of Z(v) defined by:

ZS(v) ≡
+∞∑

n=−∞
qn Z(qn) δ(v − qn) (3.103)

is connected by Mellin’s correspondence to the periodized form of M[Z](β) given by:

MP (β) =
1

ln q

∞∑
n=−∞

M[Z](β − n

ln q
) (3.104)

Figure 3.3: Correspondence between the geometrically sampled function and its Mellin trans-
form

3.2.2 The discrete Mellin transform

Let Z(v) be a function with Mellin transform M[Z](β) and suppose that these functions can
be approximated by their restriction to the intervals [v1, v2] and [β1, β2] respectively (see figure
3.4-a). The operations leading to a discretized version of the transform are now detailed. As
will be seen, the procedure is very similar to that used in the Fourier case.

Dilatocycle function Z(v) with ratio Q
This operation leads to the function ZD defined by (3.92). To avoid aliasing, the real

number Q must be chosen such that:

Q ≥ v2
v1

(3.105)

The Mellin transform of ZD is the sampled functionMS defined by (3.94) in terms ofM[Z](β)
(figure 3.4-b).
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Periodize MS(β) with a period 1/ ln q
This is performed by rule (3.104) and yields a function MP

S (β) given by:

MP
S (β) =

1
ln q

∞∑
n=−∞

MS(β − n

ln q
) (3.106)

To avoid aliasing in β-space, the period must be chosen greater than the approximate
support of M[Z](β) and this leads to the condition:

1
ln q
≥ β2 − β1 (3.107)

The inverse Mellin transform of MP
S is the geometrically sampled form of ZD (figure

3.4-c). given, according to (3.103), by:

ZDS (v) =
∞∑

n=−∞
qn ZD(qn) δ(v − qn) (3.108)

The use of (3.94) allows to rewrite definition (3.106) as:

MP
S (β) =

1
ln q lnQ

∞∑
n,p=−∞

M(
p

lnQ
) δ(β − n

ln q
− p

lnQ
) (3.109)

We now impose that the real numbers q and Q be connected by the relation:

Q = qN , N positive integer (3.110)

This ensures that the function MP
S defined by (3.106) is of periodic impulse type which can

be written as:

MP
S (β) =

1
ln q lnQ

∞∑
n,p=−∞

M
(

p

N ln q

)
δ

(
β − nN + p

N ln q

)
(3.111)

or, changing the p-index to k ≡ p+ nN :

MP
S (β) =

1
ln q lnQ

∞∑
n,k=−∞

M
(

k

N ln q
− n

ln q

)
δ

(
β − k

N ln q

)
(3.112)

Thus, recalling definition (3.104):

MP
S (β) =

1
lnQ

∞∑
k=−∞

MP
(

k

lnQ

)
δ

(
β − k

lnQ

)
(3.113)

Connect the v and β samples
This is done by writing explicitly that MP

S as given by (3.113) is the Mellin transform of
ZDS :

MP
S (β) =

∞∑
n=−∞

qn(r+1) ZD(qn) e2jπnβ ln q (3.114)
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This formula shows that qn(r+1) ZD(qn) for different values of n are the Fourier series
coefficients of the periodic function MP

S (β). They are computed as:

ZD(qn) = q−n(r+1) ln q
∫ 1/ ln q

0

1
lnQ

∞∑
k=−∞

δ

(
β − k

lnQ

)
MP

(
k

lnQ

)
e−j2πnβ ln q dβ

=
q−n(r+1)

N

K+N−1∑
k=K

M
(

k

lnQ

)
e−2jπkn/N (3.115)

where the summation is on these values of β lying inside the interval [β1, β2]. The integer K
is thus given by the integer part of β1 lnQ.

Inversion of (3.115) is performed using the classical techniques of discrete Fourier trans-
form. This leads to the discrete Mellin transform formula:

MP
(
m

lnQ

)
=

M+N−1∑
n=M

qn(r+1) ZD(qn) e2jπnm/N (3.116)

where the integer M is given by the integer part of ln v1/ ln q. In fact, since the definition of
the periodized MP contains a factor N/ lnQ = 1/ ln q, the true samples of M(β) are given
by (lnQ/N)MP ( m

lnQ).
It is clear on formulas (3.115) and (3.116) that their implementation can be performed

with a Fast Fourier Transform (FFT) algorithm.

Choose the number of samples to handle
The number of samples N is related to q and Q according to (3.110) by:

N =
lnQ
ln q

(3.117)

The conditions for non-aliasing given by (3.105) and (3.107) lead to the sampling condition:

N ≥ (β2 − β1) ln
(
v2
v1

)
(3.118)

which gives the minimum number of samples to consider in terms of the spreads of Z(v) and
M[Z](β). In practice, the spread of the Mellin transform of a function is seldom known.
However, as we will see in the applications, there are methods to estimate it.

