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A

. A syntax tree is a planar rooted tree where internal nodes are labeled on a graded set of generators. There is a natural notion of occurrence of contiguous pattern in such trees. We describe a way, given a set of generators G and a set of patterns , to enumerate the trees constructed on G and avoiding . The method is built around inclusion-exclusion formulas forming a system of equations on formal power series of trees, and composition operations of trees. This does not require particular conditions on the set of patterns to avoid. We connect this result to the theory of nonsymmetric operads. Syntax trees are the elements of such free structures, so that any operad can be seen as a quotient of a free operad. Moreover, in some cases, the elements of an operad can be seen as trees avoiding some patterns. Relying on this, we use operads as devices for enumeration: given a set of combinatorial objects we want enumerate, we endow it with the structure of an operad, understand it in term of trees and pattern avoidance, and use our method to count them. Several examples are provided.

The general problem of counting objects is of primary importance in combinatorics. Several approaches exist for this purpose. Here, we focus on a strategy having an algebraic flavor consisting in endowing a set X of combinatorial objects with operations in order to form algebraic structures. The point is that the algebraic study of X (minimal generating sets, relations between generators, morphisms, etc.) leads to enumerative results. Operads [START_REF] Loday | Algebraic Operads[END_REF]Mé15,[START_REF] Giraudo | Nonsymmetric Operads in Combinatorics[END_REF] are very interesting algebraic structures in this context. They encode the notion of substitution of combinatorial objects into another one. Moreover, formal power series on operads [Cha02, Cha08] or colored operads [START_REF] Giraudo | Colored operads, series on colored operads, and combinatorial generating systems[END_REF] (that are generalizations of usual formal power series) offer new methods for enumerative questions. This work is intended to be an application of the theory of operads to combinatorics and enumeration. As our main contribution, we provide a tool to express the Hilbert series (that is, the generating series of the sequence of the dimensions) of an operad given one of its presentations by generators and relations (satisfying some properties). When is an operad on combinatorial objects, this provides a description of the generating series of these objects. This is a consequence of the fact that some operads can be seen as operads of trees avoiding some patterns, and is related with the deeper notions of Koszul operads [START_REF] Ginzburg | Koszul duality for operads[END_REF], Poincaré-Birkhoff-Witt bases for operads [Hof10], and Gröbner bases for operads [DK10].

Our main combinatorial result consists, given a set of syntax trees (that are some labeled planar rooted trees, where labels are taken from a fixed alphabet), to obtain a system of equations expressing the formal sum of all the trees avoiding (as connected components in the trees). The presented solution is built around an inclusion-exclusion formula and uses simple grafting operations on trees. By considering the projection of this system to usual formal power series, this leads to a system of equations for the generating series of the trees avoiding . It is also possible to add formal parameters into these systems to enumerate the trees according to some statistics. Methods to enumerate trees that avoid some patterns have been already provided in [START_REF] Rowland | Pattern avoidance in binary trees[END_REF] for the case of unlabeled binary trees, [START_REF] Gabriel | Pattern avoidance in ternary trees[END_REF] for the case of unlabeled ternary trees, in [START_REF] Parker | The combinatorics of functional composition and inversion[END_REF] and [START_REF] Loday | Inversion of integral series enumerating planar trees[END_REF] for the case of patterns with two internal nodes, and in [KP15] for the general case. Our method differs from the latter one both in the approach and in the obtained systems of equations. Indeed, in the previous reference, the authors use combinatorics and enumerative properties to show algebraic properties on operads (while in the present work, we use operads to obtain combinatorial results and to count objects). Moreover, we obtain different systems of equations and we have fewer requirements about the sets to avoid (they can be infinite, and some of their trees can be factors of other ones). Note that there exist several notions of pattern avoidance in trees [DKS20]. We focus here on contiguous patterns. This document is organized as follows. Section 1 contains elementary definitions about syntax trees and formal power series of trees. In Section 2, we state the main question of the paper about pattern avoidance in syntax trees and provide its main result (Theorem 2.2.4). Next, Section 3 is devoted to explaining how to use nonsymmetric set-operads as devices for the enumeration of families of combinatorial objects. For this, the elementary definitions about operads are exposed, and a notion of refined Hilbert series of an operad depending on an orientation of one its presentations by generators and relations is provided. The document ends with Section 4 where examples of enumerations of some families of combinatorial objects are reviewed. We provide, by using several operad structures, the enumeration of bicolored Schröder trees, Schröder trees, binary trees, -trees, noncrossing trees, Motzkin paths, and directed animals. The tools provided by this work highlight some (already known or not) statistics on these objects.

General notations and conventions. For any integers and , [

] denotes the set { ∈ N :

} and [ ], the set [1 ]. The cardinality of a finite set S is denoted by #S. If is a word, its length is denoted by | | and for any position

∈ [| |],
is the -th letter of .

S

This section begins by setting elementary definitions about syntax trees, the main combinatorial objects of this work. Next, we present series on trees and some operations on them.

1.1. Syntax trees. We set here elementary definitions and notations about graded sets, syntax trees, and composition operations on syntax trees. 1.1.1. Graded sets and alphabets. A graded set is a set G admitting a decomposition as a disjoint union of the form

G := 1 G( ) (1.1.1)
In the sequel, we shall call such a set an alphabet and each of its elements a letter. The arity | | of a letter of G is the unique integer such that ∈ G( ). We say that G is combinatorial if all the G( ) are finite for all 1. In this case, the generating series of G is the series G ( ) defined by

G ( ) := ∈G | | (1.1.2) The coefficient of in G ( ) is #G( ) for any 1.
1.1.2. Syntax trees. Let G be an alphabet. A G-tree (also called G-syntax tree) is a planar rooted tree such that its internal nodes of arity are labeled by letters of arity of G. Unless otherwise specified, we use in the sequel the standard terminology (such as node, internal node, leaf, edge, root, child, etc.) about planar rooted trees [START_REF] Knuth | The Art of Computer Programming, volume 1: Fundamental Algorithms[END_REF] (see also [START_REF] Giraudo | Nonsymmetric Operads in Combinatorics[END_REF]). Let us set here some definitions about G-trees. The degree deg(t) (resp. arity |t|) of a G-tree t is its number of internal nodes (resp. leaves). The only G-tree of degree 0 and arity 1 is the leaf and is denoted by . For any a ∈ G( ), the corolla labeled by a is the tree c(a) consisting in one internal node labeled by a having as children leaves. Given an internal node of t, due to the planarity of t, the children of are totally ordered from left to right and are thus indexed from 1 to the arity of . By assuming that the arity of the root of t is , for any ∈ [ ], the -th subtree of t is the tree t( ) rooted at the -th child of t. Similarly, the leaves of t are totally ordered from left to right and thus are indexed from 1 to |t|. The height of t is the number of internal nodes belonging to a longest path connecting the root of t to one of its leaves. is a G-tree of degree 5, arity 8, and height 3. Its root is labeled by c and has arity 3. Moreover, we have

t(1) = b = c(b) t(2) = t(3) = c a a (1.1.4)
Given an alphabet G, we denote by S(G) the graded set of all the G-trees where S(G)( ) is the subset of S(G) restrained on the G-trees of arity . Observe that when G is combinatorial and G(1) = ∅, S(G) is combinatorial. In this case, the generating series S(G) ( ) of S(G), counting its elements with respect to their arities, satisfies 1.2. Series on combinatorial sets. We set here elementary definitions and notations about formal power series on arbitrary sets and about series on trees. 1.2.1. Series on a set. Let K be any field of characteristic zero. It is convenient, for enumerative purposes, to consider that K is simply the field Q.

S(G) ( ) = + G S(G) ( ) ( 1 
If X is a set, the linear span of X is denoted by K X . The dual space of K X , denoted by K X is by definition the space of the maps f :

X → K, called X-series. Let f ∈ K X . The coefficient f( ) of any ∈ X in f is denoted by f . The support of f is the set Supp(f) := { ∈ X : f = 0} We say that ∈ X appears in f if ∈ Supp(f)
. By exploiting the vector space structure of K X , any X-series f expresses as

f = ∈X f (1.2.1)
This notation using potentially infinite sums of elements of X accompanied with coefficients of K is common in the context of formal power series. In the sequel, we shall define and handle some X-series using the notation (1.2.1).

If P is a predicate on X, that is, for any ∈ X, either P( ) holds or P( ) does not hold, the predicate series of P is the series pr(P) :

= ∈X P( ) (1.2.2)
Moreover, for any subset Y of X, the characteristic series ch(Y ) of Y is the predicate series of P where P( ) holds if and only if ∈ Y . If P 1 and P 2 are two predicates on X, we denote by P 1 ∧ P 2 (resp. P 1 ∨ P 2 ) the predicate wherein, for any ∈ X, (P 1 ∧ P 2 )( ) (resp. (P 1 ∨ P 2 )( )) holds if and only if P 1 ( ) and P 2 ( ) (resp. P 1 ( ) or P 2 ( )) hold.

Lemma 1.2.1. Let X be a set and P 1 , . . . , P , 1, be predicates on X. In K X , we have

pr   ∈[ ] P   = 1 { 1 }⊆[ ] (-1) 1+ pr   ∈[ ] P   (1.2.3)
Proof. Let f := pr(P 1 ) + pr(P 2 ) -pr(P 1 ∧ P 2 ) obtained from the right member of (1.2.3) in the particular case where = 2. In f, each ∈ X has a coefficient 0 or 1 according to the following rules:

1. if not P 1 ( ) and not P 2 ( ), then the coefficient of is 0 + 0 -0 = 0; 2. if P 1 ( ) and not P 2 ( ), then the coefficient of is 1 + 0 -0 = 1; 3. if not P 1 ( ) and P 2 ( ), then the coefficient of is 0 + 1 -0 = 1; 4. if P 1 ( ) and P 2 ( ), then the coefficient of is 1 + 1 -1 = 1.

Therefore, f is the series pr(P 1 ∨ P 2 ), so that (1.2.3) holds for = 2. Moreover, since (1.2.3) obviously holds when = 1, by induction on , the inclusion-exclusion formula of the statement of the lemma follows.

1.2.2. Series on syntax trees. Let G be an alphabet. We call G-tree series each series of K S(G) . For any 1, the composition product of G-tree series is the product

• : K S(G) ⊗ K S(G) ⊗ → K S(G) (1.2.4)
defined for any G-tree series f and g 1 , . . . , g by

f •[g 1 g ] := t∈S(G)( ) s 1 s ∈S(G)   t f ∈[ ] s g   t • [s 1 s ] (1.2.5)
Observe that this product is linear in all its inputs, and that it can be seen as an extension by linearity of the full composition product of G-trees.

1.2.3. Generating series. Let us define from G the set

Q G := { a : a ∈ G} (1.2.6)
of formal parameters. The usual set of the commutative generating series on the set

{ } ∪ Q G of parameters is denoted by K Q G .
The For any G-tree series f, the enumerative image of f is the generating series en(f). By definition, the coefficient of

α 1 a 1 α a 1, 0, α 0, ∈ [ ],
in the enumerative image of the characteristic series of a set S of G-trees is the number of trees t of S having as arity, as degree, and α 1 a 1 α a as trace. Observe that for any alphabet G, since there are finitely many G-trees having a fixed trace, the enumerative image of any G-tree series is always well-defined. Moreover, when G is combinatorial and G(1) = ∅, there are finitely many G-trees having a given arity 1. For this reason, for any set S of G-trees, the specialization ch(S) | :=1 a :=1 a∈G is well-defined and is the series wherein the coefficient of is the number of G-trees of S of arity . Observe finally that when G is finite, there are finitely many G-trees having a given degree 0. For this reason, the specialization ch(S) | :=1 a :=1 a∈G is well-defined and is the series wherein the coefficient of is the number of G-trees of S of degree .

Proposition 1.2.2. For any alphabet G, any G-tree t of arity 1, and any G-tree series f 1 , . . . , f ,

en(t •[f 1 f ]) = 1 |t| en(t) ∈[ ] en(f ) (1.2.10)
Proof. The statement of the proposition follows by computing the enumerative image of the right member of (1.2.5).

Proposition 1.2.2 admits the following practical consequence. Assume that we have a set S of G-trees we want enumerate (with respect to the arities and the traces of its elements). A way to accomplish this consists in providing an expression for en(ch(S)). In the case where we have a description of ch(S) as an expression using the sum, the multiplication by a scalar, and the composition product of G-tree series, we obtain thanks to Proposition 1.2.2 an expression for en(ch(S)) using only the sum, the multiplication by a scalar, and the multiplication product of generating series. We shall use this observation in the sequel to obtain systems of equations of generating series from systems of equations of tree series.

T

This section deals with two notions of pattern avoidance in syntax trees: factor-avoidance and prefix-avoidance. The aim is to describe a way to enumerate the syntax trees factoravoiding a set of patterns. For this, we begin by introducing some technical tools. Then, we state our main result, provide some of its consequences, and finish by reviewing some examples.

2.1. Patterns in syntax trees. The notions of prefix, factor, and suffix in syntax trees are set here. Their immediate properties are stated.

2.1.1. Factors, prefixes, and suffixes in trees. Let G be an alphabet and let t be a G-tree. When t expresses as

t = r • s • r 1 r |s| (2.1.1)
for some G-trees s, r, and r 1 , . . . , r |s| , and ∈ [|r|], s is a factor of t and this property is denoted by s f t. Intuitively, this says that one can put down s at a certain place into t, by possibly superimposing leaves of s and internal nodes of t. When r = in (2.1.1), s is a prefix of t and this property is denoted by s p t. Intuitively, this says that s is a factor of t wherein the root of s can be put down onto the root of t. Finally, when r = for all Proof. The fact that f , p , and s are order relations is straightforward from their definitions. Moreover, since for any G-trees s and t, s p t implies s f t, the second part of the statement of the proposition holds.

∈ [|s|] in (2.1.1), s is a suffix of t
When s is not a factor (resp. a prefix) of t, t factor-avoids (resp. prefix-avoids) s. 