3.2.3 The reconstruction formula

In the same way as the Fourier transformation is used to reconstruct a band-limited function
from its regularly spaced samples, Mellin’s transformation allows to recover a function Z(v)
with limited spread in the Mellin space from its samples spaced according to a geometric
progression. If the Mellin transform M[Z] has a bounded support [−β0/2, β0/2], it will be
equal on this interval to its periodized form with period 1/ ln q = β0. Thus

M[Z](β) =
+∞∑

n=−∞
M[Z]

(
β − n

ln q

)
g

(
β

β0

)
(3.119)

where the window function g is the characteristic function of the [−1/2, 1/2]-interval. The
function Z can be considered as the inverse Mellin transform of this truncated periodized
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Figure 3.4: Construction scheme of the Discrete Mellin Transform. (a) Continuous form of the
spectrum Z(v) and its Mellin transform. (b) Dilatocycling of Z(v) with the ratio Q = v2/v1
and the sampled form of its Mellin transform with rate 1/ lnQ. (c) Geometric sampling with
ratio q (qN = Q) of the dilatocycled form and periodized form with period 1/ ln q of the
sampled Mellin transform. Identification of the N samples in frequency and Mellin spaces
leads to the discrete Mellin transform.

The inverse Mellin transform of this product is the multiplicative convolution of the two
functions Z1 and Z2 defined as

Z1(v) = ln q
+∞∑

n=−∞
qn Z(qn) δ(v − qn) (3.120)

and

Z2(v) =
∫ +∞

−∞
g

(
β

β0

)
v−2jπβ−r−1 dβ (3.121)

= v−r−1 sin (πβ0 ln v)
π ln v

(3.122)

The multiplicative convolution between Z1 and Z2 takes the following form:

Z(v) =
∫ +∞

0
ln q

+∞∑
n=−∞

qn Z(qn)δ(v′ − qn)
(
v

v′

)−r−1 sin
(
πβ0 ln

(
v
v′
))

π ln
(
v
v′
) dv′

v′
(3.123)

and leads to the exact reconstruction formula
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Z(v) = v−r−1
+∞∑

n=−∞
qn(r+1) Z(qn)

sinπ
((

ln v
ln q

)
− n

)
π

((
ln v
ln q

)
− n

) (3.124)

This is the reconstruction formula of a function Z(v) from its geometrically spaced samples
Z(qn).

3.3 Practical use in signal analysis

3.3.1 Preliminaries

As seen above, Mellin’s transformation is essential in problems involving dilations. Thus it
is not surprising that it has come to play a dominant role in the development of analytical
studies of wide-band signals. In fact, expressions involving dilations arise in signal theory
any time the approximation of small relative bandwidth is not appropriate. Recent examples
of the use of the Mellin transform in this context can be found in time-frequency analysis
where it has contributed to the introduction of several classes of distributions [24, 25]. This
fast growing field cannot be explored here but an illustration of the essential role played by
Mellin’s transformation in the analysis of wide-band signals will be given in section 3.3.2 where
the Cramer-Rao bound for velocity estimation is derived [26].

Numerical computation of Mellin’s transform has been undertaken in various domains such
as signal analysis [27], optical image processing [28] or pattern recognition [29]. In the past,
however, all these applications have been restricted by the difficulty of assessing the validity
of the results, due to the lack of definite sampling rules. Such a limitation does not exist any
more as we will show in section 3.3.3 by deriving a sampling theorem and a practical way
to use it. The technique will be applied in sections 3.3.4 and 3.3.5 to the computation of a
wavelet coefficient and of an affine time-frequency distribution [33, 34].

3.3.2 Computation of Cramer-Rao Bounds for Velocity Estimation in radar
theory

[26]
In a classical radar or sonar experiment, a real signal is emitted and its echo is processed in

order to find the position and velocity of the target. In simple situations, the received signal
will differ from the original one only by a time shift and a Doppler compression. In fact, the
signal will also undergo an attenuation and a phase shift; moreover, the received signal will
be embedded in noise.

The usual procedure, which is adapted to narrow-band signals, is to represent the Doppler
effect by a frequency shift [30]. This approximation will not be made here so that the results
will be valid whatever the extent of the frequency band. Describing the relevant signals by
their positive frequency parts (so-called analytic signals), we can write the expression of the
received signal x(t) in terms of the emitted signal z(t) and noise n(t) as:

xa′(t) = a
′−1/2
1 A0 z(a′−1

1 t− a′2) ejφ + n(t) (3.125)

where A0 and φ characterize the unknown changes in amplitude and phase and the vector
a′ ≡ (a′1, a

′
2) represents the unknown parameters to be estimated. The parameter a′2 is the
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delay and a′1 is the Doppler compression given in terms of the target velocity v by:

a′1 =
c+ v

c− v
, c velocity of light (3.126)

The noise n(t) is supposed to be a zero mean gaussian white noise with variance equal to σ2.
Relation (3.125) can be written in terms of the Fourier transforms Z,X,N of z, x, n (defined
by (2.19)):

Xa′(f) = a
′1/2
1 A0 e

−2jπfa′1a
′
2 Z(a′1f) ejφ +N(f) (3.127)

The signal Z(f) is supposed normalized so that:

||Z(f)||2 ≡
∫ ∞
0
|Z(f)|2 df = 1 (3.128)

Hence, the delayed and compressed signal will also be of norm equal to one. Remark that
here we work in the space L2(IR+, f2r+1 df) with r = −1/2 (cf section 3.1.1).

We will consider the maximum-likelihood estimates âi of the parameters a′i. They are
obtained by maximizing the likelihood function Λ(a′,a) which is given in the present context
by:

Λ(a′,a) ≡ 1
2σ2
|A(a′,a)|2 (3.129)

where
A(a′,a) ≡

∫ +∞

0
Xa′(f)Z∗(a1f) e2jπa1a2f df (3.130)

is the broad-band ambiguity function [31].
The efficiency of an estimator âi is measured by its variance σ2

ij defined by:

σ2
ij ≡ E[(âi − ai)(âj − aj)] (3.131)

where the mean value operation E includes an average on noise.
For an unbiased estimator (E(âi) = ai), this variance satisfies the Cramer Rao inequality

[32] given by:
σ2
ij ≥ (J−1)ij (3.132)

where the matrix J , the so-called Fisher information matrix, is defined by:

Jij =

(
−E

[
∂2Λ
∂ai∂aj

])
ij

(3.133)

with the partial derivatives evaluated at the true values of the parameters. The minimum
value of the variance given by:

(σ0
ij)

2 = (J−1)ij (3.134)

is called the Cramer-Rao bound and is attained in the case of an efficient estimator such as
the maximum-likelihood one.

The determination of the matrix (3.133) by classical methods is intricate and does not
lead to an easily interpretable result. On the contrary, we shall see how the use of Mellin’s
transformation allows a direct computation and leads to a physical interpretation of the matrix
coefficients.
The computation of J is done in the vicinity of the value a = a′ which maximizes the likelihood
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function Λ and, without loss of generality, all partial derivatives will be evaluated at the point
a1 = 1, a2 = 0. Using Parseval’s formula (3.37), we can write the ambiguity function A(a′,a)
as:

A(a′,a) =
∫ +∞

−∞
M[X](β)M∗[Za2 ](β) a2jπβ

1 dβ (3.135)

with:
Za2 ≡ Z(f)e−2jπa2f (3.136)

On this form, the partial derivatives with respect to a are easily computed and the result
is: {

∂A

∂a1

}
= 2jπ

∫ +∞

−∞
βM[X](β)M∗[Z](β) dβ (3.137)

{
∂A

∂a2

}
= 2jπ

∫ +∞

−∞
M[X](β)M∗[fZ(f)](β) dβ (3.138)

= 2jπ
∫ +∞

0
f X(f)Z∗(f) df (3.139)

{
∂2A

∂a1∂a2

}
= −4π2

∫ +∞

−∞
βM[X](β)M∗[fZ(f)](β) dβ (3.140)

{
∂2A

∂a2
1

}
= 2jπ

∫ +∞

−∞
β(2jπβ − 1)M[X](β)M∗[Z](β) dβ (3.141)

{
∂2A

∂a2
2

}
= −4π2

∫ +∞

0
f2X(f)Z∗(f) df (3.142)

where the curly brackets mean that the functions are evaluated for the values a1 = a′1 =
1, a2 = a′2 = 0.

The corresponding Fisher information matrix can now be computed. To obtain J11, we
substitute the expression (3.129) in definition(3.133) and use (3.137) and (3.141):

J11 = − 1
σ2

E

[
Re

(
A∗

{
∂2A

∂a2
1

}
+

{∣∣∣∣ ∂A∂a1

∣∣∣∣2
})]

(3.143)

= − 1
σ2

Re
∫ +∞

−∞

∫ +∞

−∞
E [M[X](β1)M∗[X](β2)] M∗[Z](β1)M[Z](β2)

×
[
2jπβ1(2jπβ1 − 1) + 4π2β1β2

]
dβ1 dβ2 (3.144)

The properties of the zero mean white gaussian noise n(t) lead to the following expression for
the covariance of the Mellin transform of X:

E [M[X](β1)M∗[X](β2)] = A2
0M[Z](β1)M∗[Z](β2) + σ2 δ(β1 − β2) (3.145)

Substituting this relation in (3.144), we obtain the expression of the J11 coefficient:
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J11 =
4π2A2

0

σ2
σ2
β (3.146)

where the variance σ2
β of parameter β defined in (3.41) is given explicitly by:

σ2
β =

∫ +∞

−∞
(β − β)2 |M[Z](β)|2 dβ, β =

∫ +∞

−∞
β |M[Z](β)|2 dβ (3.147)

The computation of the J22 coefficient is performed in the same way and leads to:

J22 =
4π2A2

0

σ2
σ2
f (3.148)

where
σ2
f =

∫ +∞

−∞
(f − f)2 |Z(f)|2 df, f =

∫ +∞

−∞
f |Z(f)|2 df (3.149)