) such that s = a • [s(1) s( )], t = a • [t(1) t( )]
, and for all ∈ [ ], s( ) p t( ).

Proof. This follows directly from the definition of the relation p .

2.1.2. Tree series avoiding factors. For any subset of S(G) \ {} let P be the predicate on S(G) wherein P (t) holds if and only f t. Let also F( ) be the G-tree series defined by F( ) := pr(P ) (2.1.4)

In other terms, F( ) is the characteristic series of all G-trees factor-avoiding all trees of . In this context, we say that the elements of are patterns. Notice that we consider only sets of patterns such that / ∈ since there exists no G-tree factor-avoiding . Notice also that, for the while, there is no restriction on G or . This set of patterns can be infinite, and some trees can be themselves factors of another one. The aim of the next section is to provide a system of equations to describe F( ) within the more general possible context.

Pattern avoidance and enumeration.

We provide here a way to obtain a system of equations to describe the G-tree series F( ). For this, we start by introducing tools, namely consistent words and admissible trees. From now, to not overload the notation, sets of patterns are denoted by omitting the braces and the commas. Hence, sets of patterns can be seen as unordered forests of G-trees without repeated trees. In other words, a is the subset of of the patterns having roots labeled by a. A word := ( 1) where each is a subset of S(G), ∈ [ ], is a -consistent if for any s ∈ a , there is an ∈ [ ] such that s( ) = and s( ) ∈ . Observe that when c(a) ∈ , there is no a -consistent words. Moreover, a G-tree t is -admissible if the root of t is labeled by a and for all ∈ [ ], t( ) prefix-avoid .

For instance, by considering the set (2.2.1) of patterns, the word

:=    a b c a a a a    (2.2.3) is c -consistent. Moreover, the tree t := c a c c a b (2.2.4)
is c -admissible. Observe however that t does not factor-avoids or c .

Lemma 2.2.1. Let G be an alphabet, be a subset of S(G) \ {} a ∈ G, and be a a -consistent word. If t is an -admissible G-tree, then t prefix-avoids a .

Proof. Let us denote by the arity of a. Since t is -admissible, for all ∈ [ ] and s ∈ , we have s p t( ). Since for any r ∈ a , there is a ∈ [ ] such that r( ) = and r( ) ∈ , we have in particular that r( ) p t( ). Since moreover the root of t is labeled by a, by Lemma 2.1.2, one deduces that s p t. If ( 1) and ( 1) are two words of a same length where each and is a subset of S(G), their sum is the word ( 1)

1 := 1 ∪ 1 ∪ (2.2.5) A a -consistent word ( 1 ) is minimal if any decomposition ( 1 ) = 1 1 (2.2.6)
where ( 1) is a a -consistent word and ( 1) is a word where each , ∈ [ ], is a subset of S(G), implies ( 1) = ( 1 ). Intuitively, this says that a aconsistent word is minimal if the suppression of any tree in one of its letters leads to a word which is not a -consistent. We denote by M( a ) the set of all minimal a -consistent words.

For instance, by considering the set (2.2.1) of patterns,

M( a ) = c ∅ (2.2.7a) M( b ) = {(∅ ∅)} (2.2.7b) M( c ) =    a b a a b ∅ a   a b c c ∅ ∅      (2.2.7c)
For any G-tree, we denote by Pref(t) the set of all prefixes of t.

Lemma 2.2.2. Let G be an alphabet and be a subset of S(G)\{} If t is a G-tree having its root labeled by a ∈ G and prefix-avoiding a , then there is a minimal a -consistent word such that t is -admissible.

Proof. Let us denote by the arity of a and let := ( 1 ) be the word of subsets of S(G) defined by := S(G) \ Pref(t( )) Since t prefix-avoids a , by Lemma 2.1.2, for any r ∈ a , there is an ∈ [ ] such that r( ) = and r( ) p t( ). This leads to the fact that r( ) / ∈ Pref(t( )), so that r( ) ∈ . For this reason, is a -consistent. Moreover, it follows directly from the definition of that t is -admissible. Finally, by definition of minimal a -consistent words, there exists a minimal a -consistent word := ( 1) such that ⊆ for all ∈ [ ]. The statement of the lemma follows.

By combining Lemmas 2.2.1 and 2.2.2 together, it follows that for any subset of S(G) \ {} and any letter a ∈ G, a G-tree t having its root labeled by a prefix-avoids if and only if there exists a minimal a -consistent word such that t is -admissible.

Lemma 2.2.3. Let G be an alphabet, and be two subsets of S(G) \ {} and t be a G-tree having its root labeled by a ∈ G( ). Then, t factor-avoids and prefix-avoids if and only if for all ∈ [ ], t( ) factor-avoid and there exists a minimal ( ∪ ) aconsistent word such that t is -admissible.

Proof. Assume that t factor-avoids and prefix-avoids . The fact that t factor-avoids implies in particular that t prefix-avoids (see Proposition 2.1.1). Hence, t prefix-avoids ∪ . Now, by Lemma 2.2.2, and since the root of t is labeled by a, there exists a minimal ( ∪ ) a -consistent word such that t is -admissible. Conversely, assume that for all ∈ [ ], t( ) factor-avoid and that there exists a minimal ( ∪ ) a -consistent word such that t is -admissible. By Lemma 2.2.1, t prefix-avoids ( ∪ ) a . Therefore, since t prefix-avoids and since for each ∈ [ ], t( ) factor-avoids , we have that t factoravoids . Since moreover t prefix-avoids , we finally have that t factor-avoids and prefix-avoids . In other terms, F( ) is the characteristic series of all G-trees factor-avoiding all trees of and prefix-avoiding all trees of . Since F( ∅) = F( ) we can regard F( ) as a refinement of F( ). Observe also that F( ) = F( ) for all subsets of . As a side remark, observe that F(∅ ) is the characteristic series of the G-trees prefix-avoiding . Theorem 2.2.4. Let G be an alphabet, and and be two subsets of S(G)\{} such that for any a ∈ G, there are finitely many minimal ( ∪ ) a -consistent words. The G-tree series F( ) satisfies

Equations

F( ) = + 1 a∈G( ) 1 { (1) ( ) }⊆M(( ∪ ) a ) ( 1 )= (1) ••• ( ) (-1) 1+ a •[F( 1 ) F( )]
(2.2.9)

Proof. For any a ∈ G( ) and any ∈ M(( ∪ ) a ), let P a be the predicate on S(G) wherein P a (t) holds if and only if f t, p t, and t is -admissible. As a consequence of Lemma 2.2.3, we have

pr(P a ) = a •[F( 1 ) F( )]
(2.2.10) Now, observe that for any ∈ M(( ∪ ) a ) the predicates P a and P a ∧ P a are equal. Observe also that the characteristic series f a of the G-trees factor-avoiding , prefix-avoiding , and with a root labeled by a, satisfies

f a = pr   ∈M(( ∪ ) a ) P a   (2.2.11)
Since, by hypothesis, M(( ∪ ) a ) is finite, these three previous properties lead, by using Lemma 1.2.1, to the relation

f a = 1 { (1) ( ) }⊆M(( ∪ ) a ) ( 1 )= (1) ••• ( ) (-1) 1+ a •[F( 1 ) F( )]
(2.2.12)

Finally, since any tree factor-avoiding and prefix-avoiding can be either empty of have a root labeled by a for any a ∈ G, we have

F( ) = + a∈G f a (2.2.13)
This last relation shows that (2.2.9) holds. Let us consider an example brought by Theorem 2.2.4 by considering the set (2.2.1) of patterns. We have

F( ∅) = + a • F c F( ∅) + b •[F( ∅) F( ∅)] + c • F a F b F a + c • F a b F( ∅) F a + c •    F     a b c c     F( ∅) F( ∅)     -c • F a b F b F a -c •    F     a b c c     F b F a     -c •    F     a b c c     F( ∅) F a     + c •    F     a b c c     F b F a     (2.2.14)
Observe that the last term of (2.2.14) is the opposite of the antepenultimate term so that they annihilate.

2.3. Properties and applications. Consequences of Theorem 2.2.4 are now presented.

In particular, we explain how to obtain a system of equations of generating series to enumerate the syntax trees factor-avoiding a set of patterns and prefix-avoiding a set of patterns. We also apply the aforementioned result for particular sets of patterns consisting in stringy trees.

Systems of equations. Given two subsets

and of S(G) \ {} satisfying the conditions of Theorem 2.2.4, one can express the series F( ) through (2.2.9). Some other series F(

) could appear in the expression, and these series can themselves be expressed through (2.2.9) when the conditions of the theorem are satisfied. When it is the case, Theorem 2.2.4 leads to a (possibly infinite) system of equations describing the series F(

), called the system of F( ).

Lemma 2.3.1. Let G be an alphabet, be a subset of S(G) \ {} and a ∈ G( ). If a is finite, then the set of all minimal a -consistent words is finite and its cardinality is no greater than # a .

Proof. We proceed by induction on the cardinality of a . If = 0, the only a -consistent word is the word ( 1) such that := ∅ for all ∈ [ ]. Hence, the statement of the lemma holds in this case. Assume now that the statement of the lemma holds when a has cardinality . Let s be a G-tree having its root labeled by a. If := ( 1) is a a -consistent word, when ∈ [ ] is an index such that s( ) = , let us denote by ( ) := ( 1 ) the word defined by := ∪ {s( )} and := for any ∈ [ ] \ { }. By construction, ( ) is a minimal ( ∪ {s}) a -consistent word and there are at most such words. By induction hypothesis, there are at most minimal a -consistent words and therefore, at most +1 minimal ( ∪ {s}) a -consistent words.

For any G-tree, we denote by Suff(t) the set of all suffixes of t.

Proposition 2.3.2. Let G be an alphabet, and and be two subsets of S(G) \ {} If and are finite, then the system of F(

) is well-defined and contains finitely many equations.

Proof. Let a ∈ G( ). Since and are finite, ( ∪ ) a is finite. Therefore, by Lemma 2.3.1, M(( ∪ ) a ) is finite. Moreover, any minimal ( ∪ ) a -consistent word ( 1) is such that each , ∈ [ ], contains only suffixes of trees of ( ∪ ) a . For this reason, all terms F( ) appearing in the equation (2.2.9) of F( ) satisfy

⊆ t∈ ∪ Suff(t) (2.3.1)
Since any G-tree has a finite number of suffixes, there are finitely many sets satisfying (2.3.1). The statement of the proposition follows. Proposition 2.3.4. Let G be an alphabet, and and be two subsets of S(G) \ {} such that for any a ∈ G, ( ∪ ) a is finite. The generating series F( ) satisfies

F( ) = + 1 a∈G( ) a 1 { (1) ( ) }⊆M(( ∪ ) a ) ( 1 )= (1) ••• ( ) (-1) 1+ ∈[ ] F( ) (2.3.5)
Proof. Relation (2.3.5) is obtained by considering the enumerative images of the left and right members of (2.2.9) provided by Theorem 2.2.4, together with Proposition 1.2.2.

Avoiding stringy trees.

A G-tree t is stringy if the height of t is equal to the degree of t. This is equivalent to the fact that any internal node of t has at most one child being an internal node.

For any set of G-trees, a ∈ G( ), and ∈ [ ], let

∂ a ( ) := {s ∈ S(G) : a • s ∈ } (2.3.6)
In other words, ∂ a ( ) is the set of the G-trees obtained by keeping the -th subtrees of the trees whose roots are labeled by a in .

Proposition 2.3.5. Let G be an alphabet and and be two subsets of S(G) \ {} consisting only in stringy trees. The G-tree series F( ) satisfies

F( ) = + 1 a∈G( ) c(a) / ∈ ∪ a • F( ∂ a 1 ( ∪ )) F( ∂ a ( ∪ )) (2.3.7)
Proof. Let a ∈ G( ). When c(a) is in ∪ , by definition of consistent words, there is no ( ∪ ) a -consistent word. When c(a) is not in ∪ , by definition of minimal consistent words, the only minimal ( ∪ ) a -consistent word is the word := ( 1 ) where := ∂ a ( ∪ ) for any ∈ [ ]. Now, (2.3.7) is a consequence of Theorem 2.2.4.

Let us call G-word any G-tree where G is an alphabet concentrated in arity 1. This designation is justified by the fact that one can encode any word a 1 a on G through the tree a 1 • 1 • • • • 1 a . When contains only G-words different from the leaf, specifies forbidden configurations of word factors. Since a G-word is obviously stringy, Proposition 2.3.5 provides in this context a system of equations to describe the series of words avoiding factors. This problem consisting in enumerating words avoiding as factors a given set was originally stated and solved in [GJ79] (see also [START_REF] Noonan | The Goulden-Jackson cluster method: extensions, applications and implementations[END_REF]).

Besides, when G is any alphabet, let us call G-edge any G-tree of degree 2. This appellation is justified by the fact that any tree of degree 2 contains exactly one edge connecting two internal nodes. When contains only G-edges, specifies forbidden configurations of edges. Since a G-edge is obviously stringy, Proposition 2.3.5 provides in this context a system of equations to describe the series of trees avoiding edges. This particular case of pattern avoidance in trees was studied in [START_REF] Loday | Inversion of integral series enumerating planar trees[END_REF] (see also [START_REF] Parker | The combinatorics of functional composition and inversion[END_REF]).

Sets of patterns for some algebraic series. Let us assume here that K is the field

Q. A series f of K is N-algebraic if f satisfies the equation f = 0 P f (2.3.8)
where is a certain nonnegative integer, for all 0 , the P are polynomials of Q having all coefficients in N, and 0 P 1 = 0. For instance, the series f satisfying

f = + 3 + + 2 f + 1 + 2 3 f 2 (2.3.9) is N-algebraic.
Proposition 2.3.6. Let f be an N-algebraic series of the form (2.3.8) such that 0 P 0 = 0 and 1 P 0 = 1. Let the alphabet G := 2 G( ) where, for any 2,

G( ) := 0 + = a ( ) : 1 P (2.3.10)
and the set of patterns

:= a ( ) ∈G ∈[ ] a ( ) • b : b ∈ G (2.3.11)
The specialization F( ∅) | :=1 a :=1 a∈G satisfies the same algebraic equation as the one satisfied by f.