The computation of the symmetrical coefficient J12 = J21 is a little more involved. Writing
the definition in the form:

J12 = − 1
σ2

E

[
Re

(
A∗

{
∂2A

∂a1 ∂a2

}
+
{
∂A∗

∂a1

∂A

∂a2

})]
(3.150)

and using relations (3.137)-(3.140), (3.145), we get:

J12 =
4π2A2

0

σ2
Re
[∫ +∞

−∞
β1M∗[fZ(f)](β1)M[Z](β1) dβ1

−
∫ +∞

−∞
M∗[fZ(f)](β1)M[Z](β1) dβ1

∫ +∞

−∞
β2 |M[Z](β2)|2 dβ2

]
(3.151)

This expression is then transformed to the frequency domain using the Parseval formula
(3.37) and the property (3.32) of the operator B defined by equation (3.11) (with r = −1/2).
The result is:

J12 =
4π2A2

0

σ2

[
Re
∫ +∞

0
BZ(f) f Z∗(f) df − β f

]
=

4π2A2
0

σ2

[
M − β f

]
(3.152)

where M is the broad-band modulation index defined by:

M ≡ 1
2π

Im
∫ +∞

0
f2 dZ

∗

df
Z(f) df (3.153)

The inversion of the matrix J just obtained leads according to (3.132) to the explicit
expression of the Cramer-Rao bound for the case of delay and velocity estimation with broad-
band signals:

(σ0
ij)

2 =
σ2

4π2A2
0(σ2

fσ
2
β − (M − β f)2)

 σ2
f β f −M

β f −M σ2
β

 (3.154)
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Relation (3.126) allows to deduce from this result the minimum variance of the velocity
estimator:

E
[
(v − v̂)2

]
=

c2

4
E
[
(a1 − â1)2

]
(3.155)

=
c2

4
(σ0

11)2 (3.156)

Comparing these results to the narrow-band case, we see that the delay resolution measured
by σ0

22 is still related to the spread of the signal in frequency:

(σ0
22)2 ≥ σ2

4π2A2
0

1
σ2
f

(3.157)

while the velocity resolution now depends in an essential way on the spread in Mellin’s space:

E
[
(v − v̂)2

]
≥ c2σ2

16π2A2
0σ

2
β

(3.158)

Thus, for wide-band signals, it is not the duration of the signal that determines the velocity
resolution but the spread in the dual Mellin variable measured by the variance σ2

β.
As an illustrative example, consider the hyperbolic signal defined by:

Z(f) = f−2jπβ0−1/2 (3.159)

Its Mellin transform which is equal to δ(β − β0) can be considered to have zero spread in β.
Hence, such a signal cannot be of any help if seeking a finite velocity resolution.

These remarks can be developed and applied to the construction of radar codes with given
characteristics in the variables f and β [26].

The above results can be seen as a generalization to arbitrary signals of a classical proce-
dure since, in the limit of narrow band, the variance of the velocity estimator can be shown
to tend its usual expression:

E
[
(v − v̂)2

]
=

c2σ2

16π2A2
0f

2
0

σ2
f

σ2
t σ

2
f − (m− f0t0)2

(3.160)

where the modulation index m is given by:

m =
1

2π
Im

∫ +∞

−∞
t z∗(t)

dz

dt
dt =

1
2π

Im
∫ +∞

−∞
t Z(f)

dZ∗

df
df (3.161)

and the variance σ2
t by:

σ2
t =

∫ ∞
−∞

(t− t)2|z(t)|2 dt t =
∫ ∞
−∞

t|z(t)|2 dt (3.162)

3.3.3 Interpretation of the dual Mellin variable in relation to time and
frequency

Consider a signal defined by a function of time z(t) such that its Fourier transform Z(f)
has only positive frequencies (so-called analytic signal). In that case a Mellin transformation
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can be applied to Z(f) and yields a function M[Z](β). But while variables t and f have a
well defined physical meaning as time and frequency, the interpretation of variable β and its
relation to physical parameters of the signal has still to be worked out. This will be done in
the present paragraph, thus allowing a formulation of the sampling condition (3.118) for the
Mellin transform in terms of the time and frequency spreads of the signal.

As seen in section 3.1.1, the Mellin transformM[Z](β) gives the coefficients of the decom-
position of Z on the basis {Eβ(f)}:

Z(f) =
∫ ∞
−∞
M[Z](β)Eβ(f) dβ (3.163)

The elementary parts

Eβ(f) = f−2πjβ−r−1 ≡ f−r−1 ejφ(f) (3.164)

can be considered as filters with group delay given by:

T (f) ≡ − 1
2π

dφ(f)
df

=
β

f
(3.165)

As seen on this expression, the variable β has no dimension and labels hyperbolas in a time-
frequency half-plane f > 0. Hyperbolas displaced in time, corresponding to a group delay law
t = ξ + β/f are obtained by time shifting the filters Eβ to Eξβ(f) defined by:

Eξβ(f) = e−2πjξff−2πjβ−r−1 (3.166)

A more precise characterization of signals (3.164) and hence of variable β is obtained from
a study of a particular affine time-frequency distribution which is to dilations what Wigner-
Ville’s is to frequency translations. We give only the practical results of the study, refering
the interested reader to the literature [24]. The explicit form of the distribution is:

P0(t, f) = f2r+2
∫ +∞

−∞
(λ(u)λ(−u))r+1 Z(fλ(u))Z∗(fλ(−u)) e2jπftu du (3.167)

where function λ is given by:

λ(u) =
ueu/2

2 sinhu/2
(3.168)

This distribution realizes an exact localization of hyperbolic signals defined by (3.166) on
hyperbolas of the time-frequency half-plane as follows:

Z(f) = e−2πjξf f−r−1 f−2jπβ → P0(t, f) = f−1 δ(t− ξ − β/f) (3.169)

It can be shown that the affine time-frequency distribution (3.167) has the so-called to-
mographic property [24] which reads:∫ +∞

−∞
dt

∫ +∞

0
P0(t, f) δ(t− ξ − β/f) f−1 df = |M[Z](β)|2 (3.170)
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Figure 3.5: Time-frequency localization of a signal between hyperbolas with equations t =
ξ + β0/f and t = ξ − β0/f

Formulas (3.169) and (3.170) are basic for the interpretation of the β variable. It can
be shown that for a signal z(t) ↔ Z(f) having a duration T = t2 − t1 and a bandwidth
B = f2 − f1, distribution P0 has a support approximately localized in a bounded region of
the half-plane f > 0 (see figure 3.5) around the time ξ = (t1 + t2)/2 and the mean frequency
f0 = (f1 + f2)/2. Writing that the hyperbolas at the limits of this region have the equation:

t = ξ ± β0/f (3.171)

and pass through the points of coordinates ξ ± T/2, f0 +B/2, we find

β0 = (f0 +B/2)(T/2) (3.172)

The support [β1, β2] of the Mellin transform M[Z](β) can thus be written in terms of B and
T as:

β2 − β1 = 2β0 (3.173)

The condition (3.118) to avoid aliasing when performing a discrete Mellin transform can
now be written in terms of the time-bandwidth product BT and the relative bandwidth R
defined by:

R ≡ B

f0
(3.174)

The result giving the minimum number of samples to treat is:

N ≥ BT (
1
2

+
1
R

) ln
1 +R/2
1−R/2

(3.175)

3.3.4 The Mellin transform and the wavelet transform

[33]
The Mellin transform is well suited to the computation of expressions containing dilated

functions and, in particular, of scalar products such as:

(Z1,DaZ2) = ar+1
∫ +∞

0
Z1(f)Z∗2 (af) f2r+1 df (3.176)

Because of the dilation parameter, a numerical computation of these functions of a by
standard techniques (such as DFT) requires the use of oversampling and interpolation. By
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contrast, the Mellin transform allows a direct and more efficient treatment. The method will
be explained on the example of the wavelet transform for one-dimensional signals. But it can
also be used in more general situations such as those encountered in radar imaging [33].

Let s(t) be a real signal with Fourier transform S(f) defined by:

S(f) =
∫ ∞
−∞

s(t) e−2jπtf dt (3.177)

The reality of s implies that:
S(−f) = S∗(f) (3.178)

Given a real function φ(t) (the so-called mother wavelet), one defines the continuous wavelet
transform of signal s(t) as a function C(a, b) of two variables a > 0, b real given by:

C(a, b) =
1√
a

∫ +∞

−∞
z(t)φ∗

(
t− b
a

)
dt (3.179)

Transposed to the frequency domain by a Fourier transformation and the use of property
(3.178), the definition becomes :

C(a, b) = 2Re
{√

a

∫ +∞

0
Z(f) Φ∗(af) e2jπfb df

}
(3.180)

where Φ denotes the Fourier transform of φ.
If we define the function Zb(f) by:

Zb(f) ≡ Z(f) e2jπbf (3.181)

the scale invariance property (3.39) of the Mellin transform with r = −1/2 and the unitarity
property (3.37) allow to write (3.180) in Mellin’s space as:

C(a, b) =
∫ +∞

−∞
M[Zb](β)M∗[Φ](β) a2jπβ dβ (3.182)

In this form, there are no more dilations and the computation of the wavelet coefficient
reduces to Fourier and Mellin transforms which can all be performed using an FFT algorithm.
First the Mellin transform of the wavelet is computed once and for all. Then, for each value of
b, one computes the Mellin transform of Zb and the inverse Fourier transform with respect to
β of the productM[Zb](β)M∗[Φ](β) . The complexity of this algorithm is given by (2M + 1)
FFT with 2N points if the wavelet coefficients are discretized in (N,M) points on the (a, b)
variables. The signal and the mother wavelet are supposed geometrically sampled with the
same geometric ratio q.