Proof. Observe that contains only stringy trees. Therefore, the characteristic series F( ∅) of the trees factor-avoiding is described by Proposition 2.3.5 and satisfies 

F( ∅) = + a ( ) ∈G a ( ) •  F( ) F( ) × F( ∅) F( ∅) ×   (2.
F( ∅) = + a ( ) ∈G a ( ) F( ) F( ∅) (2.3.13)
where F( ) = . The statement of the proposition follows.

Observe that the alphabet G provided by Proposition 2. Let us consider for example the series f of (2.3.9). The alphabet and set of patterns specified by Proposition 2.3.6, are By Proposition 2.3.5, we obtain the system

G := a (1) 0 3 a (1) 1 1 a (1) 1 2 a (1) 2 0 a (1) 2 3 a (2) 2 3 (2.3.16) and :=            a (1) 0 3 a (1) 0 3 a (1) 1 1 a (1) 0 3 a (2) 2 3 a (1) 0 3 a (1) 0 3 a (2) 2 3 a (1) 0 3 a (2) 2 3 a (2) 2 3 a (2) 2 3            (2.3.17) The cardinality of is 6 × (1 × 3 + 1 × 1 + 1 × 2 + 2 × 3) = 72
F( ∅) = + ∈N a • F a F( ∅) (2.3.19a) F a = + ∈N = a • F a F( ∅) ∈ N (2.3.19b)
for the G-trees factor-avoiding . Observe that we work here with an infinite alphabet and an infinite set of stringy patterns. This system contains an infinite number of equations.

• Example 2. Let the alphabet G := G(1) := {a b} and the set of patterns

:=    a • 1 b • 1 • • • • 1 b × • 1 a : ∈ N    (2.3.20)
By Proposition 2.3.5, we obtain the system

F( ∅) = + a •[F( )] + b •[F( ∅)] (2.3.21a) F( ) = + b •[F( )] (2.3.21b)
for the G-trees factor-avoiding , where

:= ∂ a 1 ( ) =    b • 1 • • • • 1 b × • 1 a : ∈ N    (2.3.22)
Observe that even if is an infinite set of stringy patterns, this system contains a finite number of equations. By Proposition 2.3.4, we obtain the system

F( ∅) = + a F( ) + b F( ∅) (2.3.23a) F( ) = + b F( ) (2.3.23b)
for the enumerative image of the characteristic series of the G-trees factor-avoiding .

• Example 3. Let the alphabet G := G(2) := {a : ∈ Z} and the set of patterns

:=      a a : ∈ Z      ∪      a a : ∈ Z      (2.3.24)
By a direct inspection of , there is a one-to-one correspondence between the set of the trees factor-avoiding and the set of increasing binary trees, which are binary trees where internal nodes are labeled on Z in such a way that the label of any node is smaller than the ones of its children. By Proposition 2.3.5, we obtain the system

F( ∅) = + ∈Z a • F ( ) F ( ) (2.3.25a) F ( ) = + ∈Z +1 a • F ( ) F ( ) ∈ Z (2.3.25b)
for the G-trees factor-avoiding , where for any ∈ Z,

( ) := a : ∈ Z (2.3.26)
Observe that we work here with an infinite alphabet and an infinite set of stringy patterns. This system contains an infinite number of equations. By Proposition 2.3.5, we obtain the system

F( ∅) = + a •    F     a a     F     a a a         (2.3.28a) F     a a     = + a •    F     a a a     F     a a a         (2.3.28b) F     a a a     = + a •    F     a a     F     a a a a a         (2.3.28c) F     a a a     = (2.3.28d) F     a a a a a     = + a •    F     a a a     F     a a a a a         (2.3.28e)
for the G-trees factor-avoiding . Observe that we work here with a finite alphabet and a finite set of stringy patterns. The set of patterns considered here comes from an example appearing in [KP15]. Our system shown here is different from the ones presented in this cited work.

• Example 5. Let the alphabet G := G(2) := {a 1 a 2 } and the set of patterns

:= a 1 a 2 a 1 a 1 a 2 a 2 a 2 a 2 a 1 a 2 a 2 a 2
(2.3.29)

A direct inspection of shows that a G-tree factor-avoids if and only if any internal node labeled by a 2 have at least one leaf as a child. By Theorem 2.2.4, we obtain the system

F( ∅) = + a 1 •[F( ∅) F( ∅)] + a 2 • F( ∅) F a 1 a 2 + a 2 • F a 1 a 2 F( ∅) -a 2 • F a 1 a 2 F a 1 a 2 (2.3.30a) F a 1 a 2 = (2.3.30b)
for the G-trees factor-avoiding . We work here with a finite alphabet and a finite set of non-stringy patterns.

O , ,

This section is devoted to using operads as tools to enumerate families of combinatorial objects, jointly with the results presented in the previous sections enumerating trees factoravoiding some patterns.

3.1. Nonsymmetric set-operads. We recall here the elementary notions about operads employed thereafter. They mainly come from [START_REF] Giraudo | Nonsymmetric Operads in Combinatorics[END_REF].

Operad axioms.

A nonsymmetric operad in the category of sets, or a nonsymmetric operad for short, is a graded set together with maps

• : ( ) × ( ) → ( + -1) 1 1 (3.1.1)
called partial compositions, and a distinguished element 1 ∈ (1), the unit of . This data has to satisfy, for any ∈ , the three relations

( • ) • + -1 = • • 1 | | 1 | | (3.1.2a) ( • ) • +| |-1 = • • 1 < | | (3.1.2b) 1 • 1 = = • 1 1 | | (3.1.2c)
Since we consider in this work only nonsymmetric operads, we shall call these simply operads.

Elementary definitions.

Given an operad , one defines the full composition maps of as the maps

• : ( ) × ( 1 ) × • • • × ( ) → ( 1 + • • • + ) 1 1 1 1 (3.1.3)
defined, for any ∈ ( ) and 1 ∈ , by

• [ 1 ] := ( (( • ) • -1 -1 ) ) • 1 1 (3.1.4)
When is combinatorial as a graded set, is combinatorial. In this case, the Hilbert series ( ) of is the generating series ( ). If 1 and 2 are two operads, a map φ : 1 → 2 is an operad morphism if it respects arities, sends the unit of 1 to the unit of 2 , and commutes with partial composition maps. We say that 2 is a suboperad of 1 if 2 is a graded subset of 1 , 1 and 2 have the same unit, and the partial compositions of 2 are the ones of 1 restricted on 2 . For any subset G of , the operad generated by G is the smallest suboperad G of containing G. When G = and G is minimal with respect to the inclusion among the subsets of G satisfying this property, G is a minimal generating set of and its elements are generators of . An operad congruence of is an equivalence relation ≡ respecting the arities and such that, for any ∈ , ≡ and

≡ implies • ≡ • for any ∈ [| |].
The ≡-equivalence class of any ∈ is denoted by [ ] ≡ . Given an operad congruence ≡, the quotient operad / ≡ is the operad on the set of all ≡-equivalence classes and defined in the usual way.

3.2. Presentations, rewrite relations, and bases. We recall the notion of presentation by generators and relations of an operad. By using rewrite systems on syntax trees, this leads to the notion of bases of an operad. This notion is crucial to see the elements of an operad satisfying some conditions as syntax trees factor-avoiding some patterns.

Free operads and presentations.

For any graded set G, the free operad on G is the operad FO(G) wherein for any 1, FO(G)( ) is the set S(G)( ) of all G-trees of arity . The partial compositions • of FO(G) are the partial compositions of G-trees (see Section 1.1.3). A presentation of an operad is a pair (G ≡) such that G is a graded set, ≡ is an operad congruence of FO(G), and is isomorphic to FO(G)/ ≡ . Let us also define the evaluation map ev : FO(G) → as the unique surjective operad morphism satisfying, for any a ∈ G, ev(c(a)) = a. A treelike expression on G of an element of is a G-tree of the fiber ev -1 ( ).

Rewrite rules on trees and pattern avoidance.

We explain here and in the next section a useful link for our purposes between presentations of operads and pattern avoidance in syntax trees. This link passes by rewrite rules on syntax trees. Notations and notions about general rewrite rules used here can be found in [START_REF] Baader | Term rewriting and all that[END_REF].

A rewrite rule on G-trees is an ordered pair (s s ) of G-trees such that |s| = |s |. A set of rewrite rules defines a binary relation on FO(G) for which we denote by s s the fact that (s s ) ∈ . For any set of rewrite rules, we denote by the rewrite relation induced by as the binary relation satisfying Let us denote by the set of the G-trees appearing as left members of .

r • s • r 1 r |s| r • s • r 1 r |s| (3.2.
Lemma 3.2.1. If is a set of rewrite rules on G-trees, then is the set of all the G-trees factor-avoiding .

Proof. Assume first that t is a G-tree factor-avoiding . Then, due to the definition (3.2.1) of , t is not rewritable by . Hence, t is a normal form for . Conversely, assume that t ∈

. In this case, by definition of a normal form, t is not rewritable by , so that t does not admit any occurrence of a tree appearing as a left member of . 3.2.3. Orientations and bases. Let be an operad admitting a presentation (G ≡). A set of rewrite rules is an orientation of ≡ if the reflexive, symmetric, and transitive closure of is ≡. When is terminating and confluent, the orientation of ≡ is faithful.

Lemma 3.2.2. Let be an operad admitting a presentation (G ≡) and be a faithful orientation of ≡. For any 1, the restriction of the evaluation map ev on ( ) is a bijection between this last set and ( ).

Proof. Let ∈ ( ). Since G is a generating set of , admits a treelike expression t on G. Since is terminating, there is a G-tree t ∈ [t] ≡ such that t is a normal form for . This implies ev(t ) = and shows that ev is surjective.

Since

is an orientation of ≡, if t and t are two normal forms for of arity such that ev(t) = ev(t ), then t ≡ t . Since ≡ is the reflexive, symmetric, and transitive closure of , and since is confluent, any ≡-equivalence class admits at most one normal form. Hence, t = t , showing that is injective.

Let be an operad admitting a presentation (G ≡). When there exists a faithful orientation of ≡, the set is the -basis of . By Lemma 3.2.2, the is a one-to-one correspondence between the graded sets and . Moreover, can be described as the set of the trees factor-avoiding certain trees, as stated by Lemma 3.2.1. These bases were called Poincaré-Birkhoff-Witt basis in [Hof10] and maintain strong connections with Koszulity of operads [GK94, DK10].

Refinements of Hilbert series and enumeration.

We introduce a refinement of the Hilbert series of an operad with respect to an orientation of one of its presentations. A general strategy to count combinatorial objects with respect to their sizes and some statistics relying on operads and factor-avoidance in trees is provided.

Statistics.

A statistics on a set X is a map s : X → N. Let be an operad admitting a presentation (G ≡) faithfully oriented by . Let us define, for any a ∈ G, the statistics s a on in the following way. For any ∈ , we set s a ( ) := deg a (t) where t is a treelike expression on G of which is also a normal form for . By Lemma 3.2.2, this definition is consistent since t is unique among the trees satisfying these properties.

Refined Hilbert series. The -Hilbert series of is the series

H of K Q G defined by H := F( ) (3.3.1)
In other words, H is the enumerative image of the characteristic series of the G-trees factor-avoiding the trees appearing as left members of .

Proposition 3.3.1. Let be a combinatorial operad admitting a presentation (G ≡) faithfully oriented by . Then, H is the series wherein the coefficient of α

1 a 1 α a 1, 0, α 0, ∈ [ ],
is the number of elements of of arity , degree , and such that s a ( ) = α for all ∈ [ ].

Proof. By Lemmas 3.2.1 and 3.2.2, F(

) is the characteristic series of the -basis of . The statement of the proposition follows from the definitions of the statistics s a , a ∈ G, and of the enumerative images of G-tree series.

When is combinatorial, observe that the -Hilbert series of is a refinement of the Hilbert series of . Indeed, by Proposition 3.3.1, the specialization H | :=1 a :=1 a∈G is the Hilbert series ( ) of .

3.3.3. Operads as tools for enumeration. The results presented in the previous sections can be applied, together with operad theory, for enumerative prospects. Indeed, if X is a combinatorial graded set for which we want to describe its generating series X ( ), a strategy consists in

(1) endowing X with partial composition maps

• : X( ) × X( ) → X( + -1) 1 1 (3.3.2)
so that X admits the structure of an operad;

(2) exhibiting a presentation (G ≡) of the operad on X just introduced;

(3) providing a faithful orientation of ≡;

(4) computing the -Hilbert series H of the considered operad on X.

By Proposition 3.3.1, H is a refinement of X ( ) and hence, the knowledge of H leads to the knowledge of X ( ). Moreover, by Lemma 3.2.1, Proposition 2.3.4 provides a way to express H by a system of equations. Also, this strategy to enumerate X passes by the definition of the statistics s a , a ∈ G, on X which could be of independent interest.

E

This last section contains examples of application of the theory of operads for enumeration. We recall here the definitions of some operads involving combinatorial graded sets and apply the results of Sections 2 and 3 to obtain expressions for their generating series taking into account of some statistics.

To not overload the notation, the results of the previous sections are used here implicitly. Moreover, we shall not explicitly prove the faithfulness of the considered orientations. This can easily be done by using general results about rewrite rules on trees, as presented for instance in [START_REF] Giraudo | Nonsymmetric Operads in Combinatorics[END_REF].

4.1. On some classical operads. We begin by considering some well-known and classical operads involving families of trees: bicolored Schröder trees, binary trees, and based noncrossing trees. . This operad can be realized as an operad of bicolored Schröder trees (see for instance [START_REF] Giraudo | Nonsymmetric Operads in Combinatorics[END_REF]), where a bicolored Schröder tree is a Schröder tree such that each internal node is assigned with an element of the set {0 1} and all nodes that have a father labeled by 0 (resp. 1) are labeled by 1 (resp. 0). A definition of Schröder trees is given in Section 4.2.2. By setting that the arity of a bicolored Schröder tree is the number of its leaves, the set of all bicolored Schröder trees forms a combinatorial graded set.