The same procedure can be applied to the computation of the broad band ambiguity
function [31]. This function is used in problems of radar theory involving target detection and
estimation of its characteristics (range, velocity, angle, ...). It is defined for an analytic signal
z(t) with Fourier transform Z(f) by:

X(a, b) =
1√
a

∫ +∞

−∞
z(t) z∗(

t

a
− b) dt (3.183)

=
√
a

∫ +∞

0
Z(f)Z∗(af) e2jπabf df (3.184)

The parameter a and b are respectively called the Doppler compression factor and the
time shift
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3.3.5 Numerical computation of affine time-frequency distributions.

[34]
In this section, the Mellin transformation is aplied to the fast computation of the affine

time-frequency distribution [24] given by:

P0(t, f) = f2r+2−q
∫ +∞

−∞
(λ(u)λ(−u))r+1 Z(fλ(u))Z∗(fλ(−u)) e2jπftu du (3.185)

where the function λ is defined by:

λ(u) =
ue

u
2

2 sinh
(
u
2

) (3.186)

and where r and q are real numbers.
Setting

γ = ft and P̃0(γ, f) = P0(t, f) (3.187)

one can write (3.185) as:

f−r−1+q P̃0(γ, f) =
∫ +∞

−∞
(λ(u)λ(−u))r+1

[
f r+1 Z(fλ(u))Z∗(fλ(−u))

]
e2jπγudu (3.188)

To perform the Mellin transformation of this expression with respect to f , we notice
that the term in brackets represents the invariant product of the two functions of f defined
by Z(fλ(u)) and Z∗(fλ(−u)). By relation (3.74), we know that the Mellin transform of
this product is equal to the convolution of the functions M[Z(fλ(u))] and M[Z∗(fλ(−u))].
Besides, the scaling property (3.39) allows to write:

M[Z(fλ(u))](β) = λ(u)−2jπβ−r−1M[Z](β) (3.189)

and :

M[Z∗(fλ(−u))](β) = λ(−u)−2jπβ−r−1M∗[Z](−β) (3.190)

where
M∗[Z](−β) ≡ [M[Z](−β)]∗ (3.191)

Introducing the notation:

X(β, u) ≡ λ(u)−2jπβM[Z](β) (3.192)

we can write the convolution between (3.189) and (3.190) as:

(λ(u)λ(−u))−r−1
∫ +∞

−∞
X(β1, u)X∗(β1 − β,−u) dβ1 (3.193)

The Mellin transform of expression (3.188) is now written as:

M[f−r−1+qP̃0(γ, f)](β) =
∫ +∞

−∞

[∫ +∞

−∞
X(β1, u)X∗(β1 − β,−u) dβ1

]
e2jπγu du (3.194)
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Figure 3.6: Affine Time-Frequency Representation of a hyperbolic signal

The cross-correlation inside brackets is computed in terms of the Fourier transform of
X(β, u) defined by:

F (θ, u) =
∫ +∞

−∞
X(β, u) e−2jπθβ dβ (3.195)

and (3.194) becomes:

M[f−r−1+qP̃0(γ, f)](β) =
∫ +∞

−∞

∫ +∞

−∞
F (θ, u)F ∗(θ,−u) e2jπθβ e2jπγu dθdu (3.196)

Finally, inverting the Mellin transform by (3.36), recalling (3.187) and taking into account
the property of the integrand in the change u → −u, one obtains the following form of the
affine Wigner function P0:

P0(t, f) = 2Re
{
f−q

∫ +∞

0
F (ln f, u)F ∗(ln f,−u) e2jπtfu du

}
(3.197)

where Re denotes the real part operation. In this form, the numerical computation of P0 has
been reduced to a Fourier transform. The operations leading from Z to F are a Fourier and
a Mellin transform, both of which are performed using the Fast Fourier Transform algorithm.
The approximate complexity of the whole algorithm for computing P0 can be expressed in
terms of the number of FFT performed. If the time-frequency distribution P0(t, f) is charac-
terized by (M,N) points respectively in time and frequency, we have to deal with 2M+1 FFT
of 2N points and N FFT of M points. The figure 3.6 gives an example of affine distribution
computed by this method.
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Table 3.1: Some special functions frequently occurring as Mellin transforms

The gamma function

- Definition
The gamma function Γ(s) is defined on the complex half-plane Re(s) > 0 by the integral:

Γ(s) =
∫ ∞
0

e−t ts−1 dt (3.198)

- Analytic continuation
The analytically continued gamma function is holomorphic in the whole plane except at

the points s = −n, n = 0, 1, 2, ... where it has a simple pole.
- Residues at the poles

Ress=−n(Γ(s)) =
(−1)n

n!
(3.199)

- Relation to the factorial

Γ(n+ 1) = n! (3.200)

- Functional relations

Γ(s+ 1) = sΓ(s) (3.201)

Γ(s)Γ(1− s) =
π

sin(πs)
(3.202)

Γ(
1
2

) =
√
π (3.203)