The orientation of ≡ obtained by orienting (4.1.2a) and (4.1.2b) from left to right is faithful. The -Hilbert series of 2As satisfies

H = F    a a b b ∅    (4.1.4)
where

H = + a F a H + b F b H (4.1.5a) F a = + b F b H (4.1.5b) F b = + a F a H (4.1.5c)
This series satisfies the algebraic equation where

H = + 2 a b H 2 + 2 a b H 3 1 - a - b ( 4 
H = + a F a H + b F a b H (4.1.18a) F a = + b F a b H (4.1.18b) F a b = (4.1.18c)
This series satisfies the algebraic equation . This operad can be realized as an operad of based noncrossing trees (see for instance [START_REF] Giraudo | Nonsymmetric Operads in Combinatorics[END_REF]). A based noncrossing tree is a polygon endowed with some selected edges or diagonals, called chords, with the restriction that the bottom side of the polygon is a chord, that no chord crosses another one, and that there is exactly one path formed by chords between any two points of the polygon. By setting that the arity of a based noncrossing tree is its number of points minus 1, the set of all based noncrossing trees forms a combinatorial graded set.

H = + b H + a H + 2 a b H 2 (4.1.19)
The orientation of ≡ obtained by orienting (4.1.22) from left to right is faithful. The -Hilbert series of NCT satisfies

H = F    a b ∅    (4.1.24)
where

H = + a H 2 + b F a H (4.1.25a) F a = + b F a H (4.1.25b)
This series satisfies the algebraic equation 4.2. On some operads from monoids. We shall consider examples of combinatorial objects endowed with operad structures coming from a general construction introduced in [Gir15]. Let us recall the construction. Let be a monoid, that is a set endowed with an associative product admitting a unit 1 . We denote by T the graded set wherein for any 1, T ( ) is the set of all words of length on , seen as an alphabet. This graded set T is endowed with the partial composition maps • defined for any ∈ T ( ), ∈ T ( ), and ∈ [ ], by

H = + ( a + b )H 2 -2 a b H 3 = 0 ( 4 
• := 1 -1 ( 1 ) ( ) +1 (4.2.1)
It was shown in [Gir15] that T is an operad admitting 1 ∈ T (1) as unit. Let N (resp.

N ) be the additive monoid of nonnegative integers (resp. the cyclic monoid of order , 1). In particular, the operads TN and TN admit suboperads whose elements can be interpreted as combinatorial objects. 4.2.1. -trees. For any integer 0, an -tree is a planar rooted tree wherein all internal nodes have arity + 1. By setting that the arity of an -tree is its number of internal nodes, the set of all -trees forms a combinatorial graded set.

Let FCat ( ) be the suboperad of TN generated by the set

G FCat ( ) := {00 01 0 } (4.2.2)
It was shown in [Gir15] that there is a one-to-one correspondence between the set FCat ( ) ( ) and the set of all -trees of arity 1. Therefore, FCat ( ) is an operad on -trees. The dimensions of this operad are provided by the Fuss-Catalan numbers so that #FCat ( ) ( ) = ( + 1) 1 + 1 (4.2.3)

This operad admits the presentation (G FCat ( ) ≡) where ≡ is the finest operad congruence satisfying c(0 3 ) • 1 c(0 1 ) ≡ c(0 1 ) • 2 c(0 2 ) 3 = 1 + 2 (4.2.4)

The orientation of ≡ obtained by orienting all relations (4.2.4) from left to right is faithful. By denoting, for any 0, by the set {c(00) c(01) c(0 )}, the -Hilbert series of FCat ( ) satisfies Let us now focus on the case = 1, for which FCat (1) is an operad on binary trees. First, as a particular case of (4.2.7), the -Hilbert series of FCat (1) The statistics s 00 and s 01 are related to Triangles A033184 and A009766 of [Slo], known as (the mirror image of) Catalan triangle. These statistics count the jump-length in a binary tree (see for instance [START_REF] Krandick | Trees and jumps and real roots[END_REF]).

H = F    0 1 0 3 : 1 3 ∅    (

Schröder trees.

A Schröder tree is a planar rooted tree wherein all internal nodes have arity 2 or more. By setting that the arity of a Schröder tree is its number of leaves minus 1, the set of all Schröder trees forms a combinatorial graded set.

Let Schr be the suboperad of TN generated by the set 
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  For instance, if G := G(2) G(3) with G(2) := {a b} and G(3) := {c},
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 6 Examples. Let us consider some complete examples of systems. • Example 1. Let the alphabet G := G(2) := {a : ∈ N} and the set of patterns
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 4 Let the alphabet G := G(2) := {a} and the set of patterns

  4.1.1. 2-associative operad. The 2-associative operad[START_REF] Loday | On the structure of cofree Hopf algebras[END_REF] is the operad 2As having the presentation (G 2As ≡) whereG 2As := G 2As (2) := {a b} (4.1.1)and ≡ is the finest operad congruence satisfyinga • 1 a ≡ a • 2 a (4.1.2a) b • 1 b ≡ b • 2 b (4.1.2b)The first dimensions of this operad are 1 2 6 22 90 394 1806 8558 (4.1.3) and form Sequence A006318 of [Slo]

  statistics s a and s b are related to Triangle A175124 of [Slo]. These statistics count the number of internal nodes labeled by 0 (or by 1) in a bicolored Schröder tree. 4.1.2. Dipterous operad. The dipterous operad [LR03] is the operad Dipt having the presentation G Dipt ≡ where G Dipt := G Dipt (2) := {a b} (4.1.8)and ≡ is the finest operad congruence satisfyinga • 1 a ≡ a • 2 a (4.1.9a) b • 1 b ≡ b • 2 a (4.1.9b)The dimensions of this operad are the same as the ones of 2As so that Dipt can be realized as an operad of bicolored Schröder trees.The orientation of ≡ obtained by orienting (4.1.9a) from left to right, and (4.1.9b) from right to left is faithful. The -Hilbert series of Dipt satisfies statistics s a is related to Triangle A060693 of [Slo], and the statistics s b is related to Triangle A088617 of [Slo] (one is the mirror image of the other). These statistics count the number of peaks in Schröder paths (which are some paths in one-to-one correspondence with bicolored Schröder trees). 4.1.3. Duplicial operad. The duplicial operad [Lod08] is the operad Dup having the presentation G Dup ≡ where G Dup := G Dup (2) := {a b} (4.1.14) and ≡ is the finest operad congruence satisfying a • 1 a ≡ a • 2 a (4.1.15a) b • 1 a ≡ a • 2 b (4.1.15b) b • 1 b ≡ b • 2 b (4.1.15c) The first dimensions of this operad are 1 2 5 14 42 132 429 1430 (4.1.16) and form Sequence A000108 of [Slo]. This operad can be realized as an operad of binary trees. The orientation of ≡ obtained by orienting (4.1.15a), (4.1.15b), and (4.1.15c) from left to right is faithful. The -Hilbert series of Dup satisfies

  statistics s a and s b are related to Triangle A001263 of [Slo] known as triangle of Narayana numbers [Nar55]. These statistics count the number of edges oriented to the right connecting two internal nodes in a binary tree (which are in one-to-one correspondence with the elements of Dup). 4.1.4. Based noncrossing trees. The based noncrossing trees operad [Cha07] (a study of algebras over this operad was provided in [Ler11]) is the operad NCT having the presentation (G NCT ≡) where G NCT := G NCT (2) := {a b} (4.1.21) and ≡ is the finest operad congruence satisfying b • 1 a ≡ a • 2 b (4.1.22) The first dimensions of this operad are 1 2 7 30 143 728 3876 21318 120175 (4.1.23) and form Sequence A006013 of [Slo]

  to the statistics s a and s b do not appear for the time being in[Slo].

G

  Schr := {00 01 10} (4.2.14) It was shown in [Gir15] that there is a one-to-one correspondence between the set Schr( ) and the set of all Schröder trees of arity 1. Therefore, Schr is an operad on Schröder trees. The first dimensions of this operad are 1 3 11 45 197 903 4279 20793 (4.2.15) and form Sequence A001003 of [Slo]. This operad admits the presentation (G Schr ≡) where ≡ is the finest operad congruence satisfying c(00) • 1 c(00) ≡ c(00) • 2 c(00) (4.2.16a) c(01) • 1 c(10) ≡ c(10) • 2 c(01) (4.2.16b) c(00) • 1 c(01) ≡ c(00) • 2 c(10) (4.2.16c) c(01) • 1 c(00) ≡ c(00) • 2 c(01) (4.2.16d) c(00) • 1 c(10) ≡ c(10) • 2 c(00) (4.2.16e) c(01) • 1 c(01) ≡ c(01) • 2 c(00) (4.2.16f) c(10) • 1 c(00) ≡ c(10

4.2. 3 .

 3 Motzkin paths. A Motzkin path is a path in N 2 connecting the points (0 0) and ( -1 0) by steps in the set {(1 -1) (1 0) (1 1)}. By setting that the arity of a Motzkin path is , the set of all Motzkin paths forms a combinatorial graded set.Let Motz be the suboperad of TN generated by the setG Motz := {00 010} (4.2.21)It was shown in [Gir15] that there is a one-to-one correspondence between the set Motz( ) and the set of all Motzkin paths of arity 1. Therefore, Motz is an operad on Motzkin paths. The first dimensions of this operad are 1 1 2 4 9 21 51 127 (4.2.22)

  This property is denoted by s By a slight abuse of notation, this property is denoted by

f t (resp. s p t). By extension, when is any subset of S(G), t factor-avoids (resp. prefix-avoids) if for all s ∈ , s f t (resp. s p t). f t (resp. p t). Lemma 2.1.2. Let G be an alphabet, and s and t be two G-trees. Then, s is a prefix of t if and only if s = or there exists a letter a ∈ G(

  , then t is a normal form for . The set of all normal forms for is denoted by . If there is not infinite chain t 0 t 1 t 2 • • • then is terminating. Finally, if for all G-trees t, s 1 , and s 2 such that t

			s 2 , there exists a G-tree t such that s 1	* t
	and s 2	* t , then	is confluent.

1) if s s where and r, r 1 , . . . , r |s| are G-trees, and ∈ [|r|]. In other words, one has t t if it is possible to obtain t from t by replacing a factor s of t by s whenever s s . Let also * be the reflexive and transitive closure of . If t and t are two G-trees such that t * t , then t is rewritable into t . If t is a G-tree such that, for any G-tree t , t * t implies t = t * s 1 and t *

  expresses asH = ( 00 H + 1)( 01 H + 1) (4.2.8)This is the series (4.1.19) obtained from the operad Dup. Moreover, as a particular case of (4.2.4), the operad FCat (1) admits the presentation (G FCat (1) ≡) where ≡ is the finest operad congruence satisfyingThe orientation of ≡ obtained by orienting (4.2.9a) and (4.2.9b) from left to right, and (4.2.9c) from right to left is faithful. The -Hilbert series of FCat(1) satisfies

										
		H = F	  00	00	00	01	01	00	∅  	(4.2.10)
	where									2
	H = + 00 F			00		H + 01 F	00	(4.2.11a)
										2
		F	00		= + 01 F	00	(4.2.11b)
	This series satisfies also	H =	00	√	1 -1 -4 √	1 -4 01 -00 + 2 01 01	(4.2.12)
	and writes as								
	H = + ( 00 + 01 ) 2 + 2 00 + 2 00 01 + 2 2 01	2 3 + 3 00 + 3 2 00 01 + 5 00	2 01 + 5 3 01	3 4
	+ 4 00 + 4 3 00 01 + 9 2 00	2 01 + 14 00	3 01 + 14 4 01	4 5
	+ 5 00 + 5 4 00 01 + 14 3 00	2 01 + 28 2 00	3 01 + 42 00	4 01 + 42 5 01	5 6 + • • •	(4.2.13)
		c(00) • 1 c(00) ≡ c(00) • 2 c(00)	(4.2.9a)

c(01) • 1 c(00) ≡ c(00) • 2 c(01) (4.2.9b) c(01) • 1 c(01) ≡ c(01) • 2 c(00) (4.2.9c)

  ) • 2 c(10) (4.2.16g) The orientation of ≡ obtained by orienting (4.2.16a), (4.2.16b), (4.2.16c), (4.2.16d), (4.2.16e), and (4.2.16f) from left to right, and (4.2.16g) from right to left is faithful. The -Hilbert series of Schr satisfies The statistics s 00 and s 10 are related to Triangle A126216 of [Slo], and the statistics s 01 is related to Triangle A114656 of [Slo].

																		
		H = F	  00	00	10	01	01	00	00	01	10	00	01	01	10	10	∅	 	(4.2.17)
	where																	
	H = + 00 F		00 01 10		H + 01 F		00 01 10	H			
												+ 10 H F			10	(4.2.18a)
						F		00 01 10	=							(4.2.18b)
	F	10	= + 00 F		00 01 10	H + 01 F			00 01 10	H	(4.2.18c)
	This series satisfies the algebraic equation									
			+ ( ( 00 + 01 + 10 ) -1)H +	2 ( 00 10 + 01 10 ) H 2 = 0	(4.2.19)
	and writes as																
	H = + ( 00 + 01 + 10 ) 2 + 2 00 + 2 00 01 + 3 00 10 + 2 01 + 3 01 10 + 2 10	2 3
			+ 3 00 + 3 2 00 01 + 6 2 00 10 + 3 00	2 01 + 12 00 01 10 + 6 00	2 10	
									+ 3 01 + 6 2 01 10 + 6 01	2 10 + 3 10		3 4 + • • •	(4.2.20)

By setting that the arity of a directed animal is its cardinality, the set of all directed animals forms a combinatorial graded set.

Let DA be the suboperad of TN 3 generated by the set