Γ(2s) = π−1/2 22s−1 Γ(s)Γ(s+ 1/2) (3.204)

(Legendre′s duplication formula)

Γ(ms) = mms−1/2 (2π)(1−m)/2
m−1∏
k=0

Γ(s+ k/m), m = 2, 3, ... (3.205)

(Gauss− Legendre multiplication formula [5])

- Stirling asymptotic formula

Γ(s) ∼
√

2πss−1/2exp[−s(1 +
1

12s
+O(s−2)] s→∞, | arg(s)| < π (3.206)

The beta function
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- Definition

B(x, y) ≡
∫ 1

0
tx−1 (1− t)y−1 dt (3.207)

- Relation to the gamma function

B(x, y) =
Γ(x)Γ(y)
Γ(x+ y)

(3.208)

The psi function (logarithmic derivative of the gamma function)

- Definition

ψ(s) ≡ d

ds
ln Γ(s) (3.209)

= −γ +
∞∑
n=0

(
1

n+ 1
− 1
s+ n

)
(3.210)

- Euler’s constant γ, also called C, is defined by:

γ ≡ −Γ′(1)/Γ(1) (3.211)

and has value γ ∼= 0.577....

Riemann’s zeta function

- Definition

ζ(z, q) ≡
∞∑
n=0

1
(q + n)z

, Re(z) > 1, q 6= 0,−1,−2, ... (3.212)

ζ(z) ≡
∞∑
n=1

1
nz
, Re(z) > 1 (3.213)

- The function ζ(z) is analytic in the whole complex z-plane except in z = 1 where it has a
simple pole with residue equal to +1.
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Table 3.2: Summary of properties of the Mellin transformation

-Definition.
The Mellin transformation of a function f(t), 0 < t <∞ is defined by:

M[f ; s] ≡
∫ ∞
0

f(t)ts−1 dt

and the result is a function holomorphic in the strip Sf of the complex plane s.
When the real part Re(s) ≡ r + 1 of s is held fixed, the Mellin transform is defined by:

M[f ](β) ≡M[f ; r + 1 + 2πjβ]

In that case, it is an isomorphism between the space L2(IR+, v2r+1 dv) of functions f(t) on
(0,∞) equipped with the scalar product:

(f, g) ≡
∫ ∞
0

f(t)g∗(t)t2r+1dt

and the space L2(IR) of functions M[f ](β).
Moreover, the scaled function defined by

Daf(t) ≡ ar+1 f(at)

is transformed according to:

M[Daf ](β) = a−j2πβM[f ](β)

- Inversion formulas.

f(t) = (1/2πj)
∫ a+j∞

a−j∞
M[f ; s] t−s ds

f(t) =
∫ +∞

−∞
M[f ](β) t−2jπβ−r−1 dβ

- Parseval formulas.∫ ∞
0

f(t) g(t) dt =
1

2πj

∫ c+j∞

c−j∞
M[f ; s]M[g; 1− s] ds

∫ ∞
0

f(t) g∗(t)t2r+1 dt =
∫ ∞
−∞
M[f ](β)M∗[g](β) dβ

- Properties. In the following tables a is a real number and k is a positive integer.
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Original function Mellin transform

f(t), t > 0 M[f ; s] ≡
∫ ∞
0

f(t) ts−1 dt Strip of holomorphy

f(t) F (s) Sf

f(at), a > 0 a−sF (s) Sf

f(ta), a real 6= 0 |a|−1F (a−1s) a−1s ∈ Sf

(ln t)k f(t)
dk

dsk
F (s) s ∈ Sf

(t)z f(t), z complex F (s+ z) s+ z ∈ Sf

dk

dtk
f(t) (−1)k (s− k)k F (s− k) s− k ∈ Sf

(s− k)k ≡ (s− k)(s− k + 1)...(s− 1)

(t
d

dt
)k f(t) (−1)k sk F (s) s ∈ Sf

dk

dtk
tk f(t) (−1)k (s− k)k F (s) s ∈ Sf

tk
dk

dtk
f(t) (−1)k (s)k F (s) s ∈ Sf

(s)k ≡ s(s+ 1)...(s+ k − 1)∫ ∞
t

f(x) dx s−1 F (s+ 1)∫ t

0
f(x) dx −s−1 F (s+ 1)∫ ∞

0
f1(τ)f2(t/τ) (dτ/τ) F1(s)F2(s) s ∈ Sf1 ∩ Sf2
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Original function Mellin transform

f(t), t > 0 M[f ](β) ≡
∫ ∞
0

f(t) t2πjβ+r dt

f(t) M(β)

Daf(t) ≡ ar+1 f(at), a > 0 a−2πjβM(β)

t2πjc f(t), c real M(β + c)

−1
2jπ

(
t
d

dt
+ r + 1

)
f(t) βM(β)

- Multiplicative convolution.
It is defined by:

(f ∨ g)(t) ≡
∫ ∞
0

f(τ)f(t/τ) (dτ/τ)

f ∨ δ(t− 1) = f

(
t
d

dt

)k
(f ∨ g) =

[(
t
d

dt

)k
f

]
∨ g

= f ∨
[(
t
d

dt

)k
g

]

(ln t)(f ∨ g) = [(ln t)f ] ∨ g + f ∨ [(ln t)g]

δ(t− a) ∨ f = a−1f(a−1t)

δ(t− p) ∨ δ(t− p′) = δ(t− pp′), p, p′ > 0

δ(k)(t− 1) ∨ f = (d/dt)k(tkf)

- Invariant product.
It is defined by:

(f ◦ g)(t) ≡ tr+1 f(t) g(t)

Da[f ] ◦ Da[g] = Da[f ◦ g]

M[f ◦ g](β) = (M[f ] ∗ M[g]) (β)

- Useful formulas for discretization.
In the following, the variable v goes from 0 to ∞ and Z(v) is a (possibly generalized)

function.
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Geometric Dirac comb :

∆r
Q(v) ≡

+∞∑
n=−∞

Q−nr δ(v −Qn), , Q > 0

Dilatocycled form of function Z:

ZD(v) ≡
+∞∑

n=−∞
Qn(r+1) Z(Qnv), Q > 0

ZD(v) = [∆r
Q ∨ Z](v)

M[ZD](β) =
1

lnQ

+∞∑
n=−∞

M[Z](β) δ
(
β − n

lnQ

)
Geometrically sampled form of function Z:

ZS(v) ≡
+∞∑

n=−∞
qn Z(qn) δ(v − qn)

ZS(v) = (Z ◦ ∆r
q)(v)

M[ZS ](β) =
1

ln q

+∞∑
n=−∞

M[Z]
(
β − n

ln q

)
- Discrete Mellin transform pair.

MP
(

m

N ln q

)
=

M+N−1∑
n=M

qn(r+1) ZD(qn) e2jπnm/N

ZD(qn) =
q−n(r+1)

N

K+N−1∑
k=K

M
(

k

N ln q

)
e−2jπkn/N

N : number of samples
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Table 3.3: Table of Mellin transforms

Original function Mellin transform

f(t), t > 0 M[f ; s] ≡
∫ ∞
0

f(t) ts−1 dt Strip of holomorphy

e−pt, p > 0 p−sΓ(s) Re(s) > 0

H(t− a) tb, a > 0 − a
b+s

b+ s
Re(s) < −Re(b)

(H(t− a)−H(t)) tb − a
b+s

b+ s
Re(s) > −Re(b)

(1 + t)−1 π

sin(πs)
0 < Re(s) < 1

(1 + t)−a
Γ(s)Γ(a−s)

Γ(a) 0 < Re(s) < Re(a)

(1− t)−1 π cot(πs) 0 < Re(s) < 1

H(1− t) (1− t)b−1, Re(b) > 0
Γ(s)Γ(b)
Γ(s+ b)

Re(s) > 0

H(t− 1) (t− 1)−b
Γ(b− s)Γ(1− b)

Γ(1− s)
Re(s) < Re(b) < 1

H(t− 1) sin(a ln t)
a

s2 + a2
Re(s) < −|Im(a)|

H(1− t) sin(−a ln t)
a

s2 + a2
Re(s) > |Im(a)|

(H(t)−H(t− p)) ln(p/t), p > 0
ps

s2
Re(s) > 0

ln(1 + t)
π

s sin(πs)
−1 < Re(s) < 0

H(p− t) ln(p− t) −ps s−1[ψ(s+ 1) + p−1 ln γ] Re(s) > 0
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Original function Mellin transform

f(t), t > 0 M[f ; s] ≡
∫ ∞
0

f(t) ts−1 dt Strip of holomorphy

t−1 ln(1 + t) π
(1−s) sin(πs) 0 < Re(s) < 1

ln|1+t
1−t| (π/s) tan(πs/2) −1 < Re(s) < 1

(et − 1)−1 Γ(s)ζ(s) Re(s) > 1

t−1 e−t
−1

Γ(1− s) −∞ < Re(s) < 1

e−x
2

(1/2)Γ(s/2) 0 < Re(s) < +∞

eiat a−sΓ(s)eiπ(s/2) 0 < Re(s) < 1

tan−1(t)
−π

2s cos(πs/2)
−1 < Re(s) < 0

cotan−1(t)
π

2s cos(πs/2)
0 < Re(s) < 1

δ(t− p), p > 0 ps−1 whole plane

∞∑
n=1

δ(t− pn), p > 0 ps−1ζ(1− s) Re(s) < 0

Jν(t)
2s−1Γ[(s+ ν)/2]

Γ[(1/2)(ν − s) + 1]
−ν < Re(s) < 3/2

+∞∑
n=−∞

p−nr δ(t− pn)
1

ln p

+∞∑
n=−∞

δ(β − n

ln p
) s = r + jβ

p > 0, r real β = Im(s)

tb δ(b+ s) none (analytic functional)
